EXPLORING PETASE: A PROMISING ENZYME FOR PLASTIC WASTE MANAGEMENT

Authors

  • Vidya A.S Department of Biochemistry, Seshadripuram First Grade College, Bengaluru

DOI:

https://doi.org/10.29121/shodhkosh.v5.i1.2024.4185

Keywords:

Plastic, PETase, Biodegradation, Eco-Friendly, Microbes

Abstract [English]

Plastic pollution is a pressing global challenge owing to the pervasive, near-unmanageable threat it poses to living and non-living systems and the environmental stress it causes. The widespread use of plastic materials, their slow degradation rates, and their ability to travel vast distances through air and water currents have made plastic waste a significant environmental challenge. Plastics are classified as degradable and non-degradable ones based on their extent of degradation in natural environments. Conventional plastics, have an extremely slow degradation rate in the environments. Degradation of plastics by environmental microbes are fast, eco-friendly and minimises pollution. This study focuses on role of PETase in PET plastic degradation. Conventional methods such as photochemical, thermal are employed. Biological method using microbes provide greener solutions. Mutagenesis of marine hydrocarbonoclastic bacterium Pseudomonas aestusnigri showed PET degrading potential. The Ideonella sakaiensis mutant showed 3-fold increase in PET degradation compared to wild type. Two strains C. reinhardtii CC-124 and CC-503 degraded PET completely to terephthalic acid detected using HPLC. The in vitro technique of plastic degradation does not fit industrial applications. Thus, genetically engineered microorganisms combined with plastic-degrading enzymes would be a possible for practical application.

References

Thushari, G. G. N.; Senevirathna, J. D. M. Plastic Pollution in the Marine Environment. Heliyon 2020, 6, No. e04709. DOI: https://doi.org/10.1016/j.heliyon.2020.e04709

Borrelle, S. B.; Ringma, J.; Law, K. L.; Monnahan, C. C.;Lebreton, L.;McGivern, A.; Murphy, E.; Jambeck, J.; Leonard, G. H.;Hilleary, M. A.; Eriksen, M.; Possingham, H. P.; De Frond, H.;Gerber, L. R.; Polidoro, B.; Tahir, A.; Bernard, M.; Mallos, N.; Barnes,M.; Rochman, C. M. Predicted Growth in Plastic Waste Exceeds Efforts to Mitigate Plastic Pollution. Science 2020, 369, 1515−1518. DOI: https://doi.org/10.1126/science.aba3656

Wilke, C. Plastics Are Showing up in the World’s Most Remote Places, Including Mount Everest; Science News: Washington, DC, 2020.

Teles, M.; Balasch, J. C.; Oliveira, M.; Sardans, J.; Peñuelas, J. Insights into Nanoplastics Effects on Human Health. Sci. Bull. 2020,65, 1966−1969. DOI: https://doi.org/10.1016/j.scib.2020.08.003

Shen, M.; Huang, W.; Chen, M.; Song, B.; Zeng, G.; Zhang, Y.[Micro]Plastic Crisis: Un-Ignorable Contribution to Global Greenhouse Gas Emissions and Climate Change. J. Cleaner Prod. 2020, 254, No. 120138. DOI: https://doi.org/10.1016/j.jclepro.2020.120138

Marlin, D.; Ribbink, A. J. The African Marine Waste Network and Its Aim to Achieve ‘Zero Plastics to the Seas of Africa. S. Afr. J.Sci. 2020, 116, No. 8104. DOI: https://doi.org/10.17159/sajs.2020/8104

Eriksen, M. Junk Raft: An Ocean Voyage and a Rising Tide of Activism to Fight Plastic Pollution; Beacon Press Books: Boston, MA,2017.

