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ABSTRACT 
Aim of the paper is to investigate the effects of thermal radiation and velocity slip on 
steady MHD slip flow of viscous incompressible electrically conducting fluid over a 
permeable stretching cylinder saturated in porous medium in the presence of 
external magnetic field. The governing nonlinear partial differential equations are 
transformed into ordinary differential equations by suitable similarity 
transformation and solved numerically using Runge-Kutta fourth order method with 
shooting technique. Effect of various physical parameters on fluid velocity, 
temperature, skin –friction coefficient and Nusselt number are presented through 
graphs and discussed numerically. 

 
Keywords: Slip Flow; MHD; Radiation; Stretching Cylinder; Heat Source; Porous 
Medium 

 

1. INTRODUTION 
         The investigation of viscous incompressible fluid flow over a 
stretching/shrinking surface has gained much attention in recent years as it 
has various applications in both industrial and manufacturing processes. 
Some of these are MHD power generators, petroleum industries, plasma 
studies, hot rolling, wire drawing, aerodynamic extrusion of plastic sheets 
and metal spinning. Crane [Crane (1970)] investigated the flow and heat 
transfer past a linearly stretching sheet. Gupta and Gupta [Gupta et al. (1977)] 
extended the work of Crane by introducing mass transfer with suction and 
blowing. Lin and Shih [Lin and Shih (1980), Lin and Shih (1981)] studied 
buoyancy effects on laminar boundary layer heat transfer along vertically 
moving cylinders. Heat transfer characteristics of a continuous stretching 
surface with power law surface temperature vibration were discussed by 
Grubka and Bobba [Grubka and Bobba (1985)]. Chen and Char [Chen and 
Char (1988)] considered heat transfer past a stretching surface with suction 
or blowing. Wang [Wang (1998)] investigated fluid flow due to stretching 
cylinder and obtained both exact and asymptotic solution for large Reynolds 
number. Heat transfer characteristics of a continuous stretching surface were 
analyzed by Ali [Ali (1994)]. 
       Slip flow means non-adherence of fluid to the boundary wall. The slip flow 
boundary condition was first introduced by C.L.M.H. Navier more than a 
century ago. Anderson [Anderson (2002)], Wang [Wang (2002)], Ariel et al. 
[Ariel  et al. (2006)] and Fang et al. [Fang  et al. (2009)] obtained closed form  
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solution of Navier-Stokes equations for laminar boundary layer slip flow over a 
stretching surface. Ganesan and Loganathan [Ganesan and Loganathan (2003)] 
investigated magnetic field effect on moving vertical cylinder with constant heat 
flux. Cortell [Cortell (2005)] considered suction/blowing and internal heat 
generation/absorption in flow and heat transfer of a fluid through porous medium 
over a stretching surface. Flow and heat transfer in an asymmetric stagnation flow 
on a cylinder was studied by Elbarbary and Elgazery [Elbarbary and Elgazery 
(2005)]. Xu, Liao [Xu and Liao (2005)] and Hayat et al. [Hayat  et al. (2006)] used 
homotopy analysis method to study MHD Flow of non-Newtonian and Maxwell 
fluids over stretching plate. 

The flow past a stretching cylinder has many industrial and engineering 
applications for example in metallurgy and polymer industries such as extraction 
and manufacture of polymer and rubber sheets glass fiber production etc. Ishak et 
al. [Ishak et al. (2008), Ishak  and Nazar (2009) and Ishak et al. (2008)] examined 
the boundary layer flow and heat transfer due to stretching cylinder with uniform 
suction/blowing effect and external magnetic field. Later Mukhopadhyay 
[Mukhopadhyay (2013), Mukhopadhyay (2011)] extended the work of Ishak by 
including chemically reactive solute transfer and slip flow along a stretching 
cylinder. Hayat et al. [Hayat  et al. (2018)] discussed convective heat and mass 
transfer by an inclined stretching cylinder. Stagnation-point flow and heat transfer 
over an exponentially stretching/shrinking cylinder was studied by Merkin et al. 
[Merkin et al. (2017)]. Yu et al. [Yu et al. (2018)] investigated effects of thermal 
buoyancy on flow and heat transfer around a permeable circular cylinder with 
internal heat generation. In our previous paper [Sinha and Yadav  (2021)], the 
influence of heat source/sink on MHD mixed convective flow along a vertical 
stretching cylinder saturated in porous medium was investigated. 

