International Journal of Engineering Technologies and Management Research
 A Knowledge Repository

INVARIANCE UNDER CORDIALITY OF PATH UNION OF $\mathrm{C}_{5} \odot \mathrm{P}_{\mathrm{K}}$
Mukund V.Bapat ${ }^{* 1}$
${ }^{* 1}$ Hindale, Tal: Devgad, Sindhudurg Maharashtra, 416630, India
Abstract:
We obtain different structures of $P_{m}(G)$ for $G=C_{5} \odot P_{k}$. We take $k=2,3,4,5,6$. The different structures are obtained on path union because of we use different vertices on $\mathrm{C}_{5} \odot \mathrm{P}_{\mathrm{k}}$ to construct $\mathrm{P}_{\mathrm{m}}(\mathrm{G})$. We show all structures so obtained are cordial. Hence invariance under cordiality.

Keywords: Invariance; Cordial Labeling; Path Union; Path; Cycle.
Cite This Article: Mukund V.Bapat. (2018). "INVARIANCE UNDER CORDIALITY OF PATH UNION OF C50PK." International Journal of Engineering Technologies and Management Research, 5(3), 116-122. DOI: https://doi.org/10.29121/ijetmr.v5.i3.2018.182.

1. Introduction

The graphs we consider are simple, finite, undirected and connected. For terminology and definitions we depend on Graph Theory by Harary [6], A dynamic survey of graph labeling by J.Gallian [8] and Douglas West. [9]. I.Cahit introduced the concept of cordial labeling [5]. F: V (G) $\rightarrow\{0,1\}$ is a function. From this label of any edge (uv) is given by $|f(u)-f(v)|$. Further number of vertices labeled with $0 \operatorname{i.ev}_{f}(0)$ and the number of vertices labeled with 1 i.e. $\mathrm{v}_{\mathrm{f}}(1)$ differ at most by one .Similarly number of edges labeled with 0 i.e. $\mathrm{e}_{\mathrm{f}}(0)$ and number of edges labeled with 1 i.e. $\mathrm{e}_{\mathrm{f}}(1)$ differ at most by one. Then the function f is called as cordial labeling. I.Cahit has shown that: every tree is cordial; K_{n} is cordial if and only if $\mathrm{n} \leq 3 ; \mathrm{K}_{\mathrm{m}, \mathrm{n}}$ is cordial for all m and n ; the friendship graph $\mathrm{C}_{3}{ }^{(\mathrm{t})}$ (i.e., the one-point union of t copies of C_{3}) is cordial if and only if t is not congruent to $2(\bmod 4)$; all fans are cordial; the wheel W_{n} is cordial if and only if n is not congruent to $3(\bmod 4)$. A lot of work has been done in this type of labeling. One may refer dynamic survey by J. Gallian [8].

Our focus of attention is on path unions on different graphs. For a given graph there are different path unions (up to isomorphism) structures possible. It depends on which point on G is used to fuse with vertex of Pm to obtain path-union. We have shown that for $\mathrm{G}=$ bull on C_{3}, bull on C_{4}, $\mathrm{C}_{3}{ }^{+}, \mathrm{C}_{4}{ }^{+}$-e then different path union $\mathrm{P}_{\mathrm{m}}(\mathrm{G})$ are cordial [4]. It is called as invariance under cordial labeling. We use the convention that $\mathrm{v}_{\mathrm{f}}(0,1)=(\mathrm{a}, \mathrm{b})$ to indicate the number of vertices labeled with 0 are a in number and that number of vertices labeled with 1 are b in number. Further $\mathrm{e}_{\mathrm{f}}(0,1)=(\mathrm{x}, \mathrm{y})$ we mean the number of edges labeled with 0 are x and number of edges labeled with 1 are y in number. The graph whose cordial labeling is known is cordial graph.

2. Preliminaries

Fusion of vertex Let G be a (p, q) graph. Letu $\neq v$ be two vertices of G. We replace them with single vertex w and all edges incident with u and that with v are made incident with w . If a loop is formed is deleted. The new graph has $\mathrm{p}-1$ vertices and at least $\mathrm{q}-1$ edges. [9] . Path union of \mathbf{G},i.e. $P_{m}(G)$ is obtained by taking a path p_{m} and take m copies of graph G Then fuse a copy each of G at every vertex of path at given fixed point on G. It has $m p$ vertices and $m q+m-1$ edges. Where G is a (p, q) graph.

