DEVELOPMENT AND ANTIMICROBIAL ASSESSMENT OF NOVEL IMINE-BASED -PYRAZOLYL-1)-4,5-DIHYDROTHIAZOLYL-2)THIAZOLIDIN-4-ONE AND-PYRAZOLYL-1)-6H-1,3,4-THIADIAZINYL-2)-2-PHENYLTHIAZOLIDIN-4-ONE COMPOUNDS

Authors

  • Ajay Kumar Tripathi Faculty of Chemical Sciences-S R M U Barabanki, UP., 225 003, India
  • Saumya Singh Faculty of Chemical Sciences-S R M U Barabanki, UP., 225 003, India
  • Bandana Sharma Faculty of Chemical Sciences-S R M U Barabanki, UP., 225 003, India
  • Manoj K Verma Chemistry Division, Forensic Science Laboratory, Lucknow 226006, India
  • Brajesh Singh Department of Govt P G College, Musafirkhana, Amethi, 227405 India.
  • B. K. Rathod Department of Chemistry, FAA, Govt PG College, Mahamudabad Sitapur 261203 India
  • Krishna Srivastava Faculty of Chemical Sciences-S R M U Barabanki, UP., 225 003, India

DOI:

https://doi.org/10.29121/shodhkosh.v5.i4.2024.5520

Keywords:

Substituted Chalcone, Thiourea, Thiosemicarbazide, Thioglycolic Acid., Substituted Aromatic Aldehyde, Hydrazine Hydrate

Abstract [English]

An efficient and convenient synthesis of thiazolidinone derivatives have a pyrazolyl, dihydrothiazolyl and thiazol ring was achieved, initially prepared by chalcone (Acetophenone and o-nitro benzaldehyde) on reaction with hydrazine hydrate give cyclized product which on further reaction with thiourea and thiosemicarbazide forms II, cyclized derivatives having Schiff’s base, the thioglycolic acid and ZnCl2 in trace convert Schiff’s base into final products. The chemical structure of the synthesized derivatives has been established by elemental analysis, FT-IR, 1H NMR, and Mass spectral studies. In vitro antibacterial testing against both gram-positive and gram-negative bacteria has also been conducted on the newly synthesized TZ-4-one and PTZ-4-one derivatives using the serial tube dilution method. The newly prepared derivatives demonstrated noticeable antimicrobial properties.

References

Sukinah H. A. & Abdelwawahed Sayed R. (2021). Review of the synthesis and biological activity of thiazoles. Synthetic Communication, 51(5), 670–700. DOI: https://doi.org/10.1080/00397911.2020.1854787

Parekh N. M., Juddhawala K. V. & Rawal B. M. (2013). Antimicrobial activity of thiazolyl ben-zenesulfonamide condensed 2,4 thiazolidinedione derivatives. Medicinal Chemistry Re-search, 22(6), 2737–2745. DOI: https://doi.org/10.1007/s00044-012-0273-x

Akhtar J., Khan A. A., Ali Z., Haider R. & Yar M. S. (2017). Structure activity relationship (SAR) study and design strategies of nitrogen containing heterocyclic moieties for their anticancer ac-tivities. European Journal of Medicinal Chemistry, 125, 143–189. DOI: https://doi.org/10.1016/j.ejmech.2016.09.023

Tripathi A. C., Gupta S. J., Fatima G. N., Sonar P. K., Verma A. & Saraf S. K. (2014). 4 Thiazolidinones: The advances continue. European Journal of Medicinal Chemistry, 72, 52–77. DOI: https://doi.org/10.1016/j.ejmech.2013.11.017

Ansari A., Ali A. & Asif M. (2017). Biologically active pyrazole derivatives. New Journal of Chem-istry, 41, 16–41. DOI: https://doi.org/10.1039/C6NJ03181A

Chimenti F., Bizzarri B., Bolasco A., Secci D., Chimenti P., Granese A., Carradori S., Ascenzio M. D., Lilli D. & Rivanera D. (2011). Synthesis and biological evaluation of novel 2,4 disubstituted 1,3 thiazoles as anti Candida spp. agents. European Journal of Medicinal Chemistry, 46(1), 378–382. DOI: https://doi.org/10.1016/j.ejmech.2010.10.027

Vishnoi R. K., Kishore R., Chaturvedi D., Shukla M., Bajpai S. & Srivastava N. (2021). Synthesis and antimicrobial activity of cyclic dithiocarbamates employing Triton B/CS₂ system. Asian Jour-nal of Chemistry, 33(5), 1133–1136. DOI: https://doi.org/10.14233/ajchem.2021.23173

Srivastava N., Kishore R. & Chaturvedi D. (2021). Novel and efficient method for the synthesis of cyclic trithiocarbonates employing Cs₂CO₃ and CS₂ system. Research Journal of Chemistry and Environment, 25(12), 142–148. DOI: https://doi.org/10.25303/2512rjce142148

Maaz S. M., Bajpai S., Singh A., Srivastava N. & Pandey G. (2021). Synthesis, characterization and in silico studies of novel heterocyclic organotellurium dithiocarbamates. Research Journal of Chemistry and Environment, 25(5), 170–177.