Aim of the present paper is to investigate the effects of thermal radiation and 
velocity slip on steady MHD slip flow of viscous incompressible electrically 
conducting fluid over a permeable stretching cylinder saturated in porous medium 
in the presence of external magnetic field. 

 

2. MATHEMATICAL FORMULATION OF THE PROBLEM 
Consider steady axisymmetric flow of viscous incompressible electrically 

conductive fluid over a permeable stretching horizontally placed cylinder of radius 
R in the presence of external magnetic field 𝐵𝐵𝑜𝑜. The uniform magnetic field 𝐵𝐵𝑜𝑜 is 
applied normal to the surface of the cylinder which is saturated in porous medium. 
The 𝑥𝑥 and 𝑟𝑟 axis are taken as the axis of the cylinder and in the radial directions 
respectively. To neglect the induced magnetic field, it is assumed that the magnetic 
Reynolds number is very small. The governing equations of continuity, motion and 
energy are as follows:  
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Figure 1 Physical model of the problem 
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Where 𝑥𝑥 and 𝑟𝑟 are the velocity components in 𝑥𝑥 and 𝑟𝑟 directions, 𝜗𝜗(= 𝜇𝜇
𝜌𝜌

) is the 
kinematic viscosity, 𝜌𝜌 is density of the fluid, 𝜇𝜇 is the coefficient of viscosity, 𝜎𝜎 is the 
electrical conductivity, 𝐾𝐾𝑜𝑜is permeability of the porous medium, 𝑇𝑇 is temperature of 
the fluid, 𝛼𝛼 is thermal diffusivity and 𝑄𝑄 is external volumetric heat source/sink.For 
the radiated heat flux Rosseland approximation is used and 𝑇𝑇4is approximated by 
truncated Taylor series about 𝑇𝑇∞𝑖𝑖. 𝑒𝑒.𝑇𝑇4 ≅ 4𝑇𝑇∞3𝑇𝑇 − 3𝑇𝑇∞4 . 

Corresponding boundary conditions are given by  

 

𝑥𝑥 = 𝑈𝑈(𝑥𝑥) + 𝑆𝑆𝑣𝑣1𝜗𝜗
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

; 𝑟𝑟 = 𝑟𝑟𝑤𝑤  ;𝑇𝑇 = 𝑇𝑇𝑤𝑤(𝑥𝑥); 𝑎𝑎𝑎𝑎 𝑟𝑟 = 𝑅𝑅

and 𝑥𝑥 → 0;   𝑇𝑇 → 𝑇𝑇∞ 𝑎𝑎𝑎𝑎 𝑟𝑟 → ∞                                          
�        (4) 

 

Where 𝑈𝑈(𝑥𝑥) = 𝑈𝑈𝑜𝑜
𝜕𝜕
𝐿𝐿
 is the stretching velocity,  𝑇𝑇𝑤𝑤(𝑥𝑥) = 𝑇𝑇∞ + 𝑇𝑇𝑜𝑜 �

𝜕𝜕
𝐿𝐿
�
𝑁𝑁

  is the 
prescribed wall temperature,  𝑈𝑈𝑜𝑜 and 𝑇𝑇𝑜𝑜 are the reference velocity and temperature 
respectively,  𝑇𝑇∞ is ambient temperature, 𝐿𝐿 is characteristic length, 𝑆𝑆𝑣𝑣1 is velocity 
slip and 𝑁𝑁 is temperature exponent. 
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3. METHOD OF SOLUTION 
In order to get solution of equation (1) to (3) with boundary conditions (4), 

introducing the following similarity variable, stream function and dimensionless 
functions  
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2𝑅𝑅𝑅𝑅(𝜂𝜂),  𝜃𝜃(𝜂𝜂) = 𝜕𝜕−𝜕𝜕∞

𝜕𝜕𝑤𝑤−𝜕𝜕∞
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so that the equation of continuity is 
automatically satisfied. Equations (2) to (4) reduce to  
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𝐾𝐾
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𝑅𝑅 ′ = 1 + 𝑆𝑆𝑣𝑣𝑅𝑅 ′′; 𝑅𝑅 = 𝑆𝑆;𝜃𝜃 = 1; 𝑎𝑎𝑎𝑎 𝜂𝜂 = 0      
𝑅𝑅 ′ → 0;     𝜃𝜃 → 0;     𝑎𝑎𝑎𝑎   𝜂𝜂 → ∞                      

