UNVEILING THE POTENTIAL OF OXADIAZOLE TRIAZINE NUCLEOSIDE DERIVATIVE AS AN INHIBITOR OF SARS COV-2: A COMPUTATIONAL BREAKTHROUGH

Authors

  • Madhu Sudan Research Scholar, Department of Chemistry, SSM College Chandausi, Sambhal 244412, Uttar Pradesh, India, Affiliated with MJPRU Bareilly 243006, Uttar Pradesh, India
  • Sarika Arora Associate Professor, Department of Chemistry, IFTM University, Moradabad 244102, Uttar Pradesh, India
  • Danveer Singh Yadav Principal, Department of Chemistry, SSM College Chandausi, Sambhal 244412, Uttar Pradesh, India, Affiliated with MJPRU Bareilly 243006, Uttar Pradesh, India

DOI:

https://doi.org/10.29121/shodhkosh.v5.i6.2024.2761

Keywords:

SARS CoV-2, Oxadiazole Derivatives, ADMET Analysis, Spike Protein, Main Proteases, RdRp

Abstract [English]

SARS-CoV-2 created havoc worldwide in 2019 and was responsible for many deaths. No antiviral drugs have been developed to combat this virus. Oxadiazoles have multiple biological functions, such as anti-inflammatory, anti-tussive, anticancer, analgesic, cough suppressant, anti-oxidant, vasodilator, and more. Many drugs with oxadiazole nuclei have been repurposed to combat COVID-19. To identify a potent oxadiazole derivative against SARS-CoV-2, this article screened 45 substituted oxadiazole triazine nucleoside analogs to counter the three key targets of the SARS-CoV-2 life cycle: spike protein, main proteases, and RNA-dependent RNA-polymerase. The geometry of 45 substituted oxadiazole triazine nucleoside analogs was optimized by density functional theory (DFT) with the B3LYp method. Drug-likeness criteria, ADMET prediction, and docking were carried out for screening. Further analysis of ligand-protein interactions was performed by molecular dynamics simulation at 50 ns. Compounds 1a (-8.5 kcal) and 1m (-8.5 kcal) showed an excellent binding affinity with main proteases (6LU7) and -7.8Kcal, -7.6Kcal, respectively, for RdRp (6M71), while compound 1a and 1m exhibited -8.0 kcal, -8.2 kcal binding affinity respectively for spike protein (6LZG). The MD simulation of the protein-ligand complex with compounds 1a and 1m exhibited good compactness and stability, further validating the docking results. This study proposes these two compounds would be robust inhibitors of SARS CoV-2.

References

Abebe, E. C., Dejenie, T. A., Shiferaw, M. Y., & Malik, T. (2020). The newly emerged COVID-19 disease: A systemic review. Virology Journal, 17(1), 96. https://doi.org/10.1186/s12985-020-01363-5 DOI: https://doi.org/10.1186/s12985-020-01363-5

Ali, I., & Alharbi, O. M. L. (2020). COVID-19: Disease, management, treatment, and social impact. Science of The Total Environment, 728, 138861. https://doi.org/10.1016/j.scitotenv.2020.138861 DOI: https://doi.org/10.1016/j.scitotenv.2020.138861

Almasirad, A., Tabatabai, S. A., Faizi, M., Kebriaeezadeh, A., Mehrabi, N., Dalvandi, A., & Shafiee, A. (2004). Synthesis and anticonvulsant activity of new 2-substituted-5- [2-(2-fluorophenoxy)phenyl]-1,3,4-oxadiazoles and 1,2,4-triazoles. Bioorganic & Medicinal Chemistry Letters, 14(24), 6057–6059. https://doi.org/10.1016/j.bmcl.2004.09.072 DOI: https://doi.org/10.1016/j.bmcl.2004.09.072

Altıntop, M. D., Sever, B., Akalın Çiftçi, G., Turan-Zitouni, G., Kaplancıklı, Z. A., & Özdemir, A. (2018). Design, synthesis, in vitro and in silico evaluation of a new series of oxadiazole-based anticancer agents as potential Akt and FAK inhibitors. European Journal of Medicinal Chemistry, 155, 905–924. https://doi.org/10.1016/j.ejmech.2018.06.049 DOI: https://doi.org/10.1016/j.ejmech.2018.06.049

