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ABSTRACT

The digitalized recruitment space is becoming more focused on visual self-presentation
to transform the perception and assessment of employability. This paper analyzes the
connection that exists between skills and experience in the workplace and digital
portfolios with respect to the effect of visual storytelling on the hiring opinion. The
discussed issue is the disconnect between real and visual capabilities and visually
mediated visuals that take the upper hand in online recruitment services. The aim is to
investigate the ways through which graduates and early-career professionals create
digital portfolios and how employers perceive visual elements together with the reported
skills and experience. The analysis approach integrates the contents of the portfolios, and
extraction of features through machine learning and recruiter assessment study. The
layout structure, imagery, typography, and storytelling of the project are visual elements
that are reviewed against confirmed skill sets, internship histories, and showing a
performance indicator. Quantitative models are used to evaluate correlations between
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the quality of visual presentation and shortlisting outcomes, and qualitative interviews
are used to evaluate the employer perception of credibility, professionalism, and cultural
fit. The results indicate that the perceived value of skills and experience in relation to
coherent visual storytelling is stronger and provides a high shortlisting probability even
in comparison with technical qualifications of equal weight. Nonetheless, having too
much aesthetic focus, which is not supported by evidence, has a detrimental impact on
the measurement of trust and employability. The analysis shows the differences in access
to visual literacy and design tools, creating a problem regarding the equity of digitally
mediated recruitment.
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Employability and Visual Self-Presentation: A Study of Skills, Experience, and Digital Portfolios

1. INTRODUCTION

In the present day knowledge economy, the capacity of a graduate to secure employment has made the capacity of
higher education schools and academic programs an important indicator of success. A connection between college
qualifications and professional practice is no longer simply present. The shift is now complicated with a web of technical
skills and real-life experience combined with social skills. Schools need to adapt as the global job markets are becoming
competitive and dynamically shifting. In order to do this, they must incorporate models that enable students to secure
job in their instructional models Tamene et al. (2024). Meanwhile, more organised, data-driven methods of estimating
and forecasting the usefulness of college graduates are required. It has resulted in the application of the high-order
machine learning methods to educational and behavioural data. Previously, determining whether a person was
employable was largely a matter of subjective evaluation or global action, and this did not necessarily consider the
multidimensional nature of the concept of job readiness Maaliw et al. (2022). On the other hand, it is now possible to
gather deep, systematized information on the academic life of a student, the experience based learning, and the personal
skills of the student through the use of digital learning platforms, job tracking and behavioural estimation tools. The data
contained in resumes that most people would regard as the most critical document to secure a job comes in various
forms, ranging between school qualifications, project involvement, and references on skills Shahriyar et al. (2022).
Application of natural language processing (NLP) to this type of data may convert it into vectors, able to be analyzed
using computers and possess a meaning. Besides that, an internship is also a helpful option in demonstrating readiness
to work in a career due to its ability to demonstrate how to adapt to new conditions, experience in a specific area, and
collaborating with other people Chopra and Saini (2023). Businesses are also increasingly recognizing that such soft
skills as communication, teamwork, flexibility, and emotional intelligence have a role in job performance as well as in
long-term career success, and as such, are sometimes more valuable than technical skills.

The combination of these various types of data is an opportunity as well as an issue to predictive modelling. Much
has been done in applying machine learning techniques in particular, ensemble learning techniques, to uncover
hierarchical cycles and multifaceted links in various kinds of data. Ensemble models such as Random Forests, Gradient
Boosting Machine (GBM) and Extreme Gradient Boosting (XGBoost) are used to combine the optimistic predictive
capabilities of multiple underlying learners. This enhances performance of generalisation and reduces overfitting Shuker
and Sadik (2024). These are particularly effective when one is dealing with high-dimensional data with noise and
multicollinearity. In terms of determining whether a certain individual is employable or not, ensemble models can be
configured to acquire the interaction between cognitive indicators, experience features and psychological characteristics
in complex manners. This renders the results more credible and comprehensive. The accuracy of predictions can also be
enhanced with the help of the stacking as an advanced ensemble strategy that uses a stacking of predictions made by a
number of base models with the assistance of a meta-learner Nordin et al. (2022). Stacking can be used to identify tiny
patterns in data by combining the finest attributes of other models that are complimentary to each other. This is also
critical in the case where the feature area contains both structured and unstructured information, such as numbers of
scores and text of job details. Additionally, it is easier to perform the analysis of the value of features with the help of
ensemble approaches that can assist stakeholders in locating the major factors that influence outcomes referring to
hiring. These lessons would be useful in designing courses, career advice programs and policies that will assist the
students to acquire job-related skills that the employers desire Celine et al. (2020).