Brodhagen, M., Peyron, M., Miles, C., and Inglis, D. A. [2015]. Biodegradable plastic agricultural mulches and key features of microbial degradation. Appl. Microbiol. Biotechnol. 99, 1039–1056. doi: 10.1007/s00253-014-6267-5 DOI: https://doi.org/10.1007/s00253-014-6267-5

Major, I., Fuenmayor, E., and Mcconville, C. [2016]. The production of solid dosage forms from non-degradable polymers. Curr. Pharm. Des. 22, 2738–2760.doi: 10.2174/1381612822666160217141049 DOI: https://doi.org/10.2174/1381612822666160217141049

Wang, J., Tan, Z., Peng, J., Qiu, Q., and Li, M. [2016]. The behaviors of microplastics in the marine environment. Mar. Environ. Res. 113, 7–17.doi: 10.1016/j.marenvres.2015.10.014 DOI: https://doi.org/10.1016/j.marenvres.2015.10.014

Lu, C., Liu, L., Li, J., Du, G., and Chen J. [2013]. Isolation and characterization of a microorganism degrading starch/polyethylene blends. Chin. J. Appl. Environ.Biol. 19, 683–687 DOI: https://doi.org/10.3724/SP.J.1145.2013.00683

Adrados, A., deMarco, I., Caballero, B. M., López, A., Laresgoiti, M. F., and Torres, A. [2012]. Pyrolysis of plastic packaging waste: a comparison of plastic residuals from material recovery facilities with simulated plastic waste. WasteManag. 32,826–832. doi: 10.1016/j.wasman.2011.06.016 DOI: https://doi.org/10.1016/j.wasman.2011.06.016

Luo, Y., Zhou, Q., Zhang, H., Pan, X., Chen, T. U., Lianzhen, L. I., et al. [2018]. Pay attention to research on microplastic pollution in soil for prevention of ecological and food chain risks. Bull. Chin. Acad. Sci. 33, 1021–1030.

Austine Ofondu Chinomso Iroegbu,⊥ Suprakas Sinha Ray, Vuyelwa Mbarane, João Carlos Bordado,and José Paulo Sardinha Plastic Pollution: A Perspective on Matters Arising: Challenges and Opportunities

Taniguchi I, Yoshida S, Hiraga K, Miyamoto K, Kimura Y, Oda K. Biodegradation of PET: current status and application aspects. ACS Catal. 2019;9:4089–105. DOI: https://doi.org/10.1021/acscatal.8b05171

Lin Y-H, Yang M-H. Catalytic conversion of commingled polymer waste into chemicals and fuels over spent FCC commercial catalyst in a fluidised-bed reactor. Appl Catal B. 2007;69:145–53. DOI: https://doi.org/10.1016/j.apcatb.2006.07.005

Chen Z, Wang Y, Cheng Y, Wang X, Tong S, Yang H, Wang Z. Efficient biodegradation of highly crystallized polyethylene terephthalate through cell surface display of bacterial PETase. Sci Total Environ. 2020;709:136138. DOI: https://doi.org/10.1016/j.scitotenv.2019.136138

Yang, Y., Yang, J. & Jiang, L. Comment on "a bacterium that degrades and assimilates poly[ethylene terephthalate] ". Science [80-].353, 759 [2016]. DOI: https://doi.org/10.1126/science.aaf8305

Austin, H. P. et al. Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc. Natl. Acad. Sci. U. S. A. 115, E4350–E4357 [2018]. DOI: https://doi.org/10.1073/pnas.1718804115

Knott, B. C. et al. Characterization and engineering of a two-enzyme system for plastics depolymerization. Proc. Natl. Acad. Sci.U. S. A. 117, 25476–25485 [2020]. DOI: https://doi.org/10.1073/pnas.2006753117

Meyer-Cifuentes, I. E. & Ozturk, B. Mle046 is a marine mesophilic MHETase-like enzyme. Front. Microbiol. 12, 1–9 [2021]. Tournier, V. et al. Enzymes’ power for plastics degradation. Chem. Rev. https:// doi. org/ 10. 1021/ acs. chemr ev. 2c006 44 [2023].

