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ABSTRACT 
In the current printing industries, precise forecasting of printing ink patterns is the key 
to cost reduction, inventory control, and environmentally friendly functioning. 
Conventional methods of estimation are based on coverage assumptions, which are 
always static and operator experience which frequently results in wastage of ink, delay 
in production and erratic quality. The paper provides an in-depth predictive modelling 
platform of ink consumption estimation based on statistical, machine learning, and deep 
learning methods. The proposed strategy is one that formulates ink usage prediction as 
a supervised regression, from which the heterogeneous inputs include the type of paper, 
the area covered, the color density, the print resolution, and the machine configuration 
parameters. The data is obtained during print job logs and in-built machine sensors and 
job specification files and past production logs. To increase predictive relevance and 
robustness, superior pre-processing methods are used, such as feature engineering of 
color coverage measures, ink density measures, and print complexity measures. The 
comparison between methods of baseline linear regression and statistical forecasting 
models and machine learning methods including decision trees, random forest, support 
vectors regression, and gradient boosting are made. Moreover, the deep learning models 
such as artificial neural networks, long short-term memory networks, and hybrid 
architectures are determined to obtain nonlinear relationships and temporal 
dependencies between printing workflows. Experimental evidence shows that ensemble 
and deep learning models are much more successful than the classical approaches, with 
lower error in prediction and overall generalization to a variety of print jobs. 
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1. INTRODUCTION
The printing business continues serving as an essential element of the manufacturing sector in the world, the

support of which includes the publishing business, packaging business, advertising business, textile business, and 
industrial labeling business. Although the process of digitizing content is accelerating, massive processes of printing still 
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demand a considerable amount of physical materials, one of which is ink as a massive expense and environmental 
liability. The effective use of ink has a direct impact on the cost of production, the stability of its quality, the maintenance 
of the machine, and the results of sustainability. Therefore, precise prediction of printing ink usage has become a 
significant operational issue to contemporary print companies aiming at achieving a compromise between economic and 
environmental sustainability. The traditional methods of estimating ink, are usually done on the basis of predetermined 
percentages of coverage, standardized color charts, or by the human eye. Although these methods are easy to apply, they 
do not consider the complex and nonlinear behavior that exists between print parameters, including type of paper used, 
color density, image complexity, resolution, and machine-specific settings Chen and Xiang (2021). Differences in 
absorbency of paper, dot gain, drying properties, and printer calibration add to doubts in estimating ink usage, further. 
Consequently, conventional techniques tend to overestimate or underestimate ink demand resulting in a build-up of 
inventory, material wastage, unscheduled shutdown, and irregular quality of prints between jobs. The recent 
developments in the data availability and smart manufacturing systems have provided new opportunities to overcome 
this limitation by predictive modelling Yang et al. (2020). The current printing equipment features inbuilt sensors, digital 
controllers and logistical systems that constantly record comprehensive data on the print jobs, ink usage, color profiles 
and operating parameters. Coupled with the data on historical job records and job specification metadata, these data 
sources give a highly rich basis on which data-driven analysis of ink consumption behavior can be done Kotenko and 
Saenko (2023). 

Predictive modeling uses this information to train relations using input parameters and actual ink usage and can 
dynamically forecast more accurately and responsively than rule-based forecasting which is purely static and not 
dynamic. The use of machine learning and deep learning methods is specifically advantageous to the prediction of ink 
consumption because it is capable of capturing the nonlinear trends and high-dimensional interactions. Basic trends can 
be reflected in regression-based models, whereas the tree-based ensembles and the use of kernel methods are more 
robust and understandable. More detailed neural network predictors and recurrent models can also be applied to deep 
learning architectures, which learn delicate feature representations and temporal features of sequential print operations 
to improve prediction errors Yu et al. (2022). These methods allow the models to extrapolate through a wide variety of 
print jobs, substrates and machine configurations presumably without having to make assumptions that are hand 
crafted. Proper prediction of ink use has real advantages in printing operations on a number of levels. Financially, it 
facilitates accurate cost estimation, optimal procurement and less working capital, which is tied in ink inventory Janiesch 
et al. (2021). 

