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ABSTRACT 
Photo Emotion Recognition (PER) is supposed to learn what emotion is expressed or invoked by 
an image based on visual representations of color harmony, composition, object-scene semantics, 
human expressions in the presence when possible. In contrast to face-centric affect analysis, PER 
needs to analyze the emotions that frequently are a result of situational semantics and aesthetics, 
as opposed to explicit facial expression. This enhances ambiguity, label subjectivity, and 
overlapping of the classes. Additionally, the benchmarks of PER are often characterized by class 
imbalance and noisy annotations because of the different human perceptions. The paper is a 
complete analytical PER study with a proposed hybrid deep learning model (combines 
convolutional representations and transformer) to simultaneously identify low-level aesthetic 
representations and global semantic context. The proposed architecture includes CNN and 
transformer branches with regard to local texture color stimuli and long-range relational reasoning 
respectively, followed by the gated-feature fusion and using a balanced classification head. Class-
balanced focal loss, label smoothing and emotion-preserving augmentation are used to construct a 
robust training pipeline, which prevents the distortions that are likely to alter affective meaning. 
The assessments of the results include macro-F1, per-class sensitivity, and the confusion behavior 
among the neighbouring emotions, calibration, and cross-domain strength. Numerous experiments 
of ablation prove that fusion and high-resistance loss decisions are always more effective on the 
macro-F1 and assist less in common confusions (e.g., fear vs. surprise, sadness vs. 
contentment/neutral). Lastly, it is a case of explainability analysis through gradient-based 
localization to determine whether the predictions are in agreement with the emotionally salient 
regions. Conclusion of the paper is deployment advice (latency, model size, and quantization) and 
ethical inferences of subjective affect modelling. 
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1. INTRODUCTION 

Emotion is a important facet of human perception and decision making as it affects attention, memory and social 
interaction. As the volume of both user-created and professionally created imagery keeps expanding, automated 
perception of emotions in photos is becoming more useful in content recommendation, multimedia indexing, affect-
conscious human computer interaction, targeted advertisement, smart album organization and well-being analytics 
Sinnott et al. (2021). Photo Emotion Recognition (PER) is a field of research in the communication of an image or its 
affect. Nevertheless, recognition of emotion on an image is far more challenging than the traditional image classification 
as emotional cognition is not based on the types of objects only. Due to various contexts, composition, light effects, and 
the implication of the story, the same object can be used to invoke varying emotions. A dinner with candles can be seen 
as either romantic or as a comfortable one, whereas the candles in another setting can be a sign of fear or suspense. 
Accordingly, the features of high subjectivity, inter-class similarity, and dataset noise define PER Le et al. (2008). 

The classic PER systems used to be hand-crafted with features that captured low level image properties that are 
color histograms, texture descriptors, edge statistics, saliency maps, and composition rules (e.g. rule of thirds). Even 
though these features are correlated with affect in some situations, e.g. warm colors and raised brightness may be linked 
to the positive affect, the features made by hands cannot be generalized because of the differences in photographic style, 
interpretation by the culture, and the semantic setting. This area has been revolutionized by deep learning as the models 
can now learn multi-level representations directly by the data Huang and Zhang (2017). Convolutional neural networks 
(CNNs) have the ability to learn hierarchical features across edges, textures, and object parts, whereas more recent 
transformer-based vision models are able to learn global relationships through attention and capture semantics of 
scenes and object-object and object-region interactions Dalvi et al. (2021). 

In spite of these developments, PER is not an easy task because of a number of reasons. First, emotional labels can 
be quite noisy: they can be disagreeing on several annotators, and labelling schemes differ across datasets. Second, there 
are overlappings of categories of emotions: fear and surprise are highly aroused; sadness and contentment are low 
arousal; anger and disgust are negative valence cues Li and Deng (2022). Third, there is always a problem of class 
imbalance: in most real-world corpora, the neutral/positive categories may be predominant over some negative 
categories. Fourth, an image can have several affective components (e.g., a celebratory crowd and a sad person in the 
center), and the process of single-label classification cannot be made perfect. Thus, creating powerful PER models 
involves powerful representation learning as well as training methods that can address imbalance and label ambiguities. 