�                          (8) 

Where prime denotes differentiation with respect to 𝜂𝜂, 𝜔𝜔�= � 𝜗𝜗𝐿𝐿
𝑅𝑅2𝑈𝑈𝑜𝑜

�
1
2� is the 

curvature parameter, 𝐾𝐾 �= 𝐾𝐾𝑜𝑜𝑈𝑈𝑜𝑜
𝜗𝜗𝐿𝐿

� is the permeability parameter, 𝑀𝑀2 �= 𝜎𝜎𝐵𝐵𝑜𝑜2𝐿𝐿
𝜌𝜌𝑈𝑈𝑜𝑜

� is the 

magnetic parameter, 𝛿𝛿 �= 𝑄𝑄𝐿𝐿
𝜌𝜌𝐶𝐶𝑝𝑝𝑈𝑈𝑜𝑜

� is the heat source/sink parameter, 𝑃𝑃𝑟𝑟 �= 𝜗𝜗
𝛼𝛼
� is the 

Prandtl number, 𝑅𝑅𝑑𝑑 �= 4𝜕𝜕∞
3

𝜅𝜅𝑘𝑘∗
� is the radiation parameter, 𝑆𝑆𝑣𝑣 �= 𝑆𝑆𝑣𝑣1(𝑈𝑈𝑜𝑜𝜗𝜗

𝐿𝐿
)� is the slip 

parameter and 𝑆𝑆 �= �𝑈𝑈𝑜𝑜𝐿𝐿
𝜗𝜗
�
1/2
� is suction/injection parameter. 

The physical quantities of interest are the skin friction coefficient �𝐶𝐶𝑓𝑓� and local 
Nusselt number (𝑁𝑁𝑥𝑥𝜕𝜕) defined as  

 

𝐶𝐶𝑓𝑓 = 𝜏𝜏𝑤𝑤
𝜌𝜌𝑈𝑈∞2

, 𝑁𝑁𝑥𝑥𝜕𝜕 = 𝜕𝜕𝑞𝑞𝑤𝑤
𝜅𝜅(𝜕𝜕𝑤𝑤−𝜕𝜕∞)

                                                   (9)                                                                           

 

The wall shear stress 𝜏𝜏𝑤𝑤 and the heat flux at the wall 𝑞𝑞𝑤𝑤 are given by 

𝜏𝜏𝑤𝑤 = 𝜇𝜇 �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝜕𝜕=𝑅𝑅

 ,  𝑞𝑞𝑤𝑤 = −𝜅𝜅 �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝜕𝜕=𝑅𝑅

 

Where 𝜇𝜇 and 𝜅𝜅 are the coefficient of viscosity and thermal conductivity of the 
fluid respectively.  

Using similarity transformation (5) in (9), the skin friction coefficient and local 
Nusselt number reduce to 

𝐶𝐶𝑓𝑓𝑅𝑅𝑒𝑒𝜕𝜕
1/2 = 𝑅𝑅′′(0) , 𝑁𝑁𝑥𝑥𝜕𝜕𝑅𝑅𝑒𝑒𝜕𝜕

−1/2  =  −𝜃𝜃′(0). 
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Since equations (6) and (7) are highly nonlinear, these equations with 
boundary conditions (8) are converted into system of first order differential 
equations as given below 

 
with boundary conditions 

 
𝑅𝑅1(0) = 𝑆𝑆;  𝑅𝑅2(0) = 1 + 𝑆𝑆𝑣𝑣𝑅𝑅3(0);  𝑅𝑅4(0) = 1;
 and  𝑅𝑅2 → 0;   𝑅𝑅4 → 0  𝑎𝑎𝑎𝑎  𝜂𝜂 → ∞                      �                           (11) 

 

 

4.  RESULTS AND DISCUSSIONS  
Effects of various physical parameters e.g., curvature parameter, magnetic 

parameter, velocity slip parameter, temperature exponent, radiation parameter, 
Prandtl number, permeability parameter, heat source/sink parameter and 
suction/injection parameter on fluid velocity and temperature are shown through 
figures 2 to 9. Skin friction coefficient and Nusselt number for different values of 
these parameters are tabulated and discussed through Table 1. 