Calisher, C., Carroll, D., Colwell, R., Corley, R. B., Daszak, P., Drosten, C., Enjuanes, L., Farrar, J., Field, H., Golding, J., Gorbalenya, A., Haagmans, B., Hughes, J. M., Karesh, W. B., Keusch, G. T., Lam, S. K., Lubroth, J., Mackenzie, J. S., Madoff, L., … Turner, M. (2020). Statement in support of the scientists, public health professionals, and medical professionals of China combatting COVID-19. The Lancet, 395(10226), e42–e43. https://doi.org/10.1016/S0140-6736(20)30418-9 DOI: https://doi.org/10.1016/S0140-6736(20)30418-9

Ciotti, M., Ciccozzi, M., Terrinoni, A., Jiang, W.-C., Wang, C.-B., & Bernardini, S. (2020). The COVID-19 pandemic. Critical Reviews in Clinical Laboratory Sciences, 57(6), 365–388. https://doi.org/10.1080/10408363.2020.1783198 DOI: https://doi.org/10.1080/10408363.2020.1783198

Duan, L., Zheng, Q., Zhang, H., Niu, Y., Lou, Y., & Wang, H. (2020). The SARS-CoV-2 Spike Glycoprotein Biosynthesis, Structure, Function, and Antigenicity: Implications for the Design of Spike-Based Vaccine Immunogens. Frontiers in Immunology, 11. https://www.frontiersin.org/articles/10.3389/fimmu.2020.576622 DOI: https://doi.org/10.3389/fimmu.2020.576622

Elseginy, S. A., Fayed, B., Hamdy, R., Mahrous, N., Mostafa, A., Almehdi, A. M., & S. M. Soliman, S. (2021). Promising anti-SARS-CoV-2 drugs by effective dual targeting against the viral and host proteases. Bioorganic & Medicinal Chemistry Letters, 43, 128099. https://doi.org/10.1016/j.bmcl.2021.128099 DOI: https://doi.org/10.1016/j.bmcl.2021.128099

Eslami, H., & Jalili, M. (2020). The role of environmental factors to transmission of SARS-CoV-2 (COVID-19). Amb Express, 10(1), 92. DOI: https://doi.org/10.1186/s13568-020-01028-0

Gan, X., Hu, D., Chen, Z., Wang, Y., & Song, B. (2017). Synthesis and antiviral evaluation of novel 1,3,4-oxadiazole/thiadiazole-chalcone conjugates. Bioorganic & Medicinal Chemistry Letters, 27(18), 4298–4301. https://doi.org/10.1016/j.bmcl.2017.08.038 DOI: https://doi.org/10.1016/j.bmcl.2017.08.038

Gobec, M., Tomašič, T., Markovič, T., Mlinarič-Raščan, I., Dolenc, M. S., & Jakopin, Ž. (2015). Antioxidant and anti-inflammatory properties of 1,2,4-oxadiazole analogs of resveratrol. Chemico-Biological Interactions, 240, 200–207. https://doi.org/10.1016/j.cbi.2015.08.018 DOI: https://doi.org/10.1016/j.cbi.2015.08.018

Hamdy, R., Fayed, B., Mostafa, A., Shama, N. M. A., Mahmoud, S. H., Mehta, C. H., Nayak, Y., & M. Soliman, S. S. (2021). Iterated Virtual Screening-Assisted Antiviral and Enzyme Inhibition Assays Reveal the Discovery of Novel Promising Anti-SARS-CoV-2 with Dual Activity. International Journal of Molecular Sciences, 22(16), Article 16. https://doi.org/10.3390/ijms22169057 DOI: https://doi.org/10.3390/ijms22169057

Hasnain, M., Pasha, M. F., & Ghani, I. (2020). Combined measures to control the COVID-19 pandemic in Wuhan, Hubei, China: A narrative review. Journal of Biosafety and Biosecurity, 2(2), 51–57. DOI: https://doi.org/10.1016/j.jobb.2020.10.001

He, J., Hu, L., Huang, X., Wang, C., Zhang, Z., Wang, Y., Zhang, D., & Ye, W. (2020). Potential of coronavirus 3C-like protease inhibitors for the development of new anti-SARS-CoV-2 drugs: Insights from structures of protease and inhibitors. International Journal of Antimicrobial Agents, 56(2), 106055. https://doi.org/10.1016/j.ijantimicag.2020.106055 DOI: https://doi.org/10.1016/j.ijantimicag.2020.106055

