INCORPORATING FUZZY GRAPHIC MATROID IN NETWORK CONSTRUCTION USING INDEX CODES

Authors

  • Saranya Shanmugavel Research Scholar, Department of Mathematics, Sri Krishna Arts and Science College, Coimbatore, India
  • R. Buvaneswari Assistant Professor, Department of Mathematics Sri Krishna Arts and Science College, Coimbatore, India

DOI:

https://doi.org/10.29121/shodhkosh.v5.i6.2024.4345

Keywords:

Fuzzy Matroid, Graphic Matroid, Fuzzy Graphic Matroid, Uniform Fuzzy Graphic Matroid, Index Codes

Abstract [English]

A fuzzy graphic matroid can be represented over a finite field F. The neccesary and sufficient conditions of a fuzzy graphic matroid to be binary are given. Also, discussed the fuzzy graph-theoretic context in which fuzzy matroids arise. Fuzzy matroid operations, which will illuminate more analogies that corresponds to the operations in fuzzy graph theory and matrix theory. The traditional network models stores the received packets and forward them without applying any additional process to the packets. The uncertainties caused during the transmission of messages in the traditional network models are rectified and noiseless trans- mission of messages in the network model is improved. The primary emphasis of this paper lies in the exploration of network codes and their correlation with fuzzy graphic matroid.

References

Asif, M., Akram, M., Ali, G. (2020). Pythagorean fuzzy matroids with application. Sym- metry, 12(3), 423. DOI: https://doi.org/10.3390/sym12030423

Buvaneswari, R., Saranya. S. (2024). The Properties of Fuzzy Graphic Matroids. Journal of Ramanujan Society of Mathematics and Mathematical Sciences, 11(2), 163-172. DOI: https://doi.org/10.56827/JRSMMS.2024.1102.13

El Rouayheb, S., Sprintson, A., Georghiades, C. (2008, July). On the relation between the index coding and the network coding problems. In 2008 IEEE International Symposium on Information Theory (pp. 1823-1827). IEEE. DOI: https://doi.org/10.1109/ISIT.2008.4595303

El Rouayheb, S., Sprintson, A., Georghiades, C. (2010). On the index coding problem and its relation to network coding and matroid theory. IEEE Transactions on information theory, 56(7), 3187-3195. DOI: https://doi.org/10.1109/TIT.2010.2048502

Goetschel Jr, R., Voxman, W. (1988). Fuzzy matroids. Fuzzy sets and systems, 27(3), 291-302. DOI: https://doi.org/10.1016/0165-0114(88)90055-3

Kaufmann, A. (1988). Theory of expertons and fuzzy logic. Fuzzy Sets and Systems, 28(3), 295-304. DOI: https://doi.org/10.1016/0165-0114(88)90036-X

Mathew, S., Mordeson, J. N., Malik, D. S. (2018). Fuzzy graph theory (Vol. 363). Berlin, Germany: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-71407-3

Mordeson, J. N., Mathew, S. (2019). Advanced topics in fuzzy graph theory (Vol. 375). Berlin: Springer. DOI: https://doi.org/10.1007/978-3-030-04215-8

Murthy, A. (2021). Representation of matroids and the excluded minor theorems. The University of Chicago.

Oxley, J. G. (2006). Matroid theory (Vol. 3). Oxford University Press, USA.

Pitsoulis, L. S. (2014). Topics in matroid theory. Springer Briefs in Optimization: Springer. DOI: https://doi.org/10.1007/978-1-4614-8957-3

Shabna, O. K., Sameena, K. (2019). Matroids from fuzzy graphs. Malaya Journal of Matematik, Vol-s, (1), 500-504. DOI: https://doi.org/10.26637/MJM0S01/0090

Shabna, O. K., Sameena, K. (2021). Graphic fuzzy matroids. South East Asian Journal of Mathematics and Mathematical Sciences, 17(01), 223-232.

Sameena, K. (2021). Fuzzy matroids from fuzzy vector spaces. South East Asian Journal of Mathematics and Mathematical Sciences, 17(03), 381-390.

Sun, Q., Ho, S. T., Li, S. Y. R. (2008, July). On network matroids and linear network codes. In 2008 IEEE International Symposium on Information Theory (pp. 1833-1837). IEEE. DOI: https://doi.org/10.1109/ISIT.2008.4595305

Tutte, W. T. (1959). Matroids and graphs. Transactions of the American Mathematical Society, 90(3), 527-552. DOI: https://doi.org/10.1090/S0002-9947-1959-0101527-3

Thomas, A., Sundar Rajan, B. (2020). Generalized index coding problem and discrete polymatroids. Entropy, 22(6), 646. DOI: https://doi.org/10.3390/e22060646

Welsh, D. J. A. (1976). Matroid theory. London: Acad. Press.

West, D. B. (2001). Introduction to graph theory (Vol. 2). Upper Saddle River: Prentice hall.

Whitney, H. (1987). On the abstract properties of linear dependence. Classic Papers in Combinatorics, 63-87. DOI: https://doi.org/10.1007/978-0-8176-4842-8_5

Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353. DOI: https://doi.org/10.1016/S0019-9958(65)90241-X

Downloads

Published

2024-06-30

How to Cite

Shanmugavel, S., & R., B. (2024). INCORPORATING FUZZY GRAPHIC MATROID IN NETWORK CONSTRUCTION USING INDEX CODES. ShodhKosh: Journal of Visual and Performing Arts, 5(6), 798–810. https://doi.org/10.29121/shodhkosh.v5.i6.2024.4345