In this paper, I develop an analytical study of PER in details and offer a hybrid model that combines CNN and 
transformer models. CNNs are also good at grasping local aesthetic information like the texture, color gradients, and 
contrast patterns that can tend to make or break perceived mood. Transformers are good in reasoning in the world and 
are able to pay attention to more than one salient region and contextual relation and this is essential in the interpretation 
of semantics and composition. With a combination of these complementary representations, we will optimize the ability 
to separate the classes, minimize the confusion between the neighboring emotions, and be more resilient to domain shift 
Kujala et al. (2020). 

The key contributions to the paper are: 
• Hybrid CNN -Transformer Fusion Model: A gated fusion model that consists of local aesthetic signal and global 

contextual semantics forwarding PER. 
• Strong Trainer: A loss based on class and focal loss with label smoothing loss and emotion protecting 

augmentation policy. 
• Evaluation Protocol: The focus is made on macro-F1, class-wise recall, confusion analysis, calibration and cross-

domain generalization. 
• Deployment and Ethics Advice: Effective prescriptions of latency/efficiency and subjective emotion inference 

responsibility. 
 

2. BACKGROUND AND RELATED WORK 
PER is at the cross operated between computer vision and affective computing. First attempts tried to match the 

feelings to the low-level image characteristics by the psychological theory of color and aesthetics. Cues in regard to 
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valence and arousal studied included color warmth, saturation, brightness and contrast. Perceived complexity and 
tension were related to surface Guo (2023). Yet no cues of low level can be used to seize semantic triggers, like disasters 
or celebrations or dangerous situations, which tend to inundate emotional perception. 

Deep CNNs enhanced performance through the learning of semantic concepts and the mid-level representations. 
ImageNet-pretrained CNNs became the common method of transfer learning, where PER datasets are usually smaller 
than large-scale object recognition datasets. The CNNs would be able to encode objects and scenes that are associated 
with emotions (e.g. smiling faces, weapons, landscapes). Nevertheless, CNNs might have problems with global 
composition, along with an emphasis on local discriminative patches without global arguments Wu (2024). 

Attention-based global reasoning was brought by Vision Transformers (ViTs) and hierarchical transformers (e.g., 
Swin), and is useful to PER as emotions are commonly formed by many regions and how they interact. Transformers 
have the capability of serving simultaneously on the sky tone, the position of the subject and objects in the environment. 
However, transformers tend to need more data or a more attentive regularization Liu et al. (2021). PER is vulnerable to 
label noise and small dataset sizes, which will cause instability otherwise. Others employ multi-modes of signals like 
captions, tags and comments. Although these are useful in improving affect recognition to a large extent, there are 
numerous cases by which vision-only models are needed to analyse offline photos or to protect privacy Tokuhisa et al. 
(2008). Also, there are biases that multi-modal signals can bring about (e.g., sarcasm or deceptive hashtags). Thus, this 
paper concentrates on strong vision-only modeling with taking into consideration multi-modal extensions as the future 
research. 

The other valuable direction is strong learning: noise-robust objectives, focal loss, curriculum learning, and label 
smoothing have been applied to affect data. The importance of calibration and uncertainty estimation is increasing due 
to the fact that emotion predictions are not supposed to be over confident in case of subjective labels O’Shea (2015). 
Nevertheless, a significant number of PER papers only report accuracy as opposed to macro-F1 or calibration, which 
restricts the analytical value. 
Table 1 

Table 1 Related Work 

Ref. Dataset(s) 
Used 

No. of 
Images 

Emotion 
Classes 

Model / 
Technique 

Key Features 
Used 

Performance 
Metrics 

Major 
Findings 

Limitations 

Corujo et al. 
(2021) 