Even though predictive analytics for educational results are becoming more popular, not many studies have looked
at employment through a view that includes academic, social, and behavioural factors Assegie et al. (2024). This gap
shows how important it is to have complete models that not only predict job opportunities but also help institutional
partners understand them. A more complete picture of a graduate's employability can be gained by using ensemble
learning on a single dataset that includes resume traits, job records, and soft skill tests. In this situation, the suggested
study uses a group-based machine learning system to combine these different types of information and accurately guess
how employable college graduates will be. The method focusses on both accurate predictions and easy understanding,
meeting the needs of both practical use and academic understanding. The system is ready to make a big difference in
the fields of education data mining and labour analytics thanks to its thorough model training, cross-validation, and
feature analysis. In the end, the study wants to help students, teachers, and lawmakers make decisions based on data in
order to create educational environments that focus on employment.
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2. RELATED WORK

Predicting how easily graduates will be able to find work has been a major topic of study in both educational data
mining and human resource analytics. There is already writing that looks at different aspects of this problem, but there
are still some methodological and cultural problems that need to be fixed. Sharma et al. used school and work experience
records to look at how well people were able to get jobs. Using models like Decision Trees and SVM, their study proved
that academic success and the image of the school have a modest effect on an individual's ability to get a job

. But they only looked at organised academic data and didn't look at soft skills or traits that
are based on experience, which made them less useful in the real world. Kumar and Bansal used TF-IDF and Word2Vec
embeddings to introduce natural language processing (NLP) for resume screening . They
showed that resume grammar greatly improves the match between a candidate and a job. The study used raw text data
in a new way, but it didn't include group methods or interpretability models, which are important for both accuracy and
trustworthiness

Patel et al. looked at factors related to gender, CGPA, and speaking skills, as well as social and academic factors.
Using simple models like Naive Bayes and Random Forest, they found that emotional and academic traits played a big
part. But the model didn't include data on internships and resume meanings, which are becoming more and more
important in current hiring situations. Desai et al. used unstructured methods like K-Means and PCA to look into skill-
based grouping . They showed that skill groups could help make sure that training programs were in
line with what jobs needed. But the study didn't link these groups to real results in terms of hiring, so from a predictive
analytics point of view, it wasn't very useful. Arora and Gupta used deep learning models like CNN and LSTM and
discovered that they worked better than standard methods in large datasets. Still, because they were black boxes, they
were hard to understand, and there was no way to measure soft skills.

Table 1
Table 1 Related work

Stud Scope Key Findings Methodology Gap Identified

Sharmaet  Employability classification based Academic scores and institutional Decision Trees, SVM Lack of behavioral and soft
al. on academic and placement data ranking moderately affect skill features
Oliver etal. (2021) employabilit
Kumar & Resume screening using NLP TF-IDF features from resumes Logistic Regression, No ensemble methods
Bansal techniques improve candidate-job matching TF-IDF, Word2Vec explored, no model
interpretabili

Prediction of job placement using Gender, CGPA, and communication Random Forest, Ignored resume content
demographic and performance skills significantly affect placement Naive Bayes and internships
attributes likelihood
Desai et Skill mapping with job profiles SKkill clusters derived from K-Means, PCA, KNN Did not link skill clusters to
al. using ML unsupervised learning enhance employability outcomes

alignment with job roles
Arora & Employability prediction with deep Neural networks outperform CNN, LSTM Limited explainability, no

Gupta learning traditional classifiers on large soft skill quantification
datasets

In general, earlier research has mostly looked at single aspects, like ordered school records or unorganised resume
texts, without putting together a complete dataset. Findings can't be used by everyone because there are holes in the
models that can explain them and behavioural or experiential data wasn't included. Because of these problems, this
study uses a group-based, multi-source approach that includes jobs, resume embeddings, and measurable soft skills,
while still keeping the study's interpretability through SHAP values.