Kishore R., Kamboj M., Shukla M., Chaturvedi D. & Srivastava N. (2019). Novel synthetic strategy of cyclic dithiocarbamates catalyzed by Triton B. Asian Journal of Chemistry, 31(5), 1091–1094. DOI: https://doi.org/10.14233/ajchem.2019.21830

Srivastava N., Saxena M. & Shukla M. (2019). Novel synthesis of 5 oxo 2 thioxo 2,5 dihydro 3 thiophenecarboxylate derivatives in non aqueous medium. Asian Journal of Chemistry, 31(1), 176–180. DOI: https://doi.org/10.14233/ajchem.2019.21622

Srivastava N. & Kishore R. (2021). Cleaner, greener synthesis, characterization, and anticancer evaluation of 2 thioxo 1,3 thiazolanes. Indian Journal of Heterocyclic Chemistry, 31(2), 265–271.

Srivastava N. & Kishore R. (2021). Synthesis, characterization, anticancer, antibacterial, antifun-gal, and antimalarial activity of (aryl or heteroaryl)-substituted 4 methyl 2,3 dihydro 2 thioxo 1H imidazol 5 yl ethanone derivatives. Indian Journal of Heterocyclic Chemistry, 31(3), 347–355.

Kaur H. & Singh B. (2019, June 30). Synthesis, characterization and biological evaluation of sub-stituted 4 ((1H benzo[d]imidazol 2 yl)methoxy)coumarin derivatives as antimicrobial agents. IJPBR. DOI: https://doi.org/10.30750/ijpbr.7.2.1

Zhang H. L., Zhang Z. W., Lekkala R. & Rakesh K. P. (2020). Antibacterial activities with the struc-ture activity relationship of coumarin derivatives. European Journal of Medicinal Chemis-try, 207, 112832. DOI: https://doi.org/10.1016/j.ejmech.2020.112832

Lee W., Shin C., Park S. E. & Jung M. (2019). Regio stereoselective synthesis of thia-zole containing triarylethylenes by hydroarylation of alkynes. Journal of Organic Chemis-try, 84(20), 12913–12924. DOI: https://doi.org/10.1021/acs.joc.9b01619

Liang Z. Q., Yi L., Chem K. Q. & Ye S. (2016). N Heterocyclic carbene catalyzed [3 + 4] annulation of enals and alkenyl thiazolones: Enantioselective synthesis of thiazole fused ε lactones. Journal of Organic Chemistry, 81(11), 4841–4846. DOI: https://doi.org/10.1021/acs.joc.6b00313

Xiabing N., Ablajan K., Qbul M., Seydinmemet M., Ruzi R. & Wenbo L. (2016). Facial one pot, three component synthesis of thiazole compounds by the reactions of aldehyde/ketone, thio-semicarbazide and chlorinated carboxylic ester derivatives. Tetrahedron, 72(18), 2349–2353. DOI: https://doi.org/10.1016/j.tet.2016.03.053

Madhav B., Murthy N. S., Kumar P. S. P., Ramesh K. & Nageswar V. D. (2012). A tandem one pot aqueous phase synthesis of thiazoles/selenazoles. Tetrahedron, 53(30), 3835–3838. DOI: https://doi.org/10.1016/j.tetlet.2012.04.097

Bolotin D. S., Bokach N. A. & Kukushkin V. Y. (2016). Coordination chemistry and metal involving reactions of amidoximes: relevance to the chemistry of oximes and oxime ligands. Coordination Chemistry Reviews, 313, 62–93. DOI: https://doi.org/10.1016/j.ccr.2015.10.005

Sairam V. K., Gurupadayya B. M., Iyer V. B., Chandan R. S. & Nagesha D. K. (2016). Cytotoxicity studies of coumarin analogs: design, synthesis and biological activity. RSC Advances, 6, 98816–98828. DOI: https://doi.org/10.1039/C6RA22466K

