DEEP LEARNING BASED PREDICTIVE ANALYTICS USING ELECTRONIC HEALTH RECORDS: CURRENT APPLICATIONS, IMPLEMENTATION CHALLENGES, AND FUTURE DIRECTIONS
DOI:
https://doi.org/10.29121/shodhkosh.v5.i1.2024.5167Keywords:
Deep Learning, Electronic Health Records, Predictive Analytics, Clinical Decision Support, Healthcare Ai, Model Interpretability, Data Privacy, Patient Stratification, Health Informatics, Responsible AiAbstract [English]
The increasing digitization of healthcare systems has led to the widespread adoption of Electronic Health Records (EHRs), offering a vast and rich source of longitudinal patient data. In recent years, the emergence of deep learning techniques has significantly enhanced the capacity for predictive modelling using such data. Deep learning models have demonstrated superior performance in capturing complex, non-linear relationships across diverse clinical variables, thereby enabling more accurate forecasts of disease progression, hospital readmissions, treatment responses, and other critical outcomes. This review critically examines the current landscape of deep learning applications in predictive analysis based on EHRs, identifying key technological advancements and practical implementations in various clinical contexts. It further explores the multidimensional challenges that hinder widespread deployment, including data quality issues, model interpretability, ethical concerns, and integration into clinical workflows. The discussion underscores the necessity for interdisciplinary collaboration, standardized data frameworks, and the development of transparent and privacy-preserving AI models to ensure equitable and responsible use of deep learning in healthcare. This paper aims to provide a comprehensive perspective that will inform future research directions and policy-making in the development of intelligent, patient-centered healthcare systems.
References
Miotto, R., Li, L., Kidd, B. A., & Dudley, J. T. (2016). Deep Patient: An unsupervised representation to predict the future of patients from the electronic health records. Scientific Reports, 6(1), 26094. https://doi.org/10.1038/srep26094 DOI: https://doi.org/10.1038/srep26094
Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Hardt, M., ... & Dean, J. (2018). Scalable and accurate deep learning with electronic health records. npj Digital Medicine, 1(1), 1–10. https://doi.org/10.1038/s41746-018-0029-1 DOI: https://doi.org/10.1038/s41746-018-0029-1
Choi, E., Bahadori, M. T., Sun, J., Kulas, J., Schuetz, A., & Stewart, W. F. (2016). RETAIN: An interpretable predictive model for healthcare using reverse time attention mechanism. Advances in Neural Information Processing Systems, 29, 3504–3512.
Huang, K., Altosaar, J., & Ranganath, R. (2019). ClinicalBERT: Modeling clinical notes and predicting hospital readmission. arXiv preprint arXiv:1904.05342. https://doi.org/10.48550/arXiv.1904.05342
Alsentzer, E., Murphy, J. R., Boag, W., Weng, W. H., Jindi, D., Naumann, T., & McDermott, M. (2019). Publicly available clinical BERT embeddings. Proceedings of the 2nd Clinical Natural Language Processing Workshop, 72–78. https://doi.org/10.18653/v1/W19-1909 DOI: https://doi.org/10.18653/v1/W19-1909
Shickel, B., Tighe, P. J., Bihorac, A., & Rashidi, P. (2018). Deep EHR: A survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE Journal of Biomedical and Health Informatics, 22(5), 1589–1604. https://doi.org/10.1109/JBHI.2017.2767063 DOI: https://doi.org/10.1109/JBHI.2017.2767063
Hai, A. A., Weiner, M. G., Paranjape, A., Livshits, A., Brown, J. R., Obradovic, Z., & Rubin, D. J. (2023). Deep Learning vs Traditional Models for Predicting Hospital Readmission among Patients with Diabetes. AMIA Annual Symposium Proceedings, 2022, 512–521. https://doi.org/10.1093/jamiaopen/ooac113 DOI: https://doi.org/10.2337/db22-882-P
Jin, D., Sergeeva, E., Weng, W.-H., Chauhan, G., & Szolovits, P. (2021). Explainable Deep Learning in Healthcare: A Methodological Survey from an Attribution View. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 13(6), e1548. https://doi.org/10.1002/wsbm.1548 DOI: https://doi.org/10.1002/wsbm.1548