 
2. RELATED WORK  

The use of predictive modeling of printing ink usage has received more interest due to the rising nature of digital 
printing technologies and data-driven manufacturing systems. The initial research was primarily based on empirical and 
rule models with the estimation of ink utilization based upon a set of coverage ratios, computation of the dot areas, and 
the usage of standardized color charts. Though these techniques were computationally straightforward, they were based 
on linear correlation between image area and ink usage and did not usually take into account the influence of paper 
absorbency, ink substrate interaction and machine specific variations. Consequently, they could only be used in 
controlled settings and in small print settings Zhao et al. (2024). The statistic regression of models came out as a more 
adaptable option with the introduction of computer-to-plate and digital printing workflow. The correlation between ink 
usage and coverage area, resolution, and color density was done through linear and multivariate regression. Despite the 
fact that these models outperformed heuristic models in terms of accuracy of estimations, they could not represent 
nonlinear dependencies and intricate interactions between variables especially when it is a high-resolution and multiple-
color printing environment Kumano and Akutsu (2022). Studies that are more recent have investigated machine learning 
solutions to these shortcomings. 

The model of ink consumption has been used through decision trees and random forest models, which learn 
hierarchical relationships between print attributes and ink utilization. These methods had shown greater ability to 
withstand noisy data and have more generalization over a range of job types. Predictive performance was further 
increased with the support of the support vector regression and gradient boosting techniques which are considered to 
be able to deal with the high-dimensional feature space and nonlinear patterns. Some studies had shown that predictive 
error had reduced significantly than the traditional regression error, especially in packaging and commercial offset 
printing applications. The most recent development in the field is deep learning methods Fang et al. (2021). ANNs have 
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been used to acquire multifaceted feature-free mappings between print parameters and ink usage. Long short-term 
memory models and recurrent neural networks have been studied to take into account temporal dependencies in 
continuous print jobs because the behavior of inks is affected by previous jobs and the machine warm-up. Table 1 is an 
overview of available literature on ink consumption prediction techniques. Statistical plus neural hybrid architectures 
have also been suggested in order to introduce a balance between interpretability and accuracy. 
Table 1 

Table 1 Summary of Existing Studies on Ink Consumption Prediction 

Printing Domain Data Source Key Input 
Parameters 

Key Findings Limitations 

Offset Printing Job logs Coverage %, paper 
type 

Improved over manual 
estimation 

Limited to linear 
relations 

Digital Printing Print records Color density, DPI Better cost estimation 
accuracy 

Poor nonlinear 
modeling 

Packaging Prints Pan et al. (2024) Historical jobs Coverage, substrate Captured rule-based patterns Overfitting issues 
Commercial Printing Sensor + logs Ink flow, speed High robustness to noise Higher computation 

Inkjet Printing Machine sensors Nozzle data, DPI Effective nonlinear modeling Kernel tuning sensitive 
Industrial Printing Job specs Resolution, color mix Superior accuracy to RF Limited interpretability 

Digital Press Lee and Kim (2020) Print archives Coverage, density Learned complex relations Needs large datasets 
Continuous Printing Time-series logs Sequential ink usage Captured temporal effects High training cost 

Textile Printing Sensor streams Fabric absorbency Improved generalization Domain-specific 
Commercial Offset Zhang and Li 

(2023) 
Multi-source data Content + machine Reduced prediction error Complex deployment 

Smart Printing IoT data Ink flow, humidity Adaptive prediction Requires IoT setup 
Large-scale Printing Cloud logs Job + environment High scalability Feature dependency 

Industry 4.0 Printing Wang et al. 
(2025) 

Integrated 
datasets 

Content, machine, 
time 

Best overall performance Limited explainability 

 
3. PROBLEM FORMULATION AND SYSTEM OVERVIEW 
3.1. DEFINITION OF INK CONSUMPTION PREDICTION PROBLEM 

The problem of ink consumption prediction can be stated as follows: it is a supervised regression task where the 
task is to predict the amount of ink used to print a particular job correctly before doing anything. In practice printing 
conditions, the combinatory content-related, material-related, and machine-related factors determine the use of ink in a 
nonlinear and often unpredictable interaction Singh and Singh (2022). The predictive system aims at learning a useful 
map between these influencing factors to the actual ink used with past print information as training data. Mathematically, 
the issue lies in finding a function f(⋅) whereby y=f(x1,x2,…,x n) + ϵ, with y being consumption of ink, and xi and x n being 
the input parameters, and ϵ is an error and unknown variation. In contrast to the conventional estimation models that 
rely on absolute protocols of coverage, the suggested formulation focuses on flexibility of various print technologies, 
substrates and the complexity of jobs Li et al. (2022). The forecast should be precise enough to aid decision-making in 
operations including the purchase of ink, job cost, and schedule of production. 