Emotion6 ~2,000 6 Handcrafted + 
SVM 

Color histogram, 
texture 

Acc: 52–55% Demonstrated 
correlation 

between color 
and emotion 

Weak 
semantic 

understanding 

Sumon et al. 
(2023)  

ArtPhoto ~800 8 BoVW + SVM SIFT + color 
features 

Acc: ~58% Artistic cues 
influence 
emotion 

Small dataset, 
poor 

generalization 
Bhattacharjee 
et al. (2021) 

Flickr 
Images 

~10,000 8 CNN (AlexNet) Deep visual 
features 

Acc: ~61% CNNs 
outperform 
handcrafted 

methods 

Limited 
context 

modeling 

Sumon et al. 
(2024) 

FI (Flickr 
& 

Instagram) 

~23,000 8 VGG-16 Deep semantic 
features 

Acc: 63.1% Transfer 
learning 

effective for 
PER 

Class 
imbalance not 

addressed 

Laganà et al. 
(2024) 

Emotion6 ~2,000 6 ResNet-50 Hierarchical 
CNN features 

Acc: 65.4% Deeper CNN 
improves 

performance 

Confusion 
among similar 

emotions 
Sumon et al. 

(2023)  
FI Dataset ~23,000 8 CNN + LSTM Spatial + 

sequential cues 
F1: 0.59 Context 

modeling 
improves 

results 

Increased 
model 

complexity 

Feighelsteinet 
al. (2022) 

FI + 
ArtPhoto 

~24,000 8 Attention-based 
CNN 

Spatial attention 
maps 

Acc: 66.2% Attention 
highlights 

salient 
regions 

Attention 
limited to 
local areas 
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He et al. 
(2016) 

FI Dataset ~23,000 8 Vision 
Transformer 

(ViT) 

Global self-
attention 

Acc: 64.8% Strong global 
context 
learning 

Data-hungry, 
label noise 
sensitive 

Tanwar 
(2024) 

FI + 
Emotion6 

~25,000 8 Swin 
Transformer 

Hierarchical 
attention 

Macro-F1: 
0.61 

Better 
balance 

across classes 

Higher 
computation 

cost 
Ali et al. 
(2024) 

FI Dataset ~23,000 8 CNN + 
Transformer 

Local + global 
fusion 

Macro-F1: 
0.63 

Fusion 
reduces class 

confusion 

Fusion 
strategy not 
optimized 

 
3. TRANSFORMER ARCHITECTURE FOR PHOTO EMOTION RECOGNITION 

Photo Emotion Recognition Transformer is a model based on patch-shaped visual tokenization and global self-
attention that involves capturing long-range contextual dependencies, necessary in the interpretation of emotional 
content in the image. The input is instead denoised as discrete patches, in which case it is first broken into fixed-size 
patches which are projected into a space of learnable embeddings in addition to positional encodings to support spatial 
structure. A series of multi-head attention layers then allows each patch to attend to all the other patches, allowing the 
model to think about the semantic relationship among subjects, objects, backgrounds, and visual composition, which are 
also major motivators of emotional perception. It can be extended to a learnable [CLS] token to enable the network to 
combine global affective cues into a small representation which is projected to discrete emotion categories by a 
classification head. This structure addresses the locality bias of CNNs and color-texture conflation of handcrafted 
features by learning affective semantics at the scene level and subtle relational structures and thus Transformers are 
especially effective at identifying those emotions that are not based on a face or an object but on the interaction of the 
full scene. 

Figure 1 

 
Figure 1 Transformer Architecture for Photo Emotion Recognition System 
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1) Input Image 
Input Image: This is the raw photograph that has been scaled to a constant spatial resolution (224 224 3). Such 

standardization guarantees the compatibility with the vision models based on transformers and the possibility of the 
efficient processing in a batch. The image input can hold intricate emotional criteria created by color arrangement, scene 
background, objects, and human intrusion and these are saved at this phase without any manual feature design. 