Hu, Q., Xiong, Y., Zhu, G.-H., Zhang, Y.-N., Zhang, Y.-W., Huang, P., & Ge, G.-B. (2022). The SARS-CoV-2 main protease (Mpro): Structure, function, and emerging therapies for COVID-19. MedComm, 3(3), e151. https://doi.org/10.1002/mco2.151 DOI: https://doi.org/10.1002/mco2.151

Jakhmola, S., Indari, O., Kashyap, D., Varshney, N., Das, A., Manivannan, E., & Jha, H. C. (2021). Mutational analysis of structural proteins of SARS-CoV-2. Heliyon, 7(3), e06572. https://doi.org/10.1016/j.heliyon.2021.e06572 DOI: https://doi.org/10.1016/j.heliyon.2021.e06572

Jamil, S., Mark, N., Carlos, G., Cruz, C. S. D., Gross, J. E., & Pasnick, S. (2020). Diagnosis and Management of COVID-19 Disease. American Journal of Respiratory and Critical Care Medicine, 201(10), P19–P20. https://doi.org/10.1164/rccm.2020C1 DOI: https://doi.org/10.1164/rccm.2020C1

Jayashankar, B., Lokanath Rai, K. M., Baskaran, N., & Sathish, H. S. (2009). Synthesis and pharmacological evaluation of 1,3,4-oxadiazole bearing bis(heterocycle) derivatives as anti-inflammatory and analgesic agents. European Journal of Medicinal Chemistry, 44(10), 3898–3902. https://doi.org/10.1016/j.ejmech.2009.04.006 DOI: https://doi.org/10.1016/j.ejmech.2009.04.006

Keehner, J., Horton, L. E., Binkin, N. J., Laurent, L. C., Pride, D., Longhurst, C. A., Abeles, S. R., & Torriani, F. J. (2021). Resurgence of SARS-CoV-2 Infection in a Highly Vaccinated Health System Workforce. New England Journal of Medicine, 385(14), 1330–1332. https://doi.org/10.1056/NEJMc2112981 DOI: https://doi.org/10.1056/NEJMc2112981

Kronbichler, A., Kresse, D., Yoon, S., Lee, K. H., Effenberger, M., & Shin, J. I. (2020). Asymptomatic patients as a source of COVID-19 infections: A systematic review and meta-analysis. International Journal of Infectious Diseases, 98, 180–186. https://doi.org/10.1016/j.ijid.2020.06.052 DOI: https://doi.org/10.1016/j.ijid.2020.06.052

Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., & Wang, X. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581(7807), Article 7807. https://doi.org/10.1038/s41586-020-2180-5 DOI: https://doi.org/10.1038/s41586-020-2180-5

Letko, M., Marzi, A., & Munster, V. (2020). Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nature Microbiology, 5(4), Article 4. https://doi.org/10.1038/s41564-020-0688-y DOI: https://doi.org/10.1038/s41564-020-0688-y

Li, Z., Zhan, P., & Liu, X. (2011). 1,3,4-Oxadiazole: A Privileged Structure in Antiviral Agents. Mini Reviews in Medicinal Chemistry, 11(13), 1130–1142. DOI: https://doi.org/10.2174/138955711797655407

Min, Y.-Q., Mo, Q., Wang, J., Deng, F., Wang, H., & Ning, Y.-J. (2020). SARS-CoV-2 nsp1: Bioinformatics, Potential Structural and Functional Features, and Implications for Drug/Vaccine Designs. Frontiers in Microbiology, 11. https://www.frontiersin.org/articles/10.3389/fmicb.2020.587317 DOI: https://doi.org/10.3389/fmicb.2020.587317

Nguyen, H. T., Zhang, S., Wang, Q., Anang, S., Wang, J., Ding, H., Kappes, J. C., & Sodroski, J. (2021). Spike Glycoprotein and Host Cell Determinants of SARS-CoV-2 Entry and Cytopathic Effects. Journal of Virology, 95(5), 10.1128/jvi.02304-20. https://doi.org/10.1128/jvi.02304-20 DOI: https://doi.org/10.1128/JVI.02304-20

Organization, W. H. (2020). Naming the coronavirus disease (COVID-19) and the virus that causes it. Brazilian Journal of Implantology and Health Sciences, 2(3), Article 3. https://bjihs.emnuvens.com.br/bjihs/article/view/173