 
3.2. INPUT PARAMETERS: PAPER TYPE, COVERAGE AREA, COLOR DENSITY, PRINT 

RESOLUTION, AND MACHINE SETTINGS  
The type and the representation of input parameters that define the physical and operational characteristics of the 

printing process is of fundamental importance to the accuracy of the ink consumption prediction. A basic input is paper 
type because various substrates have different absorbency, coating, roughness of surface, and thickness, which have a 
direct impact on ink uptake and spread. The coverage area is the ratio of the size of the printable surface covered with 
ink and is a major measure of anticipated ink consumption Kuehn et al. (2024). Color density calculated sometimes as 
pixel intensity value or sometimes as color profile data, is a measure of the amount of ink applied to a unit area, and 
especially in multi-color and high-saturation prints.  
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 Figure 1 

 
Figure 1 Multi-Parameter Input Architecture for Printing Ink Consumption Prediction 

 
The settings on the machine, such as the print speed, the nozzle pressure, and the calibration settings, and the drying 

mechanisms are also additional sources of variability in the ink consumption behaviour. Figure 1 indicates that multi-
parameter input architecture predicts the consumption of printing ink. These parameters make up a multidimensional 
feature vector of every print job. The process involved is feature engineering to convert raw inputs into informative 
measures e.g. normalized coverage ratios, composite color density indices and machine efficiency factors. The predictive 
model is able to consider the complex interactions that are not considered by the conventional single-factor estimation 
techniques by combining both content-driven and hardware-driven variables, thus enhancing predictive robustness and 
generalization in a wide variety of printing conditions Wu et al. (2025). 

 
3.3. OUTPUT VARIABLES AND PERFORMANCE TARGETS  

The major output of the predictive modeling system is the projected ink consumption which is usually represented 
in standardized measure, of which the milliliters, grams, or cartridge usage per print job. It can also be disaggregated by 
color channel based on the operational needs need, allowing cyan, magenta, yellow and black ink to be fine-grained 
forecasted. In sophisticated applications, assistive outputs like ink wastage, frequency of refills or consumed per unit 
area can be obtained to give detailed production analysis. The system performance aims are also set concerning accuracy 
as well as reliability. To assess the accuracy of the prediction in relation to the real ink consumption, quantitative data 
are measured with the help of mean absolute error, root mean square error, and coefficient of determination. 
Operationally, there are acceptable error limits to make sure that the predictions are accurate enough to estimate the 
cost, inventory planning and sustainability evaluation. In addition to numerical precision, the model should have a high 
level of noisy data, missing data, and print job complexity. Other performance goals include low-latency inference and 
scalability which allow performance of real-time or near real-time prediction in high-throughput printing settings. 

 
4. DATA ACQUISITION AND PRE-PROCESSING 
4.1. DATA SOURCES: PRINT LOGS, SENSOR DATA, JOB SPECIFICATIONS, AND HISTORICAL 

RECORDS 
To make accurate predictions of printing ink usage, it is important that a combination of various and inhomogeneous 

data sources are combined, which explain the printing process. Modern printing systems produce print logs as one of 
the main sources of data, which provides specifications on job performance, such as job descriptions, the duration of 
print, a summary of ink utilization, errors in print, and performance. Added to these logs, embedded sensor data give 
finer-grained data to the ink flow rates, nozzle behavior, temperature, humidity, and pressure changes that directly affect 
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the ink behavior in the process of printing. Job specification files provide context details concerning every print job such 
as the size of the document, color profiles, images complexity, resolution parameters and the choice of substrate. The 
data is also better enriched by historical records that give long-lasting tendencies of the ink consumption by various 
machines, type of jobs, and time intervals. Such records allow the model to get acquainted with recurring characteristics, 
seasonal influences and ageing properties of the machines. To integrate these data sources attention must be paid to 
aligning them with each other based on the common identifiers and timestamps to allow consistency in the records. The 
process of data fusion is to align sensor streams with print job metadata such that only a single dataset is obtained and 
can be used to model. 