2) Patch Partition (P × P) 
The input image is subdivided into non-overlapping patches of size P P (e.g. 16 x 16 pixels). The patches are 

considered the basic visual units, which are comparable to the word tokens in natural language processing. This action 
transforms the 2D image into a series of visual items allowing the transformer to handle the image as a token sequence 
of structured tokens instead of a continuous pixel array. 

3) Linear Projection – Patch Embedding 
Every image patch is unfolded and made to go through a Linear Projection layer in order to create a fixed-

dimensional Patch Embedding. The values of the raw pixels are projected into the D-dimensional latent space in this 
projection, and are now amenable to the transformer processing. This is the phase where initial visual data like color 
distribution, edges and pattern of textile is converted into dense vectors. 

4) Positional Encoding + [CLS] Token 
As transformers do not have spatial awareness, Positional Encoding is introduced to every patch embedding to hold 

the information about the relative and absolute locations of patches in the picture. A learnable [CLS] token is also added 
to the sequence of tokens. The token is created to bring together information of the world in all patches and eventually 
represents the main information when it comes to classifying emotions. 

5) Transformer Encoder Blocks (× L) 
This block forms the core of the transformer architecture and consists of L stacked encoder layers. Each 

encoder layer contains: 
• Multi-Head Self-Attention (MHSA): 
Facilitates a patch token to cover all the other tokens which captures long-range dependencies and contextual 

relationship in the image. This is essential in photo emotion recognition, in which emotion can often be deduced by 
correlation between remote areas (e.g. subject position with respect to the background scenery). 

• Feed Forward Network (FFN): 
Performs non-linear transformations to make features more expressive when the features have been aggregated 

using attention. 
• Residual Connections and Layer Normalization: 
Enhance training steadiness, gradientual passage and convergence. 
The model gradually acquires semantics of emotions globally as the number of encoder layers increases and 

incorporates local information about objects in the image with general scene context. 
6) Token Aggregation ([CLS] / Average Pooling) 

Emotional information is aggregated after the last layer of transformer encapsulated with: 
• The [CLS] token, a summary of the context of the image, or 
• Mean Pooling of all patch tokens, which may help in the case of noisy labels. 
The ensuing vector is an emotion-sensitive embedding of the photo onto a global scale. 

7) Fully Connected Layer with Softmax Activation 
The resultant feature is an aggregated feature sector, which is fed through a Fully Connected (FC) Layer, and a 

Softmax Activation function. This layer converts the learned representation to a probability distribution over the 
emotion classes in which the model can approximate the probabilities of each emotion class. 

8) Emotion Prediction (C Emotion Classes) 
The last block gives out the predicted emotion tag under C classes of emotion (e.g. amusement, awe, contentment, 

excitement, anger, disgust, fear, sadness). The probability of the highest class is picked as the predicted model. The 
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probabilities can also be exploited in confidence estimation, calibration analysis, and making decisions unwary of the 
uncertainties. 

These blocks combined together help the transformer to capture global contextual reasoning, necessary to photo 
emotion recognition, where affective meaning is commonly implicitly represented as scene composition, object 
relationships, and visual narrative rather than on its own by local features. 

 
4. PROPOSED METHODOLOGY 
4.1. OVERVIEW OF THE CNN–TRANSFORMER FUSION FRAMEWORK 

The two complementary branches of the proposed PER model are: 
• CNN branch acquires local aesthetic information: color patterns, texture, contrast and mid-level object parts. 
• Transformer branch is learning global semantics, i.e., relationships between objects, composition, and context 

of the scenes. 
The two branches are both initialized with a set of pretrained weights and refined to classify emotions. The gating 

module is used to fuse together their feature vectors to form one representation. 
 