Shaikh S. K. J., Sannaikar M. S., Kumbar M. N., Bayannavar P. K., Kamble R. R., Inamdar S. R. & Joshi S. D. (2018). Microwave expedited green synthesis, photophysical, computational studies of coumarin 3 yl thiazol 3 yl 1,2,4 triazolin 3 ones and their anticancer activity. Chemis-trySelect, 3, 4448–4462. DOI: https://doi.org/10.1002/slct.201702596

Krishnaiah V., Santosh K., Devayani P., Saikiran Reddy P., Rajeswar Rao V., Manga V. & Ko-tamraju S. (2019). 3 (2 (5 Amino 3 aryl 1H pyrazol 1 yl)thiazol 4 yl) 2H chromen 2 ones as po-tential anticancer agents: synthesis, anticancer activity evaluation and molecular docking stud-ies. ChemistrySelect, 4, 4324–4330. DOI: https://doi.org/10.1002/slct.201900077

Moustafa T. G., El Gohary N. S., El Bendary E. R., El Kerdawy M. M. & Ni N. (2017). Micro-wave assisted synthesis and antitumor evaluation of new series of thiazolylcoumarin derivatives. EXCLI Journal, 16, 1114–1131.

Ayati A., Bakhshaiesh T. O., Moghimi S., Esmaeili R., Majidzadeh K. A., Safavi M., Firoozpour L., Emami S. & Foroumadi A. (2018). Synthesis and biological evaluation of new coumarins bearing 2,4 diaminothiazole 5 carbonyl moiety. European Journal of Medicinal Chemistry, 155, 486–491. DOI: https://doi.org/10.1016/j.ejmech.2018.06.015

Hersi F., Omar H. A., Al Qawasmeh R. A., Ahmad Z., Jaber A. M., Zaher D. M. & Al Te T. H. (2020). Design and synthesis of new energy restriction mimetic agents: potent anti tumor activi-ties of hybrid motifs of aminothiazoles and coumarins. Scientific Reports, 10, 1–17. DOI: https://doi.org/10.1038/s41598-020-59685-x

Mane S. G., Katagi K. S., Kadam N. S., Akki M. C. & Joshi S. D. (2020). Design and synthesis of polycyclic acridin (9 yl amino)thiazol 5 yl) 2H chromen 2 one derivatives as antiproliferative and anti TB pharmacophores. Polycyclic Aromatic Compounds, 2020, 1–20. DOI: https://doi.org/10.1080/10406638.2020.1734636

Zhao H., Zhou M., Duan L., Wang W., Zhang J., Wang D. & Liang X. (2013). Synthesis and an-ti fungal activity of oleanolic acid oxime esters. Molecules, 18, 3615–3629. DOI: https://doi.org/10.3390/molecules18033615

Wang X., Qiu X., Wei J., Liu J., Song S., Wang W. & Jiao N. (2018). Cu catalyzed aerobic oxida-tive sulfuration/annulation approach to thiazoles via multiple Csp³–H bond cleavage. Organic Letters, 20, 2632–2636. DOI: https://doi.org/10.1021/acs.orglett.8b00840

Lingaraju G. S., Swaroop T. R., Vinayaka A. C., Kumar K. S. S., Sadashiva M. P. & Ragappa K. S. (2012). An easy access to 4,5 disubstituted thiazoles via base induced click reaction of active methylene isocyanides with methyl dithiocarboxylates. Synthesis, 44, 1373–1379. DOI: https://doi.org/10.1055/s-0031-1290762

Miura T., Funakoshi Y., Fujimoto Y., Nakahashi J. & Murakami M. (2015). Facile synthesis of 2,5 disubstituted thiazoles from terminal alkynes, sulfonyl azides and thionoesters. Organic Let-ters, 17, 2454–2457. DOI: https://doi.org/10.1021/acs.orglett.5b00960

Karamthulla S., Pal S., Khan M. N. & Choudhury L. H. (2014). “On water” synthesis of novel tri-substituted 1,3 thiazoles via microwave assisted catalyst free domino reactions. RSC Advanc-es, 4, 37889–37899. DOI: https://doi.org/10.1039/C4RA06239F

Chinnaraja D. & Rajalakshmi R. (2015). A facile, solvent and catalyst free, microwave assisted one pot synthesis of hydrazinyl thiazole derivatives. Journal of Saudi Chemical Society, 19, 200–206. DOI: https://doi.org/10.1016/j.jscs.2014.05.001