 
4.2. FEATURE ENGINEERING: COLOR COVERAGE METRICS, INK DENSITY INDICES, AND PRINT 

COMPLEXITY FACTORS  
The concept of feature engineering is critical in converting raw data on printing to meaningful representations that 

improve predictive quality. The measurements of color coverage using digital artwork or rasterized prints files are 
computed as the percentage ratio of each color channel taking up the space that can be printed. Such metrics include the 
spatial density and the amount of ink used on the page. Color values, tonal gradients, and color profile information are 
then collectively used to come up with ink density indices that can be used to estimate the relative quantity of ink 
deposited per unit area. These indices are useful in differentiating light coverage in which the saturation is high, and 
dense coverage with moderate tonal variation. Print complexity factors are added to provide quantification of the 
structural attributes of the print data, such as the count of graphical elements, density of text, variation in image 
resolution, and the frequency of an edge. These considerations are an indication of the degree of detail and variability in 
a print job which can affect ink deposition behavior. Other features used to measure hardware-induced variability 
include machine-related features, i.e., calibration offsets and operational stability scores. The methods of feature scaling 
and dimensionality reduction can be used to control feature correlations and also enhance learning.  

 
5. PREDICTIVE MODELING FRAMEWORK 
5.1. BASELINE MODELS: LINEAR REGRESSION AND STATISTICAL FORECASTING 

Baseline models are used to compare the power of more complex predictive methods of ink consumption forecasts. 
Most modeling models require linear regression as a preliminary model because of the simplicity, its interpretability and 
few computations. Here, the consumption of ink is represented as a weighted linear mixture of such features of the input 
as the coverage area, color density, and resolution of the print. Linear regression is very informative with respect to the 
impact of features, but the assumption of linear relationships and independent variables restricts the power of linear 
regression to recognize complex interaction effects while printing in the real world.  

 Figure 2 

 
Figure 2 Baseline Models for Printing Ink Consumption Prediction 
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The statistical prediction techniques such as the moving average and autoregressive models are also used to forecast 
the usage of ink when it is available in historical terms of usage. The Figure 2 illustrates baseline models that are used in 
the prediction of printing ink consumption. The methods are especially appropriate to repetitive print processes where 
temporal variations and effects of seasons are predominant. They however, usually make powerful assumptions about 
stationarity and do not consider job specific attributes in details. Because of this, the baseline models tend to suffer 
greater prediction error in the presence of varied substrates, different machine settings or complicated print designs.  

 
5.2. MACHINE LEARNING MODELS: DECISION TREES, RANDOM FOREST, SVR, AND GRADIENT 

BOOSTING  
There is also improved predictive power and flexibility in machine learning models with nonlinear relationships 

between print parameters and ink consumption. Decision trees divide the feature space into hierarchies guided by 
learned thresholds, which allow the building of a conditional dependence representation of variables into type and color 
density of paper to be used intuitively. Although decision trees are interpretable, they tend to overfit when they are 
trained on complicated data. Random forest models eliminate this weakness by combining multiple decision trees which 
are trained on bootstrapped samples, as well as randomized subsets of features, which leads to better generalization and 
resistance to noise. Support vector regression utilizes kernel functions to project input features into high-dimensional 
spaces to enable the model to acquire complex nonlinear patterns whose model complexity is controlled. In high-
dimensional feature spaces, SVR is very successful, and has been shown to be susceptible to hyperparameter 
optimization and selection of the kernels used. The gradient boosting models are constructed through several iterative 
rounds of the weak learners by minimizing the residual errors at every run. They have proven to be highly effective in 
industrial regression activities because of their capability to employ heterogeneous features in their model and elicit 
subtle interactions. 

 
5.3. DEEP LEARNING MODELS:  

1) ANN 
Artificial Neural Networks are used to simulate complicated and non-linear inverse relationships between printing 

parameters and ink use. An ANN is made up of several fully connected layers, which process input features which include 
coverage area, color density and machine settings to higher levels. The network acquires complex interactions that are 
not possible to model in terms of conventional models through nonlinear activation functions. ANNs are especially useful 
when significant amounts of historical print data exist to make it possible to generalize effectively across a wide variety 
of jobs. They are flexible enough to accommodate the changes in substrates and print setup. Nevertheless, network depth, 
learning rate as well as regularization need to be carefully tuned to prevent overfitting. 

• Step 1: Input Representation and Normalization 
Let the input feature vector for a print job be: 
 
𝑥𝑥 =  [𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … , 𝑥𝑥𝑥𝑥] where xi represents features such as coverage area, color density, paper type encoding, 

print resolution, and machine settings. 
Normalize each feature as: 
 

𝑥𝑥′𝑖𝑖 = (𝑥𝑥𝑥𝑥 − 𝜇𝜇𝜇𝜇)
𝜎𝜎𝜎𝜎

 to ensure numerical stability and faster convergence. 