Othman, A. A., Kihel, M., & Amara, S. (2019). 1,3,4-Oxadiazole, 1,3,4-thiadiazole and 1,2,4-triazole derivatives as potential antibacterial agents. Arabian Journal of Chemistry, 12(7), 1660–1675. https://doi.org/10.1016/j.arabjc.2014.09.003 DOI: https://doi.org/10.1016/j.arabjc.2014.09.003

Peng, F., Liu, T., Wang, Q., Liu, F., Cao, X., Yang, J., Liu, L., Xie, C., & Xue, W. (2021). Antibacterial and Antiviral Activities of 1,3,4-Oxadiazole Thioether 4H-Chromen-4-one Derivatives. Journal of Agricultural and Food Chemistry, 69(37), 11085–11094. https://doi.org/10.1021/acs.jafc.1c03755 DOI: https://doi.org/10.1021/acs.jafc.1c03755

Rabie, A. M. (2021a). Discovery of Taroxaz-104: The first potent antidote of SARS-CoV-2 VOC-202012/01 strain. Journal of Molecular Structure, 1246, 131106. https://doi.org/10.1016/j.molstruc.2021.131106 DOI: https://doi.org/10.1016/j.molstruc.2021.131106

Rabie, A. M. (2021b). Potent toxic effects of Taroxaz-104 on the replication of SARS-CoV-2 particles. Chemico-Biological Interactions, 343, 109480. https://doi.org/10.1016/j.cbi.2021.109480 DOI: https://doi.org/10.1016/j.cbi.2021.109480

Rabie, A. M. (2021c). Two antioxidant 2,5-disubstituted-1,3,4-oxadiazoles (CoViTris2020 and ChloViD2020): Successful repurposing against COVID-19 as the first potent multitarget anti-SARS-CoV-2 drugs. New Journal of Chemistry, 45(2), 761–771. https://doi.org/10.1039/D0NJ03708G DOI: https://doi.org/10.1039/D0NJ03708G

Rais, Y., Fu, Z., & Drabovich, A. P. (2021). Mass spectrometry-based proteomics in basic and translational research of SARS-CoV-2 coronavirus and its emerging mutants. Clinical Proteomics, 18(1), 19. https://doi.org/10.1186/s12014-021-09325-x DOI: https://doi.org/10.1186/s12014-021-09325-x

Rashid, M., Husain, A., & Mishra, R. (2012). Synthesis of benzimidazoles bearing oxadiazole nucleus as anticancer agents. European Journal of Medicinal Chemistry, 54, 855–866. https://doi.org/10.1016/j.ejmech.2012.04.027 DOI: https://doi.org/10.1016/j.ejmech.2012.04.027

Rodrigues-Vendramini, F. A. V., Faria, D. R., Arita, G. S., Capoci, I. R. G., Sakita, K. M., Caparroz-Assef, S. M., Becker, T. C. A., Bonfim-Mendonça, P. de S., Felipe, M. S., Svidzinski, T. I. E., Maigret, B., & Kioshima, É. S. (2019). Antifungal activity of two oxadiazole compounds for the paracoccidioidomycosis treatment. PLOS Neglected Tropical Diseases, 13(6), e0007441. https://doi.org/10.1371/journal.pntd.0007441 DOI: https://doi.org/10.1371/journal.pntd.0007441

Schubert, K., Karousis, E. D., Jomaa, A., Scaiola, A., Echeverria, B., Gurzeler, L.-A., Leibundgut, M., Thiel, V., Mühlemann, O., & Ban, N. (2020). SARS-CoV-2 Nsp1 binds the ribosomal mRNA channel to inhibit translation. Nature Structural & Molecular Biology, 27(10), Article 10. https://doi.org/10.1038/s41594-020-0511-8 DOI: https://doi.org/10.1038/s41594-020-0511-8

Tan, T. M. C., Chen, Y., Kong, K. H., Bai, J., Li, Y., Lim, S. G., Ang, T. H., & Lam, Y. (2006). Synthesis and the biological evaluation of 2-benzenesulfonylalkyl-5-substituted-sulfanyl-[1,3,4]-oxadiazoles as potential anti-hepatitis B virus agents. Antiviral Research, 71(1), 7–14. https://doi.org/10.1016/j.antiviral.2006.02.007 DOI: https://doi.org/10.1016/j.antiviral.2006.02.007

Tang, S., Mao, Y., Jones, R. M., Tan, Q., Ji, J. S., Li, N., Shen, J., Lv, Y., Pan, L., & Ding, P. (2020). Aerosol transmission of SARS-CoV-2? Evidence, prevention and control. Environment International, 144, 106039. DOI: https://doi.org/10.1016/j.envint.2020.106039

