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Abstract: 

Malware developers are progressively using advanced techniques to defeat malware detection 

tools. One such technique commonly observed in recent malware samples consists of hiding and 

obfuscating modules containing malicious functionality in places that static analysis tools 

overlook. In this paper, we describe a dynamic analysis approach for detecting such hidden or 

obfuscated malware components distributed as parts of an app package. The key idea is 

behavioral differences between the original app and a number of automatically generated 

versions of it, where a number of modifications (faults) have been carefully injected. The 

differential signature is analyzed through a pattern-matching process driven by rules that relate 

different types of hidden functionalities with patterns found in the signature. A thorough 

justification and a description of the proposed model are provided. 
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1. Introduction

Smart phones present a number of security and privacy concerns that are, in many respects, 

even more alarming than those existing in traditional computing environments. Most smart 

phones platforms are equipped with multiple sensors that can determine user location, 

gestures, moves and other physical activities, high-quality audio and video recording 

capabilities. Sensitive pieces of information that can be captured by these devices could be 

easily leaked by malware residing on the smart phone. In this paper we describe a tool for 

detecting, through reverse engineering, obfuscated functionality in components distributed as 

parts of an app package. Such components are often part of a malicious app and are hidden 

outside its main code components. The analyzing the behavioral differences between the 

original app and an altered version where a number of modifications (faults) have been 

carefully introduced. Such modifications are designed to have no observable effect on the app 

execution. The signatures that should detect the confirmed malicious threats are still mainly 

created manually, it is important to discriminate between samples that pose a new unknown threat, 

and those that are mere variants of known malware [2]. a class of smartphone malware that uses 

steganographic techniques to hide malicious executable components within their assets, such as 
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documents, databases, or multimedia files [8]. The fundamental deficiency in the pattern-matching 

approach to malware detection is that it is purely syntactic and ignores the semantics of 

instructions. In this paper, malware detection algorithm addresses this deficiency by incorporating 

instruction semantics to detect malicious program traits [4]. A lightweight method for detection of 

Android malware that enables identifying malicious applications directly on the smartphone [1]. 

A system that addresses this problem by relying on stochastic models of usage and context events 

derived from real user traces [9]. 

 

It has two differentiated major components: fault injection and differential analysis. The first one 

takes an entire package of candidate app as input and generates a fault-injected one.  This is done 

by first extracting all components in the app and then identifying those suspicious of containing 

obfuscated functionality. Such identification is done by comparing specific statistical features of 

the component’s contents with a predefined model for each possible type of resource (i.e., code, 

pictures and video, text files, databases, etc.). Faults are then injected into candidate components, 

which are subsequently repackaged, together with the unaltered ones, into a new app. This process 

admits simultaneous injection of different faults into different components and it is driven by a 

search algorithm that attempts to identify where the obfuscated functionality is hidden. Both the 

original and the fault-injected apps are then executed under identical conditions and their behavior 

is monitored and recorded in the form of form of two behavioral signatures.  Such signatures are 

merely sequential traces of the activities executed by the app, such as for example opening a 

network connection, sending or receiving data, loading a dynamic component, sending an SMS, 

interacting with the file system, etc. Many mobile malware prevention techniques are ported from 

desktop or laptop computers. However, due to the uniqueness of smartphones [10], such as 

multiple-entrance open system, platform-oriented, central data management, vulnerability to theft 

and lost, etc., challenges are also encountered when porting existing anti-malware techniques to 

mobile devices. These challenges include, inefficient security solutions, limitations of signature-

based mobile malware detection, lax control of third party app stores, and uneducated or careless 

users, etc. 

 
An attacker may spoof the “Caller ID” and pretend to be a trusted party. Researchers also 

demonstrated how to spoof MMS messages that appeared to be messages coming from 611, the 

number the carriers use to send out alerts or update notifications [11]. Further, base stations could 

be spoofed too [5]. The differential signature is finally matched against a rule-set where each rule 

encodes a relationship between the type of presumably hidden functionality and certain patterns in 

the differential signature. 

