SOLVING FPDES & INERTIAL DISCRETE TRANSFER FUNCTION USING ATANGANA-BLAENAU OPERATOR

Authors

  • Namrata Pandey Research Scholar, Govt. Model Science College, APS University, Rewa, M.P.
  • Neelam Pandey Professor, Govt. Model Science College, APS University, Rewa, M.P.

DOI:

https://doi.org/10.29121/shodhkosh.v5.i5.2024.6235

Keywords:

Natural Transform, Homotopy Permutation Method, Fractional Order Transfer Function, Grünwald-Letnikov Definition, Convergence

Abstract [English]

In this work, the natural homotopy permutation technique is discussed as follows: In order to make this endeavor scientifically valuable, the Atangana-Baleanu operator in the Reimann sense was applied with fractional differential equations to solve them using this method. Definitions and characteristics related to this study are also given, and the algorithm of the methodology is also examined. These equations' approximate solutions were eventually discovered, and the method worked well for resolving this kind of fractional problem.
Fractional order, discrete transfer function model of an elementary inertial plant is proposed. The model uses Atangana-Baleanu operator. The discrete transfer function's convergence and stability are examined. Simulations extend theoretical results. The suggested discrete, approximated model has a minimal numerical complexity and is correct. When modeling various physical phenomena, such as heat processes, it might be helpful.

References

Jassim, Hassan Kamil, and M.A. Shareef. "On approximate solutions for fractional system of differential equations with Caputo-Fabrizio fractional operator." Journal of Mathematics and Computer science 23 (2021): 58-66. DOI: https://doi.org/10.22436/jmcs.023.01.06

Hussein, Mohammed Abdulshareef. "The Approximate Solutions of fractional differential equations with Antagana-Baleanu fractional operator." Mathematics and Computational Sciences 3 (2022): 29-39.

Mohammed Abdulshareef Hussein, Hassan Kamil Jassim."New approximate analytical technique for the solution of two dimensional fractional differential equations." NeuroQuantology 20 (2022): 3690-3705.

Hussein, Mohammed Abdulshareef. "A Review on Integral Transforms of Fractional Integral and Derivative." International Academic Journal of Science and Engineering 9 (2022): 52-56. DOI: https://doi.org/10.9756/IAJSE/V9I2/IAJSE0914

Hussein, Mohammed Abdulshareef. "A Review on Algorithms of Sumudu Adomian Decomposition Method for FPDEs." Journal of Research in Applied Mathematics 8 (2022): 36-43.

Hussein, Mohammed Abdulshareef. "A Review on Algorithms of Laplace Adomian Decomposition Method for FPDEs." Scientific Research Journal of Multidisciplinary 2 (2022): 1-10.

Hussein, Mohammed Abdulshareef. "A review on integral transforms of the fractional derivatives of CaputoFabrizio and Atangana-Baleanu." Eurasian Journal of Media and Communications 7 (2022): 17-23.

Atangana, Abdon, and Dumitru Baleanu. "New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model." arXiv preprint arXiv: 1602.03408 (2016).

Belgacem, Fethi Bin Muhammed, and R. Silambarasan. "Theory of natural transform." Math. Engg. Sci. Aeros., 3 (2012): 99-124. DOI: https://doi.org/10.1063/1.4765477

Shah, Kamal, Hammad Khalil, and Rahmat Ali Khan. "Analytical solutions of fractional order diffusion equations by natural transform method." Iranian Journal of Science and Technology, Transactions A: Science 42.3 (2018): 1479-1490. DOI: https://doi.org/10.1007/s40995-016-0136-2

Abdel-Rady, Ahmed Safwat, et al. "Natural transform for solving fractional models." Journal of Applied Mathematics and Physics 3.12 (2015): 1633. DOI: https://doi.org/10.4236/jamp.2015.312188

Bokhari, Ahmed. "Application of Shehu transform to Atangana-Baleanu derivatives." J. Math. Computer Sci., 20 (2019): 101-107. DOI: https://doi.org/10.22436/jmcs.020.02.03

A.S. Alshehry, H. Yasmin, F. Ghani, R. ShahandK.Nonlaopon:Comparativeanalysis ofadvection–dispersionequationswithAtangana–Baleanufractionalderivative.Symmetry, 15(4), (2023), 1–16. DOI: 10.3390/sym15040819 DOI: https://doi.org/10.3390/sym15040819

A. AtanganaandD.Baleanu: Newfractionalderivativeswithnon-localandnon-singular kernel: theory and application to heat transfer. Thermal Sciences, 20(2), (2016), 763–769. DOI: 10.2298/TSCI160111018A DOI: https://doi.org/10.2298/TSCI160111018A