Wang, L., Bao, B.-B., Song, G.-Q., Chen, C., Zhang, X.-M., Lu, W., Wang, Z., Cai, Y., Li, S., Fu, S., Song, F.-H., Yang, H., & Wang, J.-G. (2017). Discovery of unsymmetrical aromatic disulfides as novel inhibitors of SARS-CoV main protease: Chemical synthesis, biological evaluation, molecular docking and 3D-QSAR study. European Journal of Medicinal Chemistry, 137, 450–461. https://doi.org/10.1016/j.ejmech.2017.05.045 DOI: https://doi.org/10.1016/j.ejmech.2017.05.045

Wang, S., Liu, H., Wang, X., Lei, K., Li, G., Li, J., Liu, R., & Quan, Z. (2020). Synthesis of 1,3,4-oxadiazole derivatives with anticonvulsant activity and their binding to the GABAA receptor. European Journal of Medicinal Chemistry, 206, 112672. https://doi.org/10.1016/j.ejmech.2020.112672 DOI: https://doi.org/10.1016/j.ejmech.2020.112672

Wang, Y., Anirudhan, V., Du, R., Cui, Q., & Rong, L. (2021). RNA-dependent RNA polymerase of SARS-CoV-2 as a therapeutic target. Journal of Medical Virology, 93(1), 300–310. https://doi.org/10.1002/jmv.26264 DOI: https://doi.org/10.1002/jmv.26264

Wells, P. M., Doores, K. J., Couvreur, S., Nunez, R. M., Seow, J., Graham, C., Acors, S., Kouphou, N., Neil, S. J. D., Tedder, R. S., Matos, P. M., Poulton, K., Lista, M. J., Dickenson, R. E., Sertkaya, H., Maguire, T. J. A., Scourfield, E. J., Bowyer, R. C. E., Hart, D., … Steves, C. J. (2020). Estimates of the rate of infection and asymptomatic COVID-19 disease in a population sample from SE England. Journal of Infection, 81(6), 931–936. https://doi.org/10.1016/j.jinf.2020.10.011 DOI: https://doi.org/10.1016/j.jinf.2020.10.011

WHO Coronavirus (COVID-19) Dashboard. (n.d.). Retrieved July 14, 2023, from https://covid19.who.int

Wu, W., Chen, Q., Tai, A., Jiang, G., & Ouyang, G. (2015). Synthesis and antiviral activity of 2-substituted methylthio-5-(4-amino-2-methylpyrimidin-5-yl)-1,3,4-oxadiazole derivatives. Bioorganic & Medicinal Chemistry Letters, 25(10), 2243–2246. https://doi.org/10.1016/j.bmcl.2015.02.069 DOI: https://doi.org/10.1016/j.bmcl.2015.02.069

Yadav, D. S. (1993). Synthesis of Novel Nucleosides as potential antiviral agents. University of Allahbad.

Yadav, R., Chaudhary, J. K., Jain, N., Chaudhary, P. K., Khanra, S., Dhamija, P., Sharma, A., Kumar, A., & Handu, S. (2021). Role of Structural and Non-Structural Proteins and Therapeutic Targets of SARS-CoV-2 for COVID-19. Cells, 10(4), Article 4. https://doi.org/10.3390/cells10040821 DOI: https://doi.org/10.3390/cells10040821

Yao, L., Zhang, G., Yu, L., Liu, S., Wang, X., Fan, T., Kang, H., & Feng, W. (2022). Development of 1,3,4-Oxadiazole Derived Antifungal Agents and Their Application in Maize Diseases Control. Frontiers in Plant Science, 13. https://www.frontiersin.org/articles/10.3389/fpls.2022.912091 DOI: https://doi.org/10.3389/fpls.2022.912091

Downloads

Published

2024-06-30

How to Cite

Sudan, M., Arora, S., & Yadav, D. S. (2024). UNVEILING THE POTENTIAL OF OXADIAZOLE TRIAZINE NUCLEOSIDE DERIVATIVE AS AN INHIBITOR OF SARS COV-2: A COMPUTATIONAL BREAKTHROUGH. ShodhKosh: Journal of Visual and Performing Arts, 5(6), 1962–1974. https://doi.org/10.29121/shodhkosh.v5.i6.2024.2761