El Sherief H. A. M., Bahaa G. M., Youssif S. N., Bukhari A., Abdel Aziz M., Hamdy M. & Ab-del Rahman S. (2018). Novel 1,2,4 triazole derivatives as potential anticancer agents: design, synthesis, molecular docking and mechanistic studies. Bioorganic Chemistry, 76, 314–325. DOI: https://doi.org/10.1016/j.bioorg.2017.12.013

Kiran K. R., Swaroop T., Rajeev N., Anil S., Rangappa J. & Sadashiva M. (2020). Cyclization of ac-tive methylene isocyanides with α oxodithioesters induced by base: an expedient synthesis of 4 methylthio/ethoxycarbonyl 5 acylthiazoles. Synthesis, 52, 1103–1112. DOI: https://doi.org/10.1055/s-0039-1690821

Mamidala S., Peddi S. R., Aravilli R. K., Jilloju P. C., Manga V. & Vedula R. R. (2021). Microwave irradiated one pot, three component synthesis of a new series of hybrid coumarin based thia-zoles: antibacterial evaluation and molecular docking studies. Journal of Molecular Struc-ture, 1225, 129114. DOI: https://doi.org/10.1016/j.molstruc.2020.129114

Wang Y., Gu W., Shan Y., Liu F., Xu X., Yang Y., Zhang Q., Zhang Y., Kuang H. & Wang Z. (2017). Design, synthesis and anticancer activity of novel nopinone based thiosemicarbazone derivatives. Bioorganic & Medicinal Chemistry Letters, 27(11), 2360–2363. DOI: https://doi.org/10.1016/j.bmcl.2017.04.024

Wang X., Xia L., Xie Y., Wang X., Xiao W., Zhong X., Huang M. & Xue W. (2016). Synthesis and antiviral activities of curcumin derivatives bearing oxime esters moiety. Agrochemicals, 55, 641–646.

Gan X., Hu D., Li P., Wu J., Chen X., Xue W. & Song B. (2016). Design, synthesis, antiviral activity and 3D QSAR study of novel 1,4 pentadien 3 one derivatives containing the 1,3,4 oxadiazole moiety. Pest Management Science, 72, 534–543. DOI: https://doi.org/10.1002/ps.4018

Harini S. T., Kumar H. V., Rangaswamy J., Nick N. (2012). Synthesis, antioxidant and antimicrobi-al activity of vanillin derived from piperidin 4 one oxime esters: preponderant role of the phenyl ester substituents on the piperidin 4 one oxime core. Bioorganic & Medicinal Chemistry Let-ters, 22, 7588–7592. DOI: https://doi.org/10.1016/j.bmcl.2012.10.019

Karakurt A., Alagoz M. A., Sayoglu B., Calis U. & Dalkara S. (2012). Synthesis of novel 1 (2 naphthyl) 2 (imidazol 1 yl)ethanone oxime ester derivatives and evaluation of their an-ti convulsant activity. European Journal of Medicinal Chemistry, 57, 275–282. DOI: https://doi.org/10.1016/j.ejmech.2012.08.037

Li P., Shi L., Yang X., Yang L., Chen X. W., Wu F., Shi Q. C., Xu W. M., He M. & Hu D. Y. (2014). Design, synthesis, and antibacterial activity against rice bacterial leaf blight and leaf streak of 2,5 substituted 1,3,4 oxadiazole/thiadiazole sulfone derivatives. Bioorganic & Medicinal Chem-istry Letters, 24, 1677–1680. DOI: https://doi.org/10.1016/j.bmcl.2014.02.060

Wang X., Xia L., Xie Y., Wang X., Xiao W., Zhong X., Huang M. & Xue W. (2016). Synthesis and antiviral activities of curcumin derivatives bearing oxime esters moiety. Agrochemicals, 55, 641–646.

Downloads

Published

2024-04-30

How to Cite

Tripathi, A. K., Singh, S., Sharma, B., Verma, M. K., Singh, B., B. K. Rathod, & Srivastava, K. (2024). DEVELOPMENT AND ANTIMICROBIAL ASSESSMENT OF NOVEL IMINE-BASED -PYRAZOLYL-1)-4,5-DIHYDROTHIAZOLYL-2)THIAZOLIDIN-4-ONE AND-PYRAZOLYL-1)-6H-1,3,4-THIADIAZINYL-2)-2-PHENYLTHIAZOLIDIN-4-ONE COMPOUNDS . ShodhKosh: Journal of Visual and Performing Arts, 5(4), 1842–1854. https://doi.org/10.29121/shodhkosh.v5.i4.2024.5520