3. Theorems Proved

3.1. Theorem: All structures of $P_{m}(G)$ are cordial for $G=C_{5} \odot P_{2}$

Proof: Define f: $V\left(\mathrm{P}_{\mathrm{m}}(\mathrm{G})\right) \rightarrow\{0,1\}$ as follows. f gives two labeled copies of $\mathrm{C}_{5} \mathrm{OP}_{2}$ Type A and Type B. These are shown in fig 5.1 and fig 5.2 below.

Fig $5.1 \mathrm{v}_{\mathrm{f}}(0,1)=(5,5), \mathrm{e}_{\mathrm{f}}(0,1)=$

Fig $5.2 \mathrm{v}_{\mathrm{f}}(0,1)=(5,5), \mathrm{e}_{\mathrm{f}}(0,1)=(5,5)$

There are two structures possible on $\mathrm{P}_{\mathrm{m}}(\mathrm{G})$. In structure 1 we choose vertex 'a' from type A and ' b ' from Type B to fuse on vertex of path $P_{m}=\left(v_{1}, v_{2}, v_{3}, \ldots v_{m}\right)$. In structure 2 we choose vertex ' c ' from type A and vertex ' d ' from Type B to fuse on vertex of path P_{m}. Note that any of the 5 pendent vertices each from Type A and that from Type B will be vertex 'a' or vertex 'b' respectively. And any of the 5 degree three vertices from each type A and Type B will be vertex 'c'and 'd' respectively.

Fig 5.3 Labeled copy of $\mathrm{P} 4\left(\mathrm{C}_{5} \odot \mathrm{P}_{2}\right): \mathrm{v}_{\mathrm{f}}(0,1)=(20,20), \mathrm{e}_{\mathrm{f}}(0,1)=(22,21)$; structure 1

Structure 1: We start with a unlabeled path P_{m} and at vertex v_{i} on it fuse vertex 'a' from type A if $i \equiv 1,2(\bmod 4)$ and vertex ' b ' from type b if $i \equiv 2,3(\bmod 4)$. The label of edge $(a a)=$ label of edge $(b b)=0$ and label of edge $(a b)=1$. The label numbers in this case are $v_{f}(0,1)=(5 \mathrm{~m}, 5 \mathrm{~m})$ for all m
and for edges when $m=2 x, x=1,2, .$. we have $\mathrm{e}_{\mathrm{f}}(0,1)=(5 \mathrm{~m}+\mathrm{x}, 5 \mathrm{~m}+\mathrm{x}-1)$ and when m is of type $2 \mathrm{x}+1, \mathrm{x}=0,1,2 \ldots$ we have $\mathrm{e}_{\mathrm{f}}(0,1)=(5 \mathrm{~m}+\mathrm{x}, 5 \mathrm{~m}+\mathrm{x})$.
For structure 2 we repeat the same procedure as above. We start with a unlabeled path P_{m} and at vertex v_{i} on it fuse vertex ' c ' from type A if $i \equiv 1,2(\bmod 4)$ and vertex ' d ' from type b if $i \equiv 2,3$ $(\bmod 4)$.The label of edge $(c c)=$ label of edge $(d d)=0$ and label of edge $(c d)=1$. The label numbers in this case are $\mathrm{v}_{\mathrm{f}}(0,1)=(5 \mathrm{~m}, 5 \mathrm{~m})$ for all m and for edges when $\mathrm{m}=2 \mathrm{x}, \mathrm{x}=1,2, .$. we have $\mathrm{e}_{\mathrm{f}}(0,1)=(5 \mathrm{~m}+\mathrm{x}, 5 \mathrm{~m}+\mathrm{x}-1)$ and when m is of type $2 \mathrm{x}+1, \mathrm{x}=0,1,2 \ldots$ we have $\mathrm{e}_{\mathrm{f}}(0,1)=$ ($5 \mathrm{~m}+\mathrm{x}, 5 \mathrm{~m}+\mathrm{x}$).

The graph is cordial.
\#.

3.2. Theorem: All structures of $\mathbf{P}_{\mathrm{m}}(\mathbf{G})$ are cordial for $\mathbf{G}=\mathrm{C}_{5} \odot P_{3}$.

