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ABSTRACT 
Deep Reinforcement Learning (DRL) has become an effective framework of sequential 
decision-making in high-dimensional and complex control problems, but little has been 
done to apply it to expressive human movement. This work is a unified DRA algorithm to 
optimize a dance pose, which an intelligent agent is trained to produce the smooth and 
stable dance pose and aesthetically compose a pose in a simulated kinematic 
environment. Generation of dance poses is modeled formally as a Markov Decision 
Process with incorporation of joint level kinematics, time related dependencies and 
balance constraints in the state space and pose corrections expressed as a continuous 
control action. The given framework incorporates pose estimation results and 
biomechanical constraints to guarantee physical feasibility and motion synthesis that is 
safe of injuries. Several types of DNR algorithms are tested such as Deep Q-Networks, 
Proximal Policy Optimization, and Actor-Critic variants to determine their 
appropriateness to fine-grained pose refinement. The pose accuracy, motion smoothness, 
energy efficiency and balance stability are well coordinated in a reward function that 
allows a multi-objective optimization that is in line with technical correctness and artistic 
quality. Curriculum learning is used to bring a gradual complexity to the poses so that the 
agent