3. SYSTEM ARCHITECTURE
3.1. DATA ACQUISITION AND PREPROCESSING

The first step is to get the "Job Placement Dataset" from Kaggle and prepare it by cleaning it up. This dataset includes
information about demographics, education, and employment status. There are both categories and number factors in
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the raw information, so an organised preparation workflow is needed. With one-hot encoding, categorical factors like
"gender," "specialisation,” and "work experience" are stored. When you use one-hot encoding on a category variable
(C; € {cy,C3,...,C)), it turns into a binary vector (¥ € {0,1}¥), where only one item is 1 and the rest are 0. Numerical
attributes such as SSC percentage (x;), HSC percentage ( x,), degree percentage ( x3), and MBA percentage (x,) are
normalized using min-max normalization:

x — min(x)

!

- max(x) — min(x)

This makes sure that all numbers are in the range [0, 1], which helps gradient-based models agree.
Figure 1

Data Acyguisition and B
Feature
Job Placement Preprovessing Fxtraction

Dataset

Ouantification af
Internship Experience

Feature Fusion and

Mundel Training Using

% Dimensionality

Fnsemble Techniques
Reduction

Figure 1 Process architecture for Predicting Graduate Employability
To identify and treat outliers, interquartile range (IQR) analysis is applied, with outliers defined as:
x<Q;—15-IQRorx > Q3+ 15-IQR

where (IQR = Q3 — Q). If any numbers are missing, they are filled in using class-conditional methods:

Ne
1
ui = N 2 x;j forclassc
i=1

A multivariate function (f:R™ — {0,1}) is proposed to model the relationship between features (X) and
employability status (y). This function will then be approximated using ensemble learning. Using stratified sampling to
keep class shares the same, the dataset is split into training and test sets:

P(y = 1)train approx P(y = 1)test

3.2. RESUME DATA FEATURE EXTRACTION USING NLP

The process of getting meaningful information from resumes is made possible by turning structured academic data
into text entries thatlook like resumes. Combining things like a college degree, a speciality, licenses, and work experience
into story forms that are important to the topic is part of this process. Then, Term Frequency-Inverse Document
Frequency (TF-IDF), a common way to describe text in natural language processing (NLP), is used to vectorise each fake
resume.
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Given a set of documents (D = {d;,d,,...,dy }) and a set of terms (T = {ty,t,,...,ty }), the TF-IDF of term
(tj) in document (d;) is:

N
TF = IDF(t; di) = tf (5, di)  log Tz 3)
]

The term frequency of ¢; in d; is shown by tf(tj, di), and the number of documents that t; appears in is shown by df
tj. The logarithmic part adds a slowing effect to punish words that are used a lot in different texts.

The high-dimensional TF-IDF matrix ( X € RV*M) is further reduced using Latent Semantic Analysis (LSA), which
applies singular value decomposition (SVD):

X=U0xVvT

Dimensionality reduction is achieved by selecting the top (k) singular values, producing a compact semantic feature
space:

X = UrZg

To describe temporal relevance, we use partial derivatives to get a rough idea of how the meaning of a word changes
over versions or time-based entries:

o{TF — IDF}(t;, d;)}{dt} = A Importance

These vectorised features are joined with other factors to make an important input to the forecasting model as a
whole.

3.3. QUANTIFICATION OF INTERNSHIP EXPERIENCE

Internship training is a great way to get real-world experience and learn about a company, and being able to measure
it is a key part of improving how well you can predict your hiring. Because the original dataset didn't have enough
specifics about the job, fake number traits are made to show the most important factors: the length of time in months
(D), the domain alignment score (A) in the range of 0 to 1, and the reputation of the organisation (P) in the range of 1 to
5. Each graduate’s internship profile is encoded as a composite internship score (I) defined by a weighted sum:

I =aD + BA +yP

where( a,,y € [0,1]) are empirically assigned weights satisfying (a + f +y = 1). In this study, values (a =
0.4),(f = 0.3) and (y = 0.3 )are adopted to emphasize duration and organizational quality.

A first-order derivative is used to describe the rate of professional growth during the job. Let E(t) stand for the total
amount of experience gained over time t. Then:

dE ] E(t +At)— E(t)
T = limpis o I

This version is pretty close to the rate at which people learn skills that can get them jobs. The general skill efficiency
index (S) is also calculated by taking the definite integral of the learning rate over the course of the internship:
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LdE
S = — dt = E(ty) —E(t
| @ (t) ~ E(to)

After that, the scalar internship score (I) and derived skill index (S) are normalised and added to the main feature
matrix. These steps make sure that learning through experience is stored with both temporal and qualitative meaning.
This makes the models easier to understand and more accurate predictions.

