A STUDY ON GOVERNANCE FRAMEWORK FOR AI AND ML SYSTEMS

Authors

  • Seema Bhuvan Assistant Professor, NCRD’s Sterling Institute of Management Studies, Nerul, Navi Mumbai

DOI:

https://doi.org/10.29121/shodhkosh.v4.i2.2023.1923

Keywords:

AI and ML, Ethical Guidelines, Organizational Practices, Policy, Technical Standards

Abstract [English]

As artificial intelligence (AI) and machine learning (ML) systems increasingly permeate various sectors, establishing a robust governance framework becomes imperative to ensure ethical use, transparency, accountability, and security. This paper explores the critical components of a governance framework for AI and ML systems, highlighting the roles of policy, ethical guidelines, technical standards, and organizational practices. By examining existing frameworks and proposing a comprehensive model, this paper aims to provide a foundation for effective governance in the rapidly evolving field of AI and ML.

References

European Commission. (2021). Artificial Intelligence Act. Retrieved from [EU website]

Organisation for Economic Co-operation and Development (OECD). (2019). OECD Principles on Artificial Intelligence. Retrieved from [OECD website]

IEEE. (2020). Ethically Aligned Design: A Vision for Prioritizing Human Well-being with Artificial Intelligence and Autonomous Systems. Retrieved from [IEEE website]

Prof. Neha Saini ,Artificial intelligence & its applications, 2023 ijrti | volume 8, issue 4 | issn: 2456-3315

Niklas Kühl, Max Schemmer, Marc Goutier, Gerhard Satzger, Artificial intelligence and machine learning,Electronic Markets,https://doi.org/10.1007/s12525-022-00598-0, Springer published online 09 November 2022 DOI: https://doi.org/10.1007/s12525-022-00598-0

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https:// doi. org/ 10. 1109/CVPR. 2016. 90 DOI: https://doi.org/10.1109/CVPR.2016.90

He, S., Rui, H., & Whinston, A. B. (2018). Social media strategies in product-harm crises. Information Systems Research, 29(2), 362–380. https:// doi. org/ 10. 1287/ isre. 2017. 0707 DOI: https://doi.org/10.1287/isre.2017.0707

Hegazy, I. M., Faheem, H. M., Al-Arif, T., & Ahmed, T. (2005). Performance evaluation of agent-based IDS. Proceedings of the 2nd international conference on intelligent computing and information systems (ICICIS 2005) (pp. 314–319). DOI: https://doi.org/10.1109/MP.2005.1462463

Hein, A., Weking, J., Schreieck, M., Wiesche, M., Böhm, M., & Krcmar, H. (2019). Value co-creation practices in business-to-business platform ecosystems. Electronic Markets, 29(3), 503–518. https:// doi. org/ 10. 1007/ s12525- 019- 00337-y DOI: https://doi.org/10.1007/s12525-019-00337-y

Hemmer, P., Schemmer, M., Vössing, M., & Kühl, N. (2021). Human- AI complementarity in hybrid intelligence systems: A structured literature review. PACIS 2021 Proceedings.

Hirt, R., Kühl, N., & Satzger, G. (2019). Cognitive computing forcustomer profiling: meta classification for gender prediction. Electronic Markets, 29(1), 93–106. https:// doi. org/ 10. 1007/ s12525- 019- 00336-z DOI: https://doi.org/10.1007/s12525-019-00336-z

Downloads

Published

2023-12-31

How to Cite

Bhuvan, S. (2023). A STUDY ON GOVERNANCE FRAMEWORK FOR AI AND ML SYSTEMS. ShodhKosh: Journal of Visual and Performing Arts, 4(2), 888–903. https://doi.org/10.29121/shodhkosh.v4.i2.2023.1923