Baytas, I. M., Xiao, C., Zhang, X., Wang, F., Jain, A. K., & Zhou, J. (2017). Patient Subtyping via Time-Aware LSTM Networks. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 65–74. https://doi.org/10.1145/3097983.3097997 DOI: https://doi.org/10.1145/3097983.3097997
Choi, E., Bahadori, M. T., Schuetz, A., Stewart, W. F., & Sun, J. (2016). Doctor AI: Predicting Clinical Events via Recurrent Neural Networks. Proceedings of the 1st Machine Learning for Healthcare Conference, 301–318. https://doi.org/10.48550/arXiv.1511.05942
Ng, K., Sun, J., Hu, J., Wang, F., & Lee, J. (2017). Predicting Unplanned Readmissions Using Electronic Health Records. International Journal of Medical Informatics, 105, 118–124. https://doi.org/10.1016/j.ijmedinf.2017.05.009 DOI: https://doi.org/10.1016/j.ijmedinf.2017.05.009
Futoma, J., Hariharan, S., Sendak, M., Brajer, N., Clement, M., Bedoya, A., ... & Heller, K. (2017). An Improved Multi-Output Gaussian Process RNN with Real-Time Validation for Early Sepsis Detection. Proceedings of the 34th International Conference on Machine Learning, 70, 1174–1182. https://doi.org/10.48550/arXiv.1708.05894
Che, Z., Purushotham, S., Cho, K., Sontag, D., & Liu, Y. (2018). Interpretable Deep Models for ICU Outcome Prediction. AMIA Annual Symposium Proceedings, 2018, 353–362. https://doi.org/10.1093/jamiaopen/ooy030 DOI: https://doi.org/10.1093/jamiaopen/ooy030
Lipton, Z. C., Kale, D. C., Elkan, C., & Wetzel, R. (2016). Learning to Diagnose with LSTM Recurrent Neural Networks. arXiv preprint arXiv:1511.03677. https://doi.org/10.48550/arXiv.1511.03677
Razavian, N., Marcus, J., & Sontag, D. (2016). Multi-task Prediction of Disease Onsets from Longitudinal Lab Tests. Proceedings of the 1st Machine Learning for Healthcare Conference, 73–100. https://doi.org/10.48550/arXiv.1608.00647
Li, Y., Rao, S., Solares, J. R. A., Hassaine, A., Ramakrishnan, R., Canoy, D., ... & Rahimi, K. (2020). BEHRT: Transformer for electronic health records. Scientific Reports, 10(1), 7155. https://doi.org/10.1038/s41598-020-62922-y DOI: https://doi.org/10.1038/s41598-020-62922-y
Choi, E., Bahadori, M. T., Song, L., Stewart, W. F., & Sun, J. (2017). GRAM: Graph-based attention model for healthcare representation learning. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 787–795. https://doi.org/10.1145/3097983.3098126 DOI: https://doi.org/10.1145/3097983.3098126
McKinney, S. M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., Back, T., Chesus, M., Corrado, G. S., Darzi, A., Etemadi, M., Garcia-Vicente, F., Gilbert, F. J., Halling-Brown, M., Hassabis, D., Jansen, S., Karthikesalingam, A., Kelly, C. J., King, D., ... Shetty, S. (2020). International evaluation of an AI system for breast cancer screening. Nature, 577(7788), 89–94. https://doi.org/10.1038/s41586-019-1799-6 DOI: https://doi.org/10.1038/s41586-019-1799-6
Purushotham, S., Meng, C., Che, Z., & Liu, Y. (2018). Benchmarking deep learning models on large healthcare datasets. JBI, 83, 112–124. https://doi.org/10.1016/j.jbi.2018.06.011 DOI: https://doi.org/10.1016/j.jbi.2018.04.007
Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm. Science, 366(6464), 447 453. https://doi.org/10.1126/science.aax2342 DOI: https://doi.org/10.1126/science.aax2342
Shortreed, S. M., Laber, E., Lizotte, D. J., Stroup, T. S., Pineau, J., & Murphy, S. A. (2021). Informing sequential clinical decision-making through reinforcement learning: An empirical study. Journal of Machine Learning Research, 22(1), 1–34. 10.5555/3454287.3454290
Tran, T., Nguyen, T. D., Phung, D., & Venkatesh, S. (2021). Learning from clinical judgments: Semi-supervised learning with label noise for psychiatric risk prediction. Journal of Biomedical Informatics, 115, 103688. 10.1016/j.jbi.2021.103688
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Syed Mohd Faisal Malik, Md. Tabrez Nafis, Mohd Abdul Ahad, Safdar Tanweer, SM Faizanut tauhid

This work is licensed under a Creative Commons Attribution 4.0 International License.
With the licence CC-BY, authors retain the copyright, allowing anyone to download, reuse, re-print, modify, distribute, and/or copy their contribution. The work must be properly attributed to its author.
It is not necessary to ask for further permission from the author or journal board.
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.