3.4. SOFT SKILL SCORE INTEGRATION

Soft skills, like conversation, teamwork, leadership, flexibility, and emotional intelligence, are very important for
getting a job. Because these qualities can't be seen directly in the raw information, statistical modelling is used to add
artificial psychological scores. The rate of skill development is shown by the derivative of this function:

ds kL e~k —to)
dt (1 + e kw2

Then, this dynamic function is integrated over a certain time period to get an overall soft skill index:

%1
Sagg =f s(t)dt
t

0

After normalisation, the soft skill measures are joined with academic, practical, and resume-based vectors. This
makes sure that interpersonal and behavioural skills are included in the final feature space.

3.5. FEATURE FUSION AND DIMENSIONALITY REDUCTION

After academic, practical, syntactic, and soft skill-based features are extracted, different types of information are
combined to make a single, high-dimensional picture. Each individual is thus described by a feature vector (¥ € R%),
where:

acad
)

2 intern
X = [xl )

xk resume xioft] [T]

X3

The final matrix, (X € R™*%), where (n) is the number of samples and (d) is the total number of features, might have
parts that are duplicated or overlap, which makes learning less effective. Principal Component Analysis (PCA) is used to
reduce the number of dimensions in order to fix this problem. PCA operates by projecting (X) onto a lower-dimensional
subspace via eigen-decomposition of the covariance matrix:

T=—XTX
n
The principal components are obtained by solving:
IV =0

where ¥ are the eigenvectors and A are the eigenvalues that go with them.
ShodhKosh: Journal of Visual and Performing Arts 689
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Figure 2

Feature Fusion

Compressed Dimensionality
Feature Vector Reduction via PCA

Figure 2 Block diagram of Feature Fusion and Dimensionality Reduction
Selecting the top (k) eigenvectors that explain (= 95 % ) of total variance, the transformation is performed as:
Z = XWVk

where W, is the matrix of chosen eigenvectors in R** ¥, To capture nonlinear dependencies among features, Kernel
PCA with a radial basis function (RBF) kernel is also considered, where the kernel matrix is defined by:

2
K(xi,xj) = exp(—~y |xi - xj| )

3.6. MODEL TRAINING USING ENSEMBLE TECHNIQUES

By combining the skills of many learners, ensemble learning makes it much easier to make accurate predictions
about how well someone will do in finding a job. Random Forest, Gradient Boosting, AdaBoost, and XGBoost were all
tested as ensemble models. The Extreme Gradient Boosting (XGBoost) method was found to be the most useful because
it can generalise better and work on larger datasets. XGBoost builds an additive model by putting together K decision
trees:

the predicted score for sample i is given by ( #,) and (F) is the space of regression trees f;: R* — R. The objective
function to minimize is defined as:

n K
L) = ) 1005 + ) 0
i=1 k=1

where (1) is the logistic loss function for binary classification and (Q(f;) =y T +% A |lwg |?) evens out the

complexity of the tree (where T} is the number of leaves and wj, are leaf scores). The second-order Taylor estimate is
used to improve the loss function during training:
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- 1
L~ ) 19 fulxd +3 b fiG)? ] + 9010

i=1

al 921 ' N . .
where (g; = E) and (h; = ﬁ) are the first and second derivatives. To make sure the model is stable and avoids
1 Vi

overfitting, hyperparameters like learning rate ((7 = 0.1)), maximum tree depth (max_depth = 6), and number of
estimators (K = 100) are fine-tuned using grid search with five-fold cross-validation.

3.7. EVALUATION AND COMPARATIVE ANALYSIS

The comparison table shows that XGBoost does much better than the other ensemble models in all of the metrics
that were looked at. It has a score of 91.25 as compared to Gradient Boosting (89.37%), Random Forest (88.21%), and
AdaBoost (86.14%). XGBoost is very accurate with a precision of 90.38 and recall of 89.77 indicating that it is effective
in identifying graduates who are capable of employment as well as minimizing the false hits. It can be seen that this
harmony is demonstrated by the F1-score of 90.07, which also demonstrates the efficiency of the model in terms of
dealing with the misalignment of classes. XGBoost scores 93.24% on the AUC-ROC, indicating that it is more useful in
distinguishing between those who can be and those who cannot be hired in various cutoff sets. Gradient Boosting,
however, has slightly lower AUC-ROC of 91.15, and therefore it is the nearest competitor.