Proof: Define $\mathrm{f}: \mathrm{V}\left(\mathrm{P}_{\mathrm{m}}(\mathrm{G})\right) \rightarrow\{0,1\}$ as follows. f gives two labeled copies of $\mathrm{C}_{5} \odot \mathrm{P}_{2}$ Type A and Type B. These are shown in fig 5.3and fig 5.4 below.

Fig $5.4 v_{f}(0,1)=(8,7), e_{f}(0,1)=(8,7)$

Fig $5.5 v_{f}(0,1)=(7,8), e_{f}(0,1)=(8,7)$

Different structures on path union are due to we use different vertices on G namely ' a ', ' b ' and ' c ' to fuse with vertex of $P_{m}=\left(v_{1}, v_{2}, . . v_{m}\right)$

In structure 1 we fuse vertex ' a ' from Type A with vertex v_{i} of P_{m} and vertex ' d ' from Type B with vertex v_{i} of P_{m} alternately starting with type A . On Pm the label of edge (ad) $=1$ and $\operatorname{label}(\mathrm{da})=1$.The label number distribution on resultant graph are $\mathrm{v}_{\mathrm{f}}(0,1)=(8+15 \mathrm{x}, 7+15 \mathrm{x})$ when m is oddnumber given by $2 x+1, x=0,1,2 . ., \operatorname{Andv}_{f}(0,1)=(15 x, 15 x)$ when m is even number given by $2 \mathrm{x}, \mathrm{x}=1,2, .$. For all $\mathrm{me}_{\mathrm{f}}(0,1)=(8 \mathrm{~m}, 8 \mathrm{~m}-1)$.

In structure 2 we fuse vertex 'b' from Type A with vertex v_{i} of P_{m} and vertex 'e' from Type B with vertex v_{i} of P_{m} alternately starting with type A. On Pm the label of edge (be) =1 and $\operatorname{label}(\mathrm{eb})=1$. The label number distribution on resultant graph are $\mathrm{v}_{\mathrm{f}}(0,1)=(8+15 \mathrm{x}, 7+15 \mathrm{x})$ when m is odd number given by $2 x+1, x=0,1,2$.. , And $v_{f}(0,1)=(15 x, 15 x)$ when m is even number given by $2 \mathrm{x}, \mathrm{x}=1,2, .$. For all $\mathrm{me}_{\mathrm{f}}(0,1)=(8 \mathrm{~m}, 8 \mathrm{~m}-1)$.

In structure 3 we fuse vertex ' c ' from Type A with vertex v_{i} of P_{m} and vertex ' f ' from Type B with vertex v_{i} of P_{m} alternately starting with type A. On Pm the label of edge (be) =1 and label $(\mathrm{eb})=1$. The label number distribution on resultant graph are $\mathrm{v}_{\mathrm{f}}(0,1)=(8+15 \mathrm{x}, 7+15 \mathrm{x})$ when m is odd number given by $2 x+1, x=0,1,2$.. , And $v_{f}(0,1)=(15 x, 15 x)$ when m is even number given by $2 \mathrm{x}, \mathrm{x}=1,2, .$. For all $\mathrm{m}_{\mathrm{f}}(0,1)=(8 \mathrm{~m}, 8 \mathrm{~m}-1)$. Thus the graph is cordial on all of it's structures.
3.3. Theorem: All structures of $P_{m}(G)$ are cordial for $G=C_{5} \odot P_{4}$

Proof: Define f: $\mathrm{V}\left(\mathrm{P}_{\mathrm{m}}(\mathrm{G})\right) \rightarrow\{0,1\}$ as follows. f gives two labeled copies of $\mathrm{C}_{5} \mathrm{OP}_{4}$ Type A and Type B. These are shown in fig 5.6 and fig 5.7 below. They have equal label numbers but different distribution.