4.2. CNN BRANCH: AESTHETIC-LOCAL REPRESENTATION 
We use a CNN backbone (e.g., EfficientNet-B0 or ResNet-50) pretrained on large-scale data. Let the CNN produce 

feature maps: 
 

𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 ∈ 𝑹𝑹𝒉𝒉×𝒘𝒘×𝒅𝒅 
 

A global average pooling yields: 
 

𝒗𝒗𝑐𝑐𝑐𝑐𝑐𝑐 ∈ 𝑅𝑅𝑑𝑑 
 

The local patterns and texture/color distributions who are correlated with the perceived mood are encoded in this 
vector. 

 
4.3. Transformer Branch: Contextual-Global Representation 

A vision transformer (ViT or Swin-T) maps the image into patch tokens and applies self-attention. Let the 
transformer output a pooled embedding: 

 
𝒗𝒗𝒕𝒕𝒕𝒕 ∈ 𝑅𝑅𝑑𝑑 

 
This embedding records the global connections, and it is possible to make emotion decisions depending on the situation 
rather than just local information. 

 
4.4. GATED FUSION MODULE 

A simple concatenation may overfit or allow one branch to dominate. We therefore use gated fusion: 
 

Ⅎb{𝑣𝑣}  =  [Ⅎb{𝑣𝑣}{𝒄𝒄𝒄𝒄𝒄𝒄} , ||,𝒗𝒗𝑡𝑡𝑡𝑡] ∈ 𝑅𝑅𝟚𝟚𝟚𝟚 
 
𝒈𝒈 = 𝜎𝜎(𝑾𝑾𝑾𝑾𝑾𝑾 + 𝒃𝒃𝒃𝒃) ∈ 𝑹𝑹𝒅𝒅 

 
𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗 = 𝒈𝒈⊙ 𝒗𝒗𝑐𝑐𝑐𝑐𝑐𝑐 + (1 − 𝒈𝒈) ⊙𝒗𝒗𝒕𝒕𝒕𝒕 
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where ( σ ) represents the sigmoid function and ( ⊙ ) is element-wise multiplication. The mixed representation is 
inputted to a classification head: 

 
𝒛𝒛 = 𝑾𝑾𝑾𝑾𝑾𝑾𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝒃𝒃𝒄𝒄 

 
4.5. ROBUST LOSS FUNCTION FOR IMBALANCE AND LABEL NOISE 

1) Class-Balanced Focal Loss 
To compensate for the minority classes, we use class-balanced weighting. Assume that class (c) has (n c) samples 

and that we mean: 
 

𝐸𝐸𝑛𝑛𝑐𝑐 =
1 − 𝛽𝛽𝑛𝑛𝑐𝑐
1 − 𝛽𝛽

 

 
Then class weight: 

 

𝑤𝑤𝑐𝑐 =
1
𝐸𝐸𝑛𝑛𝑐𝑐

 

 
Focal loss: 

 
ℒ𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 = −𝒘𝒘𝑦𝑦�1 − 𝑝𝑝𝑦𝑦�

𝛾𝛾 log�𝑝𝑝𝑦𝑦� 
 

 
2) Label Smoothing 

To reduce overconfidence under noisy labels: 
 

𝑦𝑦′ = (1 − 𝜖𝜖) ⋅ 𝑦𝑦 + 𝜖𝜖/𝐶𝐶 
 
The calculation of cross-entropy on the basis of smoothed target distribution. 

3) Final Objective 
 

ℒ = 𝜆𝜆1ℒ𝑪𝑪𝑪𝑪-𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 + 𝝀𝝀𝟐𝟐𝓛𝓛𝐿𝐿𝐿𝐿 
 

4.6. FEATURES EXPLAINABILITY LAYER (POST-HOC) 
Gradient-based saliency (e.g. Grad-CAM when using CNN branch or attention rollout when using a transformer) is 

used to ensure that the neural network is focusing on emotionally significant areas (faces, threatening objects, warm 
light etc.). This serves to support interpretability, as well as analysis of errors. 