Effect of magnetic parameter on fluid velocity and temperature are shown 
through Figure 2(a) and Figure 2 (b).  

 
Figure 2 (a) Variation of velocity f'(η) with η for various values of magnetic parameter (M) when 
ω=0.25, Pr=1, R_d=0.1, N=1, δ=0.1, S=0.1, S_v=0.2 and K=10. 
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Figure 2 (b) Variation of temperature θ(η) with η for various values of magnetic field parameter 
(M) when  ω=0.25, Pr=1, R_d=0.1, N=1, δ=0.1, S=0.1, S_v=0.2 and K=10. 

 

When magnetic field increases, a resistive force (Lorentz force) works against 
the flow of the fluid which results in decreasing fluid velocity and increasing fluid 
temperature. It is consistent with the data given in Table 1 which shows that skin 
friction decreases with decreasing fluid velocity while Nusselt number increases 
with increasing temperature difference. Figure 3(a) and Figure 3 (b) represent that 
both fluid velocity and temperature increase with enhancing values of velocity slip 
parameter. This is because there is a jump in velocity of the fluid layers adjacent to 
the wall due to increasing velocity slip parameter.  

 
Figure 3 (a) Variation of velocity f'(η) with η for various values of slip parameter (S_v) when ω=0.25, 
M=0.1, Pr=1,  R_d=0.1, N=1, δ=0.1, S=0.1 and K=10 
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Figure 3 (b) Variation of temperature θ(η) with η for various values of slip parameter (S_v) at 
ω=0.25, M=0.1, Pr=1, R_d=0.1, N=1, δ=0.1, S=0.1 and K=10. 

 

 
Figure 4 (a) Variation of velocity f'(η) with η for various values of suction/injection parameter (S) 
when ω=0.25, M=0.1, Pr=1, R_d=0.1, N=1, δ=0.1, S_v=0.2 and K=10. 

 

Figure 4(b) Variation of temperature θ(η) with η for various values of suction/injection parameter 
(S) when ω=0.25, M=0.1, Pr=1, R_d=0.1, N=1, δ=0.1, S_v=0.2 and K=10. 

 

Fluid velocity and temperature decrease with increasing suction parameter as 
depicted in Figure 4 (a) and Figure 4 (b). The physics behind this is when suction 



Steady MHD Slip Flow Over A Permeable Stretching Cylinder with Thermal Radiation 
 

International Journal of Engineering Technologies and Management Research 30  

parameter increases some amount of fluid is sucked by the wall. Also, due to 
decreasing fluid velocity and temperature skin friction decreases while Nusselt 
number increases which can be verified from Table 1. Effect of permeability 
parameter on fluid velocity and temperature are shown through Figure 5 (a) and 
Figure 5 (b). When permeability parameter increases fluid velocity increases while 
temperature decreases. This is because increasing permeability parameter shows 
more assistance to the fluid flow and as a result fluid temperature decrease. 

Figure 6(a) and Figure 6 (b) represent that both fluid velocity and temperature 
decrease with increasing curvature parameter. 

 
Figure 5 (a) Variation of velocity f'(η) with η for various values of permeability parameter (K) when 
ω=0.25, M=0.1, Pr=1,R_d=0.1, N=1, δ=0.1, S=0.1 and S_v=0.2. 

 

 

Figure 5 (b) Variation of temperature θ(η) with η for various values of permeability parameter (K) 
when ω=0.25, M=0.1, Pr=1, R_d=0.1, N=1, δ=0.1, S=0.1 and S_v=0.2. 
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Figure 6 (a) Variation of velocityf'(η) with η for various values of curvature parameter (ω)when 
M=0.1, Pr=1, R_d=0.1, N=1, δ=0.1, S=0.1, S_v=0.2 and K=10. 

 

 

Figure 6 (b) Variation of temperature θ(η) with η for various values of curvature parameter (ω) 
when M=0.1, Pr=1, R_d=0.1, N=1, δ=0.1, S=0.1, S_v=0.2 and K=10. 