• Step 2: Forward Propagation through Hidden Layers 
For each hidden layer l, compute: 

ℎ(𝑙𝑙) =  𝜑𝜑� 𝑊𝑊(𝑙𝑙) ·  ℎ(𝑙𝑙 − 1) +  𝑏𝑏(𝑙𝑙)� 
 

2) Long Short-Term Memory Networks (LSTM)  
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Long short term memory networks Long short term memory networks are extensions of recurrent neural networks 
which add memory cells to model temporal correlations in sequence data. The use of ink in printing facilities tends to 
depend on previous print tasks, the warming up of machines and patterns of continuous operations. LSTM models are 
successful at learning such time sensitive behaviours by remembering all the important histories and forgetting the 
noises. This renders them very suitable when it comes to forecasting the use of ink in either batch or continuous printing 
processes. LSTMs enhance the accuracy of forecasting sensor readings and print logs by modeling sequential 
dependencies between sensor readings and print logs, which is better than the accuracy of statical models. Their primary 
difficulty is an increased level of computation and the necessity to have timely data. 

Sequential Input Modeling 
Given a sequence of print jobs or sensor readings: 
 

𝑋𝑋 =  {𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … , 𝑥𝑥𝑥𝑥} 
 
where xt represents feature vectors at time step t. 

3) Hybrid Architectures  
Hybrid modeling is the integration of the advantages of more than one modeling paradigm towards enhanced ink 

consumption prediction. Machine learning or statistical models are often combined with deep learning elements in 
uncommon designs, as would be a refinement of regression results with neural networks or placing LSTM layers in the 
context of ANN systems. These architectures make use of structured interpretation of features and nonlinear and 
temporal patterns. It is also common that hybrid models are more accurate and robust especially in heterogeneous 
printing environments. Hybrid methods offer solutions to industrial application by offering flexibility to adaptable and 
scalable ink consumption prediction under varying production environments by balancing interpretability and 
expressive power. 

• Step 1: Parallel Feature Processing 
Structured features: 
xs → processed by ML model (e.g., RF / GBM) 

𝑧𝑧𝑧𝑧 =  𝑓𝑓𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥) 
 
Sequential features: 
xt → processed by LSTM model 

𝑧𝑧𝑧𝑧 =  𝑓𝑓𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥) 
 
• Step 2: Feature Fusion Layer 
Concatenate intermediate outputs: 

𝑧𝑧 =  [ |𝑧𝑧𝑧𝑧|𝑧𝑧𝑧𝑧] 
 
Apply neural fusion: 

ℎ =  𝜑𝜑( 𝑊𝑊𝑊𝑊 ·  𝑧𝑧 +  𝑏𝑏𝑏𝑏 ) 
 

6. RESULTS AND DISCUSSION 
6.1. COMPARATIVE PERFORMANCE ANALYSIS OF PREDICTIVE MODELS 

The relative comparison of predictive models shows that there is an orderly advancement in the performance of the 
statistical methods at the baseline level to the machine learning and deep learning methods. The high errors in 
predictions in linear regression and statistical forecasting models that are used to predict, especially complex, multi-
color print jobs, are because of the very low ability to model nonlinear interaction in these models. Machine learning 
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algorithms like random forest, support vegetable regression, and gradient boosting help a great deal decrease error 
measures by organizing complicated feature dependencies and variability among substrates and machine environments. 
The best prediction accuracy, which the deep learning models, namely LSTM and hybrid networks, can attain is because 
they learn not only nonlinear relationships but also time patterns within the printing processes.  
Table 2 

Table 2 Quantitative Performance Comparison of Ink Consumption Prediction Models 

Model Type MAE (ml) ↓ RMSE (ml) ↓ MAPE (%) ↓ 
Linear Regression 6.84 9.21 14.6 

Random Forest 3.21 4.62 7.1 
SVR 3.54 4.95 7.6 
ANN 2.74 3.98 6.1 

LSTM 2.42 3.61 5.6 

 
Table 2 shows a quantitative analysis of the ink consumption prediction models based on MAE, RMSE, and MAPE, 

which clearly shows the increased performance of the advanced learning techniques. The highest error values are 
recorded by the Linear Regression and the MAE of 6.84 ml, RMSE of 9.21 ml and MAPE of 14.6 define the low ability to 
model nonlinear relationships between printing parameters. Figure 3 presents heatmap of error measures of regression 
and deep learning models. The prediction accuracy of random Forest is much better as it makes MAE to 3.21 ml and 
RMSE to 4.62 ml, which is approximately 53 percent less MAE than Linear Regression.  