Table 2

Table 2 Comparative Analysis

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC-ROC (%)
Random Forest 88.21 87.34 86.45 86.89 90.42
AdaBoost 86.14 84.67 85.02 84.84 88.91
Gradient Boost 89.37 88.12 87.76 87.94 91.15
XGBoost 91.25 90.38 89.77 90.07 93.24

XGBoost is always superior to other alternatives, and its high accuracy in recognizing the multifaceted factors
influencing the capacity of a graduate to secure employment is provided by a set of features (including resume
embeddings, soft skill measures, and job quantifiers). Thus, not only statistics but real life experience indicates that the
model is quite effective in making predictions.

Figure 3

80

£ 60

cy

Accura:
B
o

Figure 3 Comparison of Accuracy with Various Model
Figure 3 explains the precision of each model in leading to graduate employability. XGBoost has the greatest
accuracy of 91.25 and Gradient Boost has 89.37. Random Forest too works well with AdaBoost having the lowest
accuracy of 86.14 percent. What is evident in the visual difference between the height of bars is that XGBoost is indeed
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superior and worthy in the context of managing more complicated feature interactions in the academic, experience, and
behavioral spheres.

Figure 4
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Figure 4 Comparison of Precision of Various Model

The Figure 4 is used to test the strength of each model in identifying all the grads that can secure jobs. XGBoost has

the best number of 89.77% which indicates that it is quite good at detecting true positives. The nearest one is Gradient
Boost. AdaBoost and random forest possess a little less recall.

Figure 5

Racall (%)

£ \
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Figure 5 Comparison of Recall with Various Model

The number (5) is used to test the success of each model in identifying all the grads that can be hired. XGBoost has
the best number of 89.77% which indicates that it is quite good at detecting true positives. The nearest one is Gradient
Boost. AdaBoost and random forest possess a little less recall. The differences are more visible with the bright magma

bars and it is evident that the models with boosting processes are more sensitive as compared to models with bagging
processes.
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Figure 6 Comparison of F1-Score with Various Model

Being a harmonic combination of precision and memory, the F1 score is represented in the Figure 6. XGBoost wins
again with a score of 90.07, which indicates that it has the most appropriate balance between accuracy and memory. The
gradual improvement of AdaBoost by XGBoost indicates that boosting algorithm is becoming more proficient at their
tasks. The distinct marks and standard curves enable one to identify gaps on performance and trends within group models
easily.

Figure 7

93

w
N]

AUC-ROC (%)
o
=

;

89 o

Figure 7 Comparison of AUC-ROC with Various Model

The Figure 7 indicates the ability of each model to distinguish between the capabilities of grads to secure jobs at the
various levels and those unable to secure employment. XGBoost has the highest number of 93.24, indicating that it has a
higher discriminative power. AdaBoost and Random Forest are slightly lagging behind and Gradient Boost is closely
trailing it. The bright green smooth changes with smooth shifts are evidence of the high general classification capabilities
of XGBoost, which captures the gradient of the quality predicted.

4. CONCLUSION

This paper demonstrated that ensemble learning can effectively forecast the capacity of a graduate to secure
employment once various forms of data are incorporated including academic achievements, employment history, soft
skills and resume connotations. Among all the ensemble models, which were considered, Extreme Gradient Boosting
(XGBoost) performed best in all the significant evaluation metrics including accuracy, precision, recall, F1-score, and
AUC-ROC. This performance stability indicates the performance of gradient-boosted systems in relation to various types
of data which are only partially organised. A lot of feature engineering and dimensionality reduction was done to convert
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the data into a format that could be more effectively recognized as a pattern. It was of great importance to add TF-IDF-
based resume embeddings and measured soft skill measures since these were the most accurate ones. The traditional
academic factors, however, are not as important as the other factors are observed to be. It is an indication that behaviour
and practicality are becoming more relevant in employment determination. What is most useful about the model is that
it can be explained and understood, in particular via SHAP analysis and scores on gain-based features enable us to
understand things in a better way, as well as provide information we can apply. Through these lessons, schools may
make more appropriate decisions when it comes to the way they can enhance their courses, conduct skill-building
programs as well as provide career counselling services to enable graduates secure better jobs. The results and the
methods presented there indicate that machine learning can serve not just a single purpose, such as forecasting the
future of the labour force and interpreting the information regarding schools. Researchers can consider adding in the
future real-time trends in the labour market, or the long-term success of students to increase the predictive capacity of
the future and adapt to the altering job markets.
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