Tournier, V. et al. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580, 216–219 [2020]. DOI: https://doi.org/10.1038/s41586-020-2149-4

Buchholz, P. C. F. et al. Plastics degradation by hydrolytic enzymes: The plastics-active enzymes database—PAZy. Proteins Struct.Funct. Bioinform. 90, 1443–1456 [2022]. DOI: https://doi.org/10.1002/prot.26325

Puspitasari, N., Tsai, S. L. & Lee, C. K. Class I hydrophobins pretreatment stimulates PETase for monomers recycling of waste PETs. Int. J. Biol. Macromol. 176, 157–164 [2021]. DOI: https://doi.org/10.1016/j.ijbiomac.2021.02.026

Ronkvist, A. M., Xie, W., Lu, W. & Gross, R. A. Cutinase-catalyzed hydrolysis of poly[ethylene terephthalate]. Macromolecules 42,5128–5138 [2009].

Pirillo, V., Orlando, M., Tessaro, D., Pollegioni, L. & Molla, G. An efficient protein evolution workflow for the improvement of bacterial PET hydrolyzing enzymes. Int. J. Mol. Sci. 23, 264 [2022]. DOI: https://doi.org/10.3390/ijms23010264

Wei, R. et al. Mechanism-based design of efficient PET hydrolases. ACS Catal. 12, 3382–3396 [2022]. DOI: https://doi.org/10.1021/acscatal.1c05856

Kawai, F., Kawabata, T., and Oda, M. [2019]. Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields. Appl. Microbiol. Biotechnol. 103, 4253–4268. DOI: https://doi.org/10.1007/s00253-019-09717-y

Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., et al. [2016]. A bacterium that degrades and assimilates poly [ethylene terephthalate]. Science 351, 1196–1199. doi: 10.1126/science. aad6359 DOI: https://doi.org/10.1126/science.aad6359

Wei, R., and Zimmermann, W. [2017]. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we? Microb. Biotechnol. 10,1308–1322. doi: 10.1111/1751-7915.12710 DOI: https://doi.org/10.1111/1751-7915.12710

Peng, B. Y., Su, Y., Chen, Z., Chen, J., Zhou, X., Benbow, M. E., et al. [2019]. Biodegradation of Polystyrene by Dark [Tenebrio obscurus] and Yellow [Tenebriomolitor] Mealworms [Coleoptera: Tenebrionidae]. Environ. Sci. Technol. 53, 5256–5265. doi: 10.1021/acs.est.8b06963 DOI: https://doi.org/10.1021/acs.est.8b06963

Ronkvist, Å. M., Xie, W., Lu, W., and Gross, R. A. [2009]. Cutinase-Catalyzed Hydrolysis of Poly [ethylene terephthalate]. Macromolecules 42, 5128–5138. DOI: https://doi.org/10.1021/ma9005318

Alexander Bollinger1, Stephan Thies, Esther Knieps-Grünhagen, Christoph Gertzen, Stefanie Kobus, Astrid Höppner, Manuel Ferrer, Holger Gohlke Sander H. J. Smits and Karl-Erich Jaeger. A Novel Polyester Hydrolase from the Marine Bacterium Pseudomonas aestusnigri – Structural and Functional Insights.

Maria Eduarda Sevilla , Mario D. Garcia , Yunierkis Perez-Castillo, Vinicio Armijos-Jaramillo, Santiago Casado , Karla Vizuete , Alexis Debut and Liliana Cerda-Mejía. Degradation of PET Bottles by an Engineered Ideonella sakaiensis PETase.

Kim et al. [2020]. Functional expression of polyethylene terephthalate‑degrading enzyme [PETase] in green microalgae. Microb Cell Fact 19:97. https://doi.org/10.1186/s12934-020-01355-8 DOI: https://doi.org/10.1186/s12934-020-01355-8

Downloads

Published

2024-06-30

How to Cite

Vidya A.S. (2024). EXPLORING PETASE: A PROMISING ENZYME FOR PLASTIC WASTE MANAGEMENT. ShodhKosh: Journal of Visual and Performing Arts, 5(1), 1292–1297. https://doi.org/10.29121/shodhkosh.v5.i1.2024.4185