 
2. Differential Fault Analysis Model 

 
This section explains the theoretical background used for: 

• Inject faults into apps; 

• Represent behavioral differences between apps; 

• Deduce properties from such behavioral differences considering injected faults and 

observed differences. 
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2.1. Fault Injection Model 

 
An app P can be seen as a collection of   components 

 
                       P = {c1, c2, . . . , ck}.                                                                                            (1) 

 
A component can be composed of a number of classes (i.e., code), but also other resources 

that are dynamically accessed, such as for example asset files. Components have a type, such 

as for example code, picture, video, database, etc. A type function τ (c) can be defined that 

returns the type of component c. Faults are then injected into candidate components, which are 

subsequently repackaged, together with the unaltered ones, into a new app [7]. The propagation of 

a fault through to an observable failure follows a well defined cycle. When executed, a fault may 

cause an error, which is an invalid state within a system boundary [7]. Most smartphone Trojans 

are related to activities such as recording calls, instant messaging, finding a location via GPS, or 

forwarding call logs and other vital data. According to [6], Smart Message System Trojans 

comprise a large category of mobile malware that run in an application‘s background and send 

SMS messages to a premium rate account owned by an attacker.  

 
Fault conditions can be injected into an app by altering one or more of its components. If C is the 

set of all possible app components, a Fault Injection Operator (FIO) is a transformation. 

 

Ψci : 2C  → 2C 

Ψci (P) = P \ {ci} ∪ {Ψ(ci)}.                                                                                                       
(2) 

 

That is, Ψci (P) returns a modified version of P where component ci   has been replaced by 

Ψ(ci). Depending on the functionality of c and on the nature of the modifications introduced 

by Ψ, replacing c by Ψ(c) may (or may not) translate into observable differences in the 

execution of P. 

 
In this paper, restrict to FIOs that make alterations to data components only, not to 

instructions. Data components include the value of variables found in the code and also asset 

files such as databases, pictures, audio and video files. 

 

2.2. Modeling Differential Behavior 

 
A key task in our system is the analysis of the behavioral differences between an original app and 

a slightly modified version of it after applying a FIO. Model to represent traces of activities and 

differences between such traces are given below.  

 
2.3. Behavioral Signatures 

 
An app interacts with the platform where it is executed by requesting services through a number 

of system calls. These define an interface for apps that need to read/write files, send/receive data 

through the network, place a phone call, etc.  In some cases, there will be a one-to-one 
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correspondence between a behavioral activity and a system call, while in others a behavioral 

activity will encompass a sequence of system calls executed in a given order. It is assumed that 

 
       A = {a1, a2, . . . , an}                                                                                                        (3) 

 
is a set of all relevant and observable activities an app can execute. The execution flow of an app 

P may follow different paths depending on its inputs. 

 
2.4. Differential Signatures 

 
We are interested in analyzing the differences between two observed behaviors given by their 

respective behavioral signatures. We approach this problem as one of string-to- string correction, 

where differences are represented as the minimum number of edits operations needed to transform 

one signature into the other. Given a behavioral signature σ = (s1, s2, . . . , sn),   we  define  the  

next  three  families of signature. Smartphone also feature high-quality audio and video recording 

capabilities. Sensitive pieces of information that can be captured by these devices could be easily 

leaked by malware residing on the Smartphone. Even apparently harmless capabilities have swiftly 

turned into a potential menace. For example [8], access to the accelerometer or the gyroscope can 

be used to infer the location of screen taps and, therefore, to guess what the user is typing (e.g., 

passwords or message contents). Most smartphone Trojans are related to activities such as 

recording calls, instant messaging, finding a location via GPS, or forwarding call logs and other 

vital data. According to [6], Smart Message System Trojans comprise a large category of mobile 

malware that run in an application‘s background and send SMS messages to a premium rate 

account owned by an attacker. 

 

3. Differential Fault Analysis of Obfuscated Apps 

 
There are two differentiated major blocks: 

The first one generates a number of fault-injected apps. This process is carried out by first 

extracting all app components and identifying those of interest (CoIS3), i.e., those components 

suspicious of containing hidden functionality. An iterative process then selects candidate CoIs and 

injects faults into them. Both modified and unmodified components are then repackaged together 

into a new app. 

      

The second block generates stimuli (user inputs and context) for both apps and executes them, 

generating a pair of behavioral signatures. The differential signature is then computed and matched 

against a database of patterns to identify the presence of hidden functionality. 
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Figure 1: Architecture of Differential Fault Analysis. 

