INCORPORATING FUZZY GRAPHIC MATROID IN NETWORK CONSTRUCTION USING INDEX CODES
DOI:
https://doi.org/10.29121/shodhkosh.v5.i6.2024.4345Keywords:
Fuzzy Matroid, Graphic Matroid, Fuzzy Graphic Matroid, Uniform Fuzzy Graphic Matroid, Index CodesAbstract [English]
A fuzzy graphic matroid can be represented over a finite field F. The neccesary and sufficient conditions of a fuzzy graphic matroid to be binary are given. Also, discussed the fuzzy graph-theoretic context in which fuzzy matroids arise. Fuzzy matroid operations, which will illuminate more analogies that corresponds to the operations in fuzzy graph theory and matrix theory. The traditional network models stores the received packets and forward them without applying any additional process to the packets. The uncertainties caused during the transmission of messages in the traditional network models are rectified and noiseless trans- mission of messages in the network model is improved. The primary emphasis of this paper lies in the exploration of network codes and their correlation with fuzzy graphic matroid.
References
Asif, M., Akram, M., Ali, G. (2020). Pythagorean fuzzy matroids with application. Sym- metry, 12(3), 423. DOI: https://doi.org/10.3390/sym12030423
Buvaneswari, R., Saranya. S. (2024). The Properties of Fuzzy Graphic Matroids. Journal of Ramanujan Society of Mathematics and Mathematical Sciences, 11(2), 163-172. DOI: https://doi.org/10.56827/JRSMMS.2024.1102.13
El Rouayheb, S., Sprintson, A., Georghiades, C. (2008, July). On the relation between the index coding and the network coding problems. In 2008 IEEE International Symposium on Information Theory (pp. 1823-1827). IEEE. DOI: https://doi.org/10.1109/ISIT.2008.4595303
El Rouayheb, S., Sprintson, A., Georghiades, C. (2010). On the index coding problem and its relation to network coding and matroid theory. IEEE Transactions on information theory, 56(7), 3187-3195. DOI: https://doi.org/10.1109/TIT.2010.2048502
Goetschel Jr, R., Voxman, W. (1988). Fuzzy matroids. Fuzzy sets and systems, 27(3), 291-302. DOI: https://doi.org/10.1016/0165-0114(88)90055-3
Kaufmann, A. (1988). Theory of expertons and fuzzy logic. Fuzzy Sets and Systems, 28(3), 295-304. DOI: https://doi.org/10.1016/0165-0114(88)90036-X
Mathew, S., Mordeson, J. N., Malik, D. S. (2018). Fuzzy graph theory (Vol. 363). Berlin, Germany: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-71407-3
Mordeson, J. N., Mathew, S. (2019). Advanced topics in fuzzy graph theory (Vol. 375). Berlin: Springer. DOI: https://doi.org/10.1007/978-3-030-04215-8
Murthy, A. (2021). Representation of matroids and the excluded minor theorems. The University of Chicago.
Oxley, J. G. (2006). Matroid theory (Vol. 3). Oxford University Press, USA.
Pitsoulis, L. S. (2014). Topics in matroid theory. Springer Briefs in Optimization: Springer. DOI: https://doi.org/10.1007/978-1-4614-8957-3
Shabna, O. K., Sameena, K. (2019). Matroids from fuzzy graphs. Malaya Journal of Matematik, Vol-s, (1), 500-504. DOI: https://doi.org/10.26637/MJM0S01/0090
Shabna, O. K., Sameena, K. (2021). Graphic fuzzy matroids. South East Asian Journal of Mathematics and Mathematical Sciences, 17(01), 223-232.
Sameena, K. (2021). Fuzzy matroids from fuzzy vector spaces. South East Asian Journal of Mathematics and Mathematical Sciences, 17(03), 381-390.
Sun, Q., Ho, S. T., Li, S. Y. R. (2008, July). On network matroids and linear network codes. In 2008 IEEE International Symposium on Information Theory (pp. 1833-1837). IEEE. DOI: https://doi.org/10.1109/ISIT.2008.4595305
Tutte, W. T. (1959). Matroids and graphs. Transactions of the American Mathematical Society, 90(3), 527-552. DOI: https://doi.org/10.1090/S0002-9947-1959-0101527-3
Thomas, A., Sundar Rajan, B. (2020). Generalized index coding problem and discrete polymatroids. Entropy, 22(6), 646. DOI: https://doi.org/10.3390/e22060646
Welsh, D. J. A. (1976). Matroid theory. London: Acad. Press.
West, D. B. (2001). Introduction to graph theory (Vol. 2). Upper Saddle River: Prentice hall.
Whitney, H. (1987). On the abstract properties of linear dependence. Classic Papers in Combinatorics, 63-87. DOI: https://doi.org/10.1007/978-0-8176-4842-8_5
Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353. DOI: https://doi.org/10.1016/S0019-9958(65)90241-X
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Saranya Shanmugavel, R. Buvaneswari

This work is licensed under a Creative Commons Attribution 4.0 International License.
With the licence CC-BY, authors retain the copyright, allowing anyone to download, reuse, re-print, modify, distribute, and/or copy their contribution. The work must be properly attributed to its author.
It is not necessary to ask for further permission from the author or journal board.
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.
 
							 
			
		 
			 
			 
				













 
  
  
  
  
 