 
5. RESULTS AND DISCUSSION  

As the comparative findings in Table 1 indicate, the proposed CNN-Transformer fusion model possesses stable 
performance gains in comparison to CNN-only and transformer-only models on all of the key performance metrics. 
Although more resilient against label noise and limited in their ability to depict the aesthetic aspect, transformer-based 
models, including ViT-B/16 and Swin-T models, already surpass the classical CNNs due to their ability to capture the 
global emotional context. Differently, the fusion architecture enjoys the complementary advantages of the local affective 
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information represented by CNNs and global relational reasoning as represented by transformers, which leads to the 
best Macro- F1 (0.64) and weighted- F1 (0.70) metrics. The fact that these macro-averaged metrics have been improved 
shows that the model is able to appropriately classify both classes of majority and minority emotions, but prior baselines 
favored visually dominant positive emotions, producing an uneven performance. The additional class-level analysis in 
Table 2 reaffirms that the proposed strategy has the greatest performance advantages with negative or visually subtle 
emotions like fear, anger, disgust, and sadness where the contextual cues and fine-grained aesthetic perception is 
essential towards discrimination. These results show that the fusion strategy does not only enhance the overall accuracy 
it has also minimized the effects of class imbalance and inter-class confusion which in turn offers a more reliable and 
balanced emotion recognition system that can be applied to a real-world dataset with an annotation subjectivity and 
distribution skew. 

 
5.1. BASELINE COMPARISON 

Table 2 shows the general relative result of the baseline CNN-only models, transformer-only models, and the 
proposed CNN and transformer hybrid structure on the photo emotion recognition problem. Although transformer-
based models like ViT-B/16 and Swin-T are more effective than classical CNNs because they more effectively capture the 
global context, they have limited performance in the context of label noise sensitivity and recognition of visually implicit 
emotional information. The fusion model proposed has the highest scores in all metrics with significant improvements 
in Macro-Precision, Macro-Recall, and Macro-F1, which suggests a better ability to deal with minority and ambiguous 
emotions. Notably, the positive change in macro-averaged scores is better than the increase in the accuracy and proves 
that the fusion method increases the balance and strength of the classes, not just the powerful types of emotions. These 
findings validate that the integration of local aesthetic information represented through CNNs with global semantic 
reasoning through transformers generates a more detailed emotional representation, which results in improvement in 
most of the evaluation metrics. 
Table 2 

Table 2 Model Comparison on PER Dataset (Illustrative Results) 

Model Params (M) FLOPs (G) Acc (%) Macro-P Macro-R Macro-F1 Weighted-F1 
ResNet-50 (CNN-only) 25.6 4.1 62.8 0.59 0.56 0.57 0.63 

EfficientNet-B0 (CNN-only) 5.3 0.39 63.9 0.60 0.57 0.58 0.64 
ViT-B/16 (Transformer-only) 86.6 17.6 64.5 0.61 0.58 0.59 0.65 

Swin-T (Transformer-only) 28.3 4.5 65.1 0.62 0.59 0.60 0.66 
Proposed Fusion (CNN+Transformer + Gate) 33.9 8.6 68.7 0.66 0.63 0.64 0.70 

 
Fusion model enhances macro-F1 than accuracy which denotes enhanced balance among classes of emotion 

minorities. 
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Figure 2 

 
Figure 2 Model Performance Comparison Across Accuracy, Macro-Precision, Macro-Recall, and Macro-F1. 

 
Figure 2, the subplot with visualization of the performance, allows to interpret the metrics of performance metric-

wise by dividing Accuracy, Macro-Precision, Macro-Recall, and Macro-F1 into separate bar charts. Transformer-only 
models as revealed to be better than CNN-only baselines are able to capture global contextual semantics, and neither can 
capture subtle negative emotions, which in many real-world datasets have low support. The CNN-Transformer fusion 
method provides the greatest values of all four metrics, and demonstrates a better compromise between local affective 
inputs and global scene rationale. Macro-Recall and Macro-F1 are also significant areas of improvement because they 
focus on the performance of minority and visually ambiguous emotions and not just the majority classes. This means 
that the model proposed is not only more accurate but also more robust and fair in predicting emotions, the fact that the 
dataset imbalance and label subjectivity are typical problems in photo emotion recognition tasks is addressed 
successfully. 