Fig $5.6 \mathrm{v}_{\mathrm{f}}(0,1)=(10,10), \mathrm{e}_{\mathrm{f}}(0,1)=(10,10)$

Fig $5.7 \mathrm{v}_{\mathrm{f}}(0,1)=(10,10), \mathrm{e}_{\mathrm{f}}(0,1)=(10,10)$

In structure 1 we fuse vertex ' a ' from Type A with vertex v_{i} of P_{m} if $i \equiv 1,2(\bmod 4)$ and vertex ' x ' from Type B with vertex v_{i} of P_{m} if $i \equiv 2,3(\bmod 4)$. On P_{m} the label of edge $(a x)=1$ and label $(\mathrm{xa})=1$, label of edge $(\mathrm{xx})=0$ and label(aa) $=0$.The label number distribution on resultant graph are $\mathrm{v}_{\mathrm{f}}(0,1)=(10 \mathrm{~m}, 10 \mathrm{~m})$ for all m and when m is odd number given by $2 \mathrm{x}+1, \mathrm{x}=0,1,2 .$. , And $v_{f}(0,1)=(10 m+x, 10 m+x)$ when m is even number given by $2 x, x=1,2$,.. for all $m e_{f}(0,1)=$ (10m, 10m-1).

In structure 2 we fuse vertex ' b ' from Type A with vertex v_{i} of P_{m} if $i \equiv 1,2(\bmod 4)$ and vertex ' y from Type B with vertex v_{i} of P_{m} if $i \equiv 2,3(\bmod 4)$. On P_{m} the label of edge (by) $=1$ and label $(\mathrm{yb})=1$, label of edge $(\mathrm{yy})=0$ and label $(\mathrm{bb})=0$. The label number distribution on resultant graph are $\mathrm{v}_{\mathrm{f}}(0,1)=(10 \mathrm{~m}, 10 \mathrm{~m})$ for all m and when m is odd number given by $2 \mathrm{x}+1, \mathrm{x}=0,1,2 .$. , And $v_{f}(0,1)=(10 m+x, 10 m+x)$ when m is even number given by $2 x, x=1,2$,.. for all $m e_{f}(0,1)=$ (10m, 10m-1).

In structure 3 we fuse vertex ' c ' from Type A with vertex v_{i} of P_{m} if $i \equiv 1,2(\bmod 4)$ and vertex $' z$ from Type B with vertex v_{i} of P_{m} if $i \equiv 2,3(\bmod 4)$. On P_{m} the label of edge $(c z)=1$ and label $(\mathrm{xc})=1$,label of edge $(\mathrm{zz})=0$ and label $(\mathrm{cc})=0$. The label number distribution on resultant graph are $\mathrm{v}_{\mathrm{f}}(0,1)=(10 \mathrm{~m}, 10 \mathrm{~m})$ for all m and when m is odd number given by $2 \mathrm{x}+1, \mathrm{x}=0,1,2 .$. , And $v_{f}(0,1)=(10 m+x, 10 m+x)$ when m is even number given by $2 x, x=1,2,$. for all $m e_{f}(0,1)=$ (10m, 10m-1).

In structure 4 we fuse vertex ' q ' from Type B with vertex v_{i} of P_{m} if $i \equiv 1,2(\bmod 4)$ and vertex ' d from Type A with vertex v_{i} of P_{m} if $\mathrm{i} \equiv 2,3(\bmod 4)$. On P_{m} the label of edge (qd) $=1$ and label $(\mathrm{dq})=1$,label of edge $(\mathrm{qq})=0$ and label $(\mathrm{dd})=0$. The label number distribution on resultant graph are $\mathrm{v}_{\mathrm{f}}(0,1)=(10 \mathrm{~m}, 10 \mathrm{~m})$ for all m and when m is odd number given by $2 \mathrm{x}+1, \mathrm{x}=0,1,2 .$. . And $v_{f}(0,1)=(10 m+x, 10 m+x)$ when m is even number given by $2 x, x=1,2,$. for all $m, e_{f}(0,1)=$ $(10 \mathrm{~m}, 10 \mathrm{~m}-1)$. The resultant graph structures of $\mathrm{P}_{\mathrm{m}}(\mathrm{G})$ are cordial.

3.4. Theorem: All Structures of $\mathbf{P}_{\mathrm{m}}(\mathbf{G})$ Are Cordial for $\mathbf{G}=\mathrm{C}_{5} \odot \mathrm{P}_{5}$.

Proof: Define $\mathrm{f}: \mathrm{V}\left(\mathrm{P}_{\mathrm{m}}(\mathrm{G})\right) \rightarrow\{0,1\}$ as follows. f gives two labeled copies of $\mathrm{C}_{5} \mathrm{OP}_{2}$ Type A and Type B. These are shown in fig 5.8 and fig 5.9 below.