M. Aychluh, S.D.Purohit,P.AgarwalandD.L.Suthar:Atangana–Baleanuderivative basedfractionalmodelofCOVID-19dynamicsinEthiopia.AppliedMathematicsinScience and Engineering, 30(1), (2022), 635–660. DOI: 10.1080/27690911.2022.2121823 DOI: https://doi.org/10.1080/27690911.2022.2121823

M. Buslowicz and T. Kaczorek: Simple conditions for practical stability of positive fractional discrete-time linear systems. International Journal of Applied Mathematics and Computer Science, 19(2), (2009), 263–269. DOI: 10.2478/v10006-009-0022-6 DOI: https://doi.org/10.2478/v10006-009-0022-6

R. Caponetto, G. Dongola, L. Fortuna and I. Petras: Fractional Order Systems: Mod eling and Control Applications. World Scientific Series on Nonlinear Science, University of California, Berkeley, 2010. DOI: https://doi.org/10.1142/9789814304207

S. Das: Functional Fractional Calculus for System Identyfication and Control. Springer, Berlin, 2010. DOI: https://doi.org/10.1007/978-3-642-20545-3_10

E. Bas and R. Ozarslan: Real world applications of fractional models by Atangana Baleanu fractional derivative. Chaos, Solitons and Fractals, 116(11), (2018), 121–125. DOI: 10.1016/j.chaos.2018.09.019 DOI: https://doi.org/10.1016/j.chaos.2018.09.019

J.F. Gomez, L. Torres and R.F. Escobar: Fractional Derivatives with Mittag-Leffler Kernel Trends and Applications in Science and Engineering. Springer, Berlin, 2019. DOI: https://doi.org/10.1007/978-3-030-11662-0

T. Kaczorek: Selected Problems of Fractional Systems Theory. Springer, Berlin, 2011. DOI: https://doi.org/10.1007/978-3-642-20502-6

T. Kaczorek and K. Rogowski: Fractional Linear Systems and Electrical Circuits. Bia lystok University of Technology, Bialystok, 2014. DOI: https://doi.org/10.1007/978-3-319-11361-6

K. Oprzedkiewicz: Accuracy estimation of the discrete, approximated Atangana–Baleanu operator. In Automation 2020 Conference: Innovations in Automation, Robotics and Mea surment Technique, Warsaw, Poland, (2020). DOI: https://doi.org/10.1007/978-3-030-40971-5_4

K. Oprzedkiewicz: Non integer order, state space model of heat transfer process using atangana-baleanu operator. Bulletin of the Polish Academy of Sciences. Technical Sciences, 68(1), (2020), 43–50. DOI: 10.24425/bpasts.2020.131828 DOI: https://doi.org/10.24425/bpasts.2020.131828

K. Oprzedkiewicz and W. Mitkowski: Accuracy estimation of the approximated Atangana–Baleanu operator. Journal of Applied Mathematics and Computational Me chanics, 18(4), (2019), 53–62. DOI: 10.17512/jamcm.2019.4.05 DOI: https://doi.org/10.17512/jamcm.2019.4.05

K. Oprzedkiewicz and W. Mitkowski: Parameter identification for the fractional order, state space model of heat transfer process using atangana-baleanu operator. In 24th International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, Poland, (2019). DOI: 10.1109/MMAR.2019.8864695 DOI: https://doi.org/10.1109/MMAR.2019.8864695

P. Ostalczyk: Equivalent descriptions of a discrete-time fractional-order linear system and its stability domains. International Journal of Applied Mathematics and Computer Science, 22(3), (2012), 533–538. DOI: 10.2478/v10006-012-0040-7 DOI: https://doi.org/10.2478/v10006-012-0040-7

P. Ostalczyk: Discrete Fractional Calculus. Applications in Control and Image Process ing. World Scientific, New Jersey, London, Singapore, 2016. DOI: https://doi.org/10.1142/9833

I. Podlubny: Fractional Differential Equations. Academic Press, San Diego, 1999.

N.A. Salti, E. Karimov and S. Kerbal: Boundary-value problems for fractional heat equation involving Caputo-Fabrizio derivative. New Trends in Mathematical Sciences, 4(4), (2016), 79–89. DOI: 10.48550/arXiv.1603.09471 DOI: https://doi.org/10.20852/ntmsci.2016422308

H. Yepez-Martinez, J.F. Gomez-Aguilar and M. Inc: New modied Atangana–Baleanu fractional derivative applied to solve nonlinear fractional differential equations. Physica Scripta, 98(3), (2023). DOI: 10.1088/1402-4896/acb59 DOI: https://doi.org/10.1088/1402-4896/acb591

Downloads

Published

2024-05-31

How to Cite

Pandey, N., & Pandey, N. (2024). SOLVING FPDES & INERTIAL DISCRETE TRANSFER FUNCTION USING ATANGANA-BLAENAU OPERATOR . ShodhKosh: Journal of Visual and Performing Arts, 5(5), 1747–1762. https://doi.org/10.29121/shodhkosh.v5.i5.2024.6235