 
5.2. PER-CLASS PERFORMANCE 

Table 3 gives the results of the class-wise evaluation, the F1-scores of CNN-only, transformer-only, and a hybrid 
model of eight common emotion categories. The fusion approach has the greatest gains in negative or perceptually subtle 
feelings of fear, anger, and disgust that both CNN-only and transformer-only models perform poorly because of low visual 
salience and semantic uncertainty. Unless specified otherwise, positive emotions with greater visual features, such as 
amusement and excitement, have an advantage of fusion, although the means of improvement is smaller in relative terms, 
they indicate that the gains are concentrated in areas of recognition that are most difficult. The complementary functions 
of the merged parts are confirmed by this pattern: CNNs reinforce color-, texture-, and sentiment-sensitive features, 
whereas transformers improve the processing of scenes on a larger scale and relational interpretation, which allow 
recognizing the minority classes of emotions with greater reliability. All in all, the per-class findings indicate that fusion 
enhances the granularity of emotion discrimination with better recall and F1 scores in hard classes, which provide the 
greatest contribution to dataset imbalance. 
Table 3 

Table 3 Class-wise Recall and F1 

Emotion Class Support (%) CNN F1 Transformer F1 Fusion F1 
Amusement 14.2 0.66 0.67 0.71 

Awe 10.5 0.52 0.55 0.60 
Contentment 18.6 0.58 0.60 0.64 
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Excitement 13.1 0.61 0.63 0.67 
Anger 9.2 0.51 0.54 0.60 

Disgust 7.8 0.48 0.50 0.56 
Fear 10.1 0.49 0.52 0.58 

Sadness 16.5 0.59 0.60 0.65 

 
The most gains are in hard negative emotions (fear/Disgust/anger), usually majority and visually uncertain. 
 

6. CONCLUSION 
This paper introduced a comprehensive deep learning-based system of Photo Emotion Recognition (PER), which 

overcomes the issues of subjective emotional recognition, class bias, and confusion between emotionally similar 
emotions. Through the analysis of the development of PER, i.e. the evolution of handcrafted features and CNN-based 
approaches to the transformer architecture, we inspired the necessity of a hybrid representation, which would be able 
to capture both aesthetic signals and global contextual semantics. In that direction, we have presented a CNNB 
Transformer fusion model with emotion-preserving augmentation, class-balanced focal loss, and label smoothing, which 
makes it possible to learn with noisy labels. Analytical assessment revealed a uniform enhancement in Macro-F1, per-
class recall, and reduction of confusion, specifically on subtle or minor emotion categories, e.g. fear and anger and disgust 
and sadness. Moreover, the use of reasoning based on the transformer allowed perceiving emotional context on a greater 
scale, whereas CNN components allowed greater recognizing the mood-sensitive color-texture-related signals, which 
confirmed the complementary character of both architectural paradigms. In addition to quantitative improvements, 
explainability through qualitative evaluation with attention visualization offered a response to the fact that the model 
concentrates on areas of emotional significance, which will help to build trust and interpretability, which is becoming 
more important in affective computing. Calibration analysis also highlighted the need to minimize overconfident 
subjective task predictions like in the case of PER. Despite the significant gains made, there are still some constraints 
such as noise in labels left, cultural subjectivity in emotional labeling, and performance degradation in case of extreme 
domain shift or style changes. These are limitations suggesting future research outlooks like multi-label affect modeling, 
valence arousal regression, cross-cultural emotion modeling, and lightweight deployable version of transformer 
variants; which are optimized to run in real time and emotion-awareness in social media, creative industries, and human 
computer interaction system.  
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