Fig $5.8 v_{f}(0,1)=(13,12), e_{f}(0,1)=(13,12)$

Different structures on path union are due to we use different vertices on G namely 'e', 'a', 'b', ' c ', ' d ' to fuse with vertex of $P_{m}=\left(v_{1}, v_{2}, . . v_{m}\right)$.

In structure 1 we fuse vertex ' e ' from Type A with vertex v_{i} of P_{m} and vertex ' x ' from Type B with vertex v_{i} of P_{m} alternately starting with type A. On P_{m} the label of edge (ex) =1 and label $(\mathrm{xe})=1$, label of edge (ee) $=0$ and label $(\mathrm{xx})=0$. The label number distribution on resultant graph are $\mathrm{v}_{\mathrm{f}}(0,1)=(13+25 \mathrm{x}, 12+25 \mathrm{x})$ when m is odd number given by $2 \mathrm{x}+1, \mathrm{x}=0,1,2$.. , And $\mathrm{v}_{\mathrm{f}}(0,1)=(25 \mathrm{x}, 25 \mathrm{x})$ when m is even number given by $2 \mathrm{x}, \mathrm{x}=1,2, .$. For all $\mathrm{m}_{\mathrm{f}}(0,1)=(13 \mathrm{~m}, 13 \mathrm{~m}-$ $1)$.

In structure 2 we fuse vertex ' a ' from Type A with vertex v_{i} of P_{m} and vertex ' y ' from Type B with vertex v_{i} of P_{m} alternately starting with type A. On P_{m} the label of edge (ay) =1 and label $(\mathrm{ya})=1$, label of edge (aa) $=0$ and label $(\mathrm{yy})=0$. The label number distribution on resultant graph are $\mathrm{v}_{\mathrm{f}}(0,1)=(13+25 \mathrm{x}, 12+25 \mathrm{x})$ when m is odd number given by $2 \mathrm{x}+1, \mathrm{x}=0,1,2$.. , And $\mathrm{v}_{\mathrm{f}}(0,1)=(25 \mathrm{x}, 25 \mathrm{x})$ when m is even number given by $2 \mathrm{x}, \mathrm{x}=1,2$,.. For all $\mathrm{m}_{\mathrm{f}}(0,1)=(13 \mathrm{~m}, 13 \mathrm{~m}-$ $1)$.

In structure 3 we fuse vertex ' b ' from Type A with vertex v_{i} of P_{m} and vertex ' z ' from Type B with vertex v_{i} of P_{m} alternately starting with type A . On P_{m} the label of edge (bz) =1 and $\operatorname{label}(\mathrm{zb})=1$, label of edge $(\mathrm{zz})=0$ and label $(\mathrm{bb})=0$. The label number distribution on resultant graph are $\mathrm{v}_{\mathrm{f}}(0,1)=(13+25 \mathrm{x}, 12+25 \mathrm{x})$ when m is odd number given by $2 \mathrm{x}+1, \mathrm{x}=0,1,2$.. , And $\mathrm{v}_{\mathrm{f}}(0,1)=(25 \mathrm{x}, 25 \mathrm{x})$ when m is even number given by $2 \mathrm{x}, \mathrm{x}=1,2$,.. For all $\mathrm{m}, \mathrm{e}_{\mathrm{f}}(0,1)=(13 \mathrm{~m}, 13 \mathrm{~m}-$ 1).

In structure 4 we fuse vertex ' c ' from Type A with vertex v_{i} of P_{m} and vertex ' u ' from Type B with vertex v_{i} of P_{m} alternately starting with type A. On P_{m} the label of edge (cu) =1 and label(uc) $=1$, label of edge (uu) $=0$ and label(cc) $=0$. The label number distribution on resultant graph are $\mathrm{v}_{\mathrm{f}}(0,1)=(13+25 \mathrm{x}, 12+25 \mathrm{x})$ when m is odd number given by $2 \mathrm{x}+1, \mathrm{x}=0,1,2$.. , And $\mathrm{v}_{\mathrm{f}}(0,1)=(25 \mathrm{x}, 25 \mathrm{x})$ when m is even number given by $2 \mathrm{x}, \mathrm{x}=1,2, .$. For all $\mathrm{m}_{\mathrm{f}}(0,1)=(13 \mathrm{~m}, 13 \mathrm{~m}-$ 1).