 

3.1. Identifying Components of Interest 

 
The first step in the analysis of an app is identifying components of interest (CoIs), i.e., parts of an 

app suspicious of containing hidden functionality. Such components will be later fault injected 

according to some strategy in order to analyze the resulting behavior.   We say that a component 

c of type τ (c) in an app P is of interest if it does not fit a model Mτ (c) defined for all 

components of type τ (c). In the current version measures statistical features only, such as for 

example the expected entropy, the byte distribution, or the average size. Such features are 

computed from a dataset of components of the same type, such as text files, pictures, code, 

etc. For each model M, we assume a Boolean function test (c, M) that returns true if c complies 

with M, and false otherwise. For example, if M is a byte distribution, then test (c, M) could be 

a goodness of fit test (e.g., χ2) between M and c’s byte distribution. More formally 

 
              c ∈ CoIS(P) ⇐⇒test (c, Mτ (c)) = false.                                                                (4) 

  

3.2. Generating Fault-injected Apps  

 
Components of interests identified in the previous stage are injected with faults and reassembled, 

together with the remaining app components, to generate a faulty app P0. This process can generate 

several fault-injected apps, as there are multiple ways of applying different FIOs to different 

components in the set of CoIs. Fault-injected apps are generated one at a time and sent for 

differential analysis. If no evidence of malicious behavior is found in the differential analysis, the 

fault injection process is invoked again to generate a different faulty app, and so on. 

 
Algorithm for obtaining CoIs from an app 

Input: 

App: P = {c1, c2, . . . , ck} 

Set of type normality models: {M1, M2, · · ·, Mn} 

Set of FIOs: {Ψ1, Ψ2, · · ·, Ψm} Mode: normal/ exhaustive Procedure: 

CoIS ←∅ 
For each c ∈ P do 
if [test (c, Mτ (c)) = false] or 
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[(mode = exhaustive) and (∃ Ψi : τ (Ψi) = τ (c))] then 

CoIS ← CoIS ∪{c} 
return CoIS 

 
3.3. Applying Differential Analysis 

 
Differential analysis between a candidate fault-injected app and the original app is carried out. The 

process comprises the following steps: 

Generate an appropriate usage pattern u and context to feed both apps and extract their behavioral 

signatures, σ[P(u|t)] and σ[P0(u|t)]. Both the original and the fault-injected app are tested under 

the same conditions and using the same inputs. Note that this assumes that the execution of an 

app is completely deterministic. 

 
Generate the differential signature ∆(σ[P(u|t)], σ[P0(u|t)]) from the behavioral signatures obtained 

above. Apply     sequentially all     rules     Ri over  

  ∆(σ[P(u|t)], σ[P0(u|t)]) and return those for which a match is obtained. 

 
4. Prototype Implementation 

 

Prototype is implemented using Java and Python components and relies on a number of Android 

open source tools for specific tasks. App components are extracted using Androguard. After fault 

injection, components are repackaged into a modified app using Apk Tool. Monkey is used to 

generate a common sequence of events to interact with both the original app and the fault-injected 

app. These events should be generated specifically for each test to intelligently drive the GUI 

exploration i.e., to test code implementing different functionalities of the app. In its current version, 

uses Monkey to generate 5 classes of input events: activity launch, service launch, action buttons, 

screen touch, and text input. 

 
Each app is then executed in a controlled environment using the stream of events generated above. 

For this purpose, we use Droidbox, a sandbox that allows monitoring various features related to 

the execution during a fixed, user-given amount of time. In order to generate behavioral signatures, 

it monitors the execution of 11 different activities: 

• crypto: generated when calls to the cryptographic API are invoked 

• net-open, net-read, net-write: associated with network I/O actitivites (opening a 

connection, receiving, and sending data) 

• file-open, file-read, file-write: associated with file system I/O activities (opening, reading, 

and writing) 

• sms, call: generated whenever a text message or a phone call is sent or received 

 

4.1. COI Models 

 

EXEFile Match: This model analyzes components of type Dalvik Executable Format 

(DEXFileMatch), Application Package file format (APKFileMatch), and Executable and Linkable 

Format (ELFFileMatch), i.e., 

τ(c) = hDEX,APK,ELFi.The model defined for these components is based on the magic number 

defined in the file header. 
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ImgFile Match: This model analyzes components of type picture, such as PNG, JPG, or GIF 

images, i.e., τ(c) = hPNG,··· ,JPGi. This model is based on the magic number defined in the file 

header 

Encrypted or Compressed Match: This model matches any file whose entropy, measured at the 

byte level, exceeds a given threshold. In such a case, the file is considered to contain random or 

encrypted information and, therefore, is selected for fault analysis. We set the current threshold to 

3.9. Such value was chosen after measuring the entropy of several files before and after being 

encrypted with DES. 

Extension Mismatch: This model identifies files such that their magic numbers do not match the 

file extension. For instance, we found several APK files with DB extension and several encrypted 

files with JPG extension. We currently support two sub models: ImgFile Extension Mismatch and 

APKFile Extension Mismatch. 

Text Script Match: This model analyzes components that match any ASCII text executable file, 

i.e., τ(c) = Script. This model is also based on the magic number defined in the file header. All 

CoIs described above are implemented in Python. The set can be easily extended to incorporate 

additional models by simply adding the corresponding module. 