 
Figure 7 Variation of temperature θ(η) with η for various values of Prandtl number (Pr) when 
ω=0.25, M=0.1, R_d=0.1, N=1, δ=0.1, S=0.1, S_v=0.2 and K=10. 
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Figure 8 Variation of temperature θ(η) with η for various values of temperature exponent (N) when 
ω=0.25, M=0.1, Pr=1, R_d=0.1, δ=0.1, S=0.1, S_v=0.2 and K=10. 

 

Figure 7 and Figure 8 depict that fluid temperature decreases with increasing 
Prandtl number or temperature exponent, while Figure 9 shows that temperature 
increases with increasing radiation parameter. When radiation parameter increases 
fluid elements consumes the radiated heat and get energized and as a result fluid 
temperature increases and Nusselt number decreases. 

 
Figure 9 Variation of temperature θ(η) with η for various values of radiation parameter (R_d) when 
ω=0.25, M=0.1, Pr=1, N=1, δ=0.1, S=0.1, S_v=0.2 and K=10. 

 

Variation in skin friction coefficient (𝑅𝑅′′(0)) and Nusselt number (−𝜃𝜃′(0)) with 
respect to physical parameters are given in Table 1. The table shows that skin 
friction coefficient decreases when magnetic parameter, suction parameter or 
curvature parameters increases while it increases when velocity slip parameter or 
permeability parameter increases. Moreover, the table illustrate that the Nusselt 
number of the flow field decreases as the values of magnetic parameter, radiation 
parameter or velocity slip parameter increases, and it increases as the values of 
curvature parameter, Prandtl number, temperature exponent, suction parameter or 
permeability parameter increases. 

Table 1 Numerical values of Skin friction coefficient 𝒇𝒇′′(𝟎𝟎) and Nusselt number −𝜽𝜽′(𝟎𝟎) for 
various values of physical parameters when 𝜹𝜹 = 𝟎𝟎.𝟏𝟏. 

𝝎𝝎 M Pr Rd N S 𝑺𝑺𝒗𝒗 K 𝒇𝒇′′(𝟎𝟎) −𝜽𝜽′(𝟎𝟎) 

0.25 0.1 1 0.1 1 0.1 0.2 10 -0.99027 0.75980 

1.25        -1.41780 0.97500 
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 0.4       -1.075795 0.74510 

 1.0       -1.213036 0.66515 

  1       0.79765 

  4       1.99500 

   0.3      0.65800 

   0.7      0.53800 

    1    -0.990850 0.79765 

    2    -0.990850 1.09190 

     0.3   -1.06145 0.88200 

     0.7   -1.21006 1.08500 

      0.4  -0.798670 0.68200 

      1.0  -0.515815 0.53650 

       1 -1.213036 0.66550 

       10 -0.990850 0.79765 

 

Table 2 Comparison of numerical values of Nusselt number for different temperature 
exponents with previously published results when ω=0.0, M= 0.0 and Pr=1. 

N Ishak and 
Nazar [18] 

Grubka and Bobba 
[Grubka and Bobba (1985) 

+  

S. Mukhopadhyay 
[21] 

Present 
study 

0 0.5820 0.5820 0.5821 0.5720 

1 1.0000 1.0000 1.0000 0.9870 

2 1.3333 1.3333 1.3332 1.3201 

 

Table 2 shows the comparison of Nusselt number for different values of 
temperature exponent with previous studies. The numerical results reveal that our 
results are in an excellent agreement with the results given by Ishak and Nazar 
[Ishak  et al. (2008)], Grubka and Bobba [Grubka and Bobba (1985)], S. 
Mukhopadhyay [Mukhopadhyay (2013)] in limiting conditions. 

 

5. CONCLUSIONS AND RECOMMENDATIONS  
The numerical study has been done to examine the influence of thermal 

radiation and slip on velocity and heat transfer of MHD boundary layer flow over a 
stretching cylinder. From the study the following conclusions are drawn: 

Fluid velocity and skin friction coefficient increase with increasing velocity slip 
parameter or permeability parameter. 

Fluid velocity and skin friction coefficient decrease with increasing curvature 
parameter, magnetic parameter or suction/injection parameter. 

Fluid temperature increases while Nusselt number decreases with increasing 
magnetic parameter, velocity slip parameter or radiation parameter. 
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Fluid temperature decreases while Nusselt number increases with increasing 
curvature parameter, suction parameter, permeability parameter, temperature 
exponent or Prandtl number. 
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