In structure 5 we fuse vertex ' d ' from Type A with vertex v_{i} of P_{m} and vertex ' v ' from Type B with vertex v_{i} of P_{m} alternately starting with type A. On P_{m} the label of edge (dv) =1 and $\operatorname{label}(\mathrm{vd})=1$, label of edge $(\mathrm{dd})=0$ and label $(\mathrm{vv})=0$. The label number distribution on resultant graph are $\mathrm{v}_{\mathrm{f}}(0,1)=(13+25 \mathrm{x}, 12+25 \mathrm{x})$ when m is odd number given by $2 \mathrm{x}+1, \mathrm{x}=0,1,2$.. , And $v_{f}(0,1)=(25 x, 25 x)$ when m is even number given by $2 x, x=1,2, .$. For all $\mathrm{m}_{\mathrm{f}}(0,1)=(13 \mathrm{~m}, 13 \mathrm{~m}-$ $1)$.

3.5. Theorem: All structures of $P_{m}(G)$ are cordial for $G=C_{5} \odot P_{6}$.

Proof: Define f: $\mathrm{V}\left(\mathrm{P}_{\mathrm{m}}(\mathrm{G})\right) \rightarrow\{0,1\}$ as follows. f gives a labeled copy of $\mathrm{C}_{5} \odot \mathrm{P}_{2}$ namely Type A as shown below.We use it repeatedly in a specific way as shown below to obtain labeled copy of G .