 
4.2. Differential Rules 

 
The basic set of differential rules incorporated is comprised of 9 rules shown in Table 1. It will 

apply to indistinguishable FIOs and cover the most common examples of obfuscated functionality: 

network activity, file activity, data leakage, SMS activity, hidden payloads, update attacks, 

cryptographic activity, cryptographic payloads, and generic hidden functionality. To reduce the 

complexity of the search space, all basic rules apply to indistinguishable FIOs. However, for the 

sake of completeness our implementation incorporates several distinguishable FIOs, and new rules 

can be further added to match them. For instance, given an app that incorporates a DEX program 

used to enhance photos taken from the camera, we can use a rule to check whether this CoI actually 

does just that or not. Thus, if after applying a FIO over this component the differential signature 

shows, for instance, changes in network activity, we may suspect that the CoI contained other 

functionality piggybacked on the DEX.  

 

Table 1: Basic indistinguishable differential rules implemented 

Name Contains Rule 

RNBC Network Behavior 

Component 
∃i1:  contains

.
 ∆(σ[P], σ [Ψc (P)]), Del-net-open

.
i1 

∨∃i2: contains
.
 ∆(σ[P], σ [Ψc (P)]), 

Delnet−read.
i1 

RFBC File Behavior Component ∃i1: cont.∆(σ[P], σ[Ψc(P)]), Del file – open i1 

∨∃i2: contains
.
 ∆(σ[P], σ[Ψc(P)]),Delfile – read i1 

∨∃i3: contains
.
 ∆(σ[P], σ[Ψc(P)]),Delfile - write

.
i2 

RDLC Data Leak ∃i : contains
.
∆(σ[P], σ[Ψc(P )]), Delleak .I 

RSBC SMS Behavior ∃i :  contains
.
∆(σ[P], σ[Ψc(P )]), Delsms i 

RPBC Payload ∃i : contains
.
∆(σ[P], σ[Ψc(P )]), Deldexload 

.
I 
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RUPC Update Payload ∃i1: contains
.
 ∆(σ[P], σ [Ψc (P )]), Delnet-readi1 

∧∃i: contains
.
 ∆(σ[P], σ [Ψc (P )]), Deldexload i 

RCBC Crypto  ∃i: contains
.
 ∆(σ[P], σ [Ψc(P )]), Delcrypto

.
I 

RCPC Crypto Payload ∃i1:  contains
.
 ∆(σ[P], σ[Ψc(P )]), Delcrypto

.
i1 

∧∃i : contains
.
∆(σ[P], σ[Ψc(P )]), Deldexload i 

RHFC Hidden Function 
¬equal

.
 ∆(σ[P],σ[Ψc(P)]),∅. 

 

5. Results 

 
An app which performs the activities of a malicious application is created and its operation is 

shown in figure 2. 

 
                              Figure 2: List of operations performed by Malware App 

 

Create a file in our smart phone without our knowledge. 

Read all the files in our phone and also can delete the ones they require. 

Read all the contacts in our phone and can delete them automatically, 

Read all the messages in our phone. 

Send messages to others. 

 
These are the basic operations which will be performed daily in our day to day life. But these 

activities will be done by the malicious app in the background without our knowledge. Now, this 

becomes a great threat to the security to our data since we might have some confidential 

information in our phone such as passwords, bank account numbers, ATM pin numbers etc. 

 

5.1. Security App 

 

All those malicious apps can be detected by this security app. And this app, will also give the 

details about what are all the operation that are done by those malicious apps. 

 

The prototype allows to perform the analysis in parallel. We presently limit our implementation to 

a small number of CoI models, FIO operators, and differential matching operators. This 

architecture allows security experts to further extend this and configure their own operators based 

on their experience 
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Figure 3: Screen shot of operation done by Malicious App 

 

6. Conclusions 

 
In this paper we have presented a framework for malware analysis based on the notion of 

differential fault analysis. The architecture is described and provided a formal model of differential 

fault analysis. Additionally, we have an open source prototype implementation with a versatile 

design that can be the basis for further research in this area. Differential fault analysis in the way 

implemented is a powerful and novel dynamic analysis technique that can identify potentially 

malicious components hidden within an app package. Additionally, empowering dynamic analysis 

with a fault injection approach can be used to differentiate “gray” from legitimate behavior when 

analyzing gray ware.  This is a good complement to static analysis tools, more focused on 

inspecting code components but possibly missing pieces of code hidden in data objects or just 

obfuscated. 
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