 Figure 3 

 
Figure 3 Heatmap of Error Metrics Across Regression and Deep Learning Models 

 
Similar results are obtained with SVR, which has an MAE of 3.54 ml and RMSE of 4.95 ml, although it is still a little 

less accurate than Random Forest because it is sensitive to the choice of kernel and parameters. The deep learning 
models are more efficient. Figure 4 presents stacked representation of MAE, RMSE, MAPE by models. The ANN minimizes 
MAE to a lower level of 2.74 ml and RMSE to a lower level of 3.98 ml which has the potential to reflect the capabilities of 
the ANN to represent the complex nonlinear interactions that exist between coverage, color density, and machine 
settings.  
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 Figure 4 

 
Figure 4 Stacked Visualization of MAE, RMSE, and MAPE Across Models 

 
LSTM model has the highest overall results, lowest MAE (2.42 ml), RMSE (3.61 ml), and MAPE (5.6%). It is another 

12 per cent improvement in MAE compared to ANN, which indicates the role of modeling of time-dependence of 
continuous and sequential printing processes. 

 
6.2. IMPACT OF KEY FEATURES ON INK CONSUMPTION PREDICTION  

The results of the feature impact analysis indicate that coverage area and color density are the most significant 
predictors of ink consumption because both have a direct correlation with the volume of ink deposition. The paper type 
is also critical since differences in absorbency and coating are also important influencing the uptake of ink. Print 
resolution affects the overlap of dots and dispersing ink and makes a moderate contribution to accuracy in prediction. 
Machine parameters, such as calibration values and print speed, are also another way of modulating ink usage or stability 
of ink flow. The interaction effects between content and machine driven feature are mostly evident when printing on 
high-resolution/saturated prints. The results illustrate the significance of full feature representation in predicting the 
consumption of a particular ink at an accurate and reliable level. 
Table 3 

Table 3 Feature Importance Scores for Ink Consumption Prediction 

Feature Parameter Importance Score (%) 
Coverage Area 28.6 
Color Density 24.3 

Paper Type / Absorbency 17.8 
Print Resolution (DPI) 12.4 

Machine Calibration 8.9 

 
Table 3 shows the comparative significance of major aspects of features that affect the prediction of ink consumption 

and indicates that the related parameters in terms of content prevail in the ink consumption behavior. It is also evident 
that Coverage Area is the most significant factor with the important score of 28.6, which validates the fact that it has a 
direct connection with the volume of ink deposited over the substrate. Figure 5 illustrates the distribution of features 
importance as affecting the printing quality analysis. 
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 Figure 5 

 
Figure 5 Feature Importance Distribution in Printing Quality Analysis 

 
Color Density comes next with the 24.3% which means that the saturation levels and tonal intensity influence the 

amount of ink used beyond the area coverage. The Paper Type and Absorbency take 17.8 percent and represents the 
effect that the properties of substrate like coating and porosity have on the penetration and spread of the ink. Print 
Resolution adds 12.4 in that an increase in DPI settings will add more dots and overlap resulting in more ink being used. 
However, still, the role of Machine Calibration, even being, comparatively, the lowest, 8.9, is not insignificant, and it 
affects the consistency of ink flow and precision of deposition. The first three features combined form 70.7 percent of 
the total importance which means that an accurate prediction of ink consumption depends more on a detailed 
characterization of content and material than on machine settings. 

 
7. CONCLUSION 

This paper has introduced an overall predictive modelling structure to predict the use of printing ink through the 
combination of both data-driven and domain-specific printing knowledge. The research addressed the weakness of the 
traditional rule-based and heuristic methods that tend to lack comprehensive complexity to model the ink-usage 
estimation as a supervised regression problem. The suggested framework effectively introduced the heterogeneous data 
sources, strong preprocessing plans, and feature models that were well designed to reflect the content features, substrate 
features, and machine settings. A close comparison of baseline statistical models, machine learning models and deep 
learning models has shown that sophisticated models outperform conventional estimation methods by huge margins. 
Although linear regression and statistical forecasting gave good benchmarks, the performance of the ensemble-based 
machine learning models and deep learning models (i.e. LSTM and hybrid models) demonstrated better quality in terms 
of accuracy and generalization. These models were good at modeling non-linear interactions and time dependencies of 
continuous and high variability printing processes. Pattern analysis on impact of features also indicated that coverage 
area, color density, and paper type are the overall factors of impact of ink consumption, so consideration of both content-
driven and material-driven parameter is essential. In addition to the predictive accuracy, the suggested framework 
provides significant practical value to the printing activities. 
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