Fig $5.8 v_{f}(0,1)=(15,15), \mathrm{e}_{\mathrm{f}}(0,1)=(15,15)$

We get 6 different structures on path union depending on the point on $\mathrm{C}_{5} \square \mathrm{P}_{6}$ fused with vertex of path P_{m} to obtain $\mathrm{P}_{\mathrm{m}}(\mathrm{G})$. We start with a unlabeled copy of P_{m}.
Structure1: At vertex v_{i} of P_{m} fuse a labeled copy as above (type A) at point ' a ' on it for $i \equiv 1,2$ $(\bmod 4)$ and at vertex ' x ' if $i=0,3(\bmod 4)$. The label number distribution is $v_{f}(0,1)=(15 \mathrm{~m}, 15 \mathrm{~m})$ for all m , and on edges when $\mathrm{m}=2 \mathrm{x}+1, \mathrm{x}=0,1, \ldots . \mathrm{e}_{\mathrm{f}}(0,1)=(15+\mathrm{x}, 15+\mathrm{x})$ and if $\mathrm{m}=2 \mathrm{x}, \mathrm{x}=1,2, .$. $\mathrm{e}_{\mathrm{f}}(0,1)=(15+\mathrm{x}, 15+\mathrm{x}-1)$.
Structure2: At vertex v_{i} of P_{m} fuse a labeled copy as above (type A) at point ' b ' on it for $i \equiv 1,2$ $(\bmod 4)$ and at vertex ' y ' if $i \equiv 0,3(\bmod 4)$. The label number distribution is $v_{f}(0,1)=(15 \mathrm{~m}, 15 \mathrm{~m})$ for all m , and on edges when $\mathrm{m}=2 \mathrm{x}+1, \mathrm{x}=0,1, \ldots . \mathrm{e}_{\mathrm{f}}(0,1)=(15+\mathrm{x}, 15+\mathrm{x})$ and if $\mathrm{m}=2 \mathrm{x}, \mathrm{x}=1,2, .$. $\mathrm{e}_{\mathrm{f}}(0,1)=(15+\mathrm{x}, 15+\mathrm{x}-1)$.
Structure3: At vertex v_{i} of P_{m} fuse a labeled copy as above (type A) at point ' c ' on it for $i \equiv 1,2$ $(\bmod 4)$ and at vertex ' z ' if $\mathrm{i} \equiv 0,3(\bmod 4)$. The label number distribution is $\mathrm{v}_{\mathrm{f}}(0,1)=(15 \mathrm{~m}, 15 \mathrm{~m})$ for all m , and on edges when $\mathrm{m}=2 \mathrm{x}+1, \mathrm{x}=0,1, \ldots \mathrm{e}_{\mathrm{f}}(0,1)=(15+\mathrm{x}, 15+\mathrm{x})$ and if $\mathrm{m}=2 \mathrm{x}, \mathrm{x}=1,2, .$. $\mathrm{e}_{\mathrm{f}}(0,1)=(15+\mathrm{x}, 15+\mathrm{x}-1)$.
Structure4: At vertex v_{i} of P_{m} fuse a labeled copy as above (type A) at point ' d ' on it for $i \equiv 1,2$ $(\bmod 4)$ and at vertex ' u ' if $i \equiv 0,3(\bmod 4)$. The label number distribution is $v_{f}(0,1)=(15 \mathrm{~m}, 15 \mathrm{~m})$ for all m, and on edges when $m=2 x+1, x=0,1, \ldots . e_{f}(0,1)=(15+x, 15+x)$ and if $m=2 x, x=1,2, .$. $\mathrm{e}_{\mathrm{f}}(0,1)=(15+\mathrm{x}, 15+\mathrm{x}-1)$.
Structure5: At vertex v_{i} of P_{m} fuse a labeled copy as above (type A) at point 'e' on it for $i \equiv 1,2$ $(\bmod 4)$ and at vertex ' v ' if $i=0,3(\bmod 4)$. The label number distribution is $v_{f}(0,1)=(15 \mathrm{~m}, 15 \mathrm{~m})$
for all m , and on edges when $\mathrm{m}=2 \mathrm{x}+1, \mathrm{x}=0,1, \ldots . \mathrm{e}_{\mathrm{f}}(0,1)=(15+\mathrm{x}, 15+\mathrm{x})$ and if $\mathrm{m}=2 \mathrm{x}, \mathrm{x}=1,2, .$. $\mathrm{e}_{\mathrm{f}}(0,1)=(15+\mathrm{x}, 15+\mathrm{x}-1)$.
Structure6: At vertex v_{i} of P_{m} fuse a labeled copy as above (type A) at point ' f ' on it for $\mathrm{i} \equiv 1,2$ $(\bmod 4)$ and at vertex ' w ' if $i \equiv 0,3(\bmod 4)$. The label number distribution is $v_{f}(0,1)=(15 \mathrm{~m}, 15 \mathrm{~m})$ for all m , and on edges when $\mathrm{m}=2 \mathrm{x}+1, \mathrm{x}=0,1, \ldots \mathrm{e}_{\mathrm{f}}(0,1)=(15+\mathrm{x}, 15+\mathrm{x})$ and if $\mathrm{m}=2 \mathrm{x}, \mathrm{x}=1,2, .$. $\mathrm{e}_{\mathrm{f}}(0,1)=(15+\mathrm{x}, 15+\mathrm{x}-1)$. Thus the graph is cordial for all non-isomorphic structures on path union.

4. Conclusions

To obtain a path union we generally fuse a copy of G ata fixed point on G with every vertex of P_{m}. We have considered every vertex of $\mathrm{C}_{5} \mathrm{OP}_{\mathrm{k}}$ that will produce non-isomorphic structure on path union.We take $\mathrm{k}=2,3,4,5$ and 6 .We take all path unions and show that all are cordial. This is also called as invariance under cordiality of path union.

References

[1] M. Andar, S. Boxwala, and N. Limaye, New families of cordial graphs, J. Combin. Math. Combin. Comput., 53 (2005) 117-154. [134]
[2] M. Andar, S. Boxwala, and N. Limaye, On the cordiality of the t-ply Pt(u,v), ArsCombin., 77 (2005) 245-259. [135]
[3] BapatMukund ,Ph.D. thesis submitted to university of Mumbai.India 2004.
[4] BapatMukund V. Some Path Unions Invariance Under Cordial labeling,accepted IJSAM feb. 2018 issue.
[5] I.Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, ArsCombin., 23 (1987) 201-207.
[6] Harary,GraphTheory,Narosa publishing ,New Delhi
[7] Yilmaz,Cahit,E-cordial graphs,Ars combina,46,251-256.
[8] J.Gallian,Dynamic survey of graph labeling,E.J.C 2017
[9] D. WEST,Introduction to Graph Theory ,Pearson Education Asia.
*Corresponding author.
E-mail address: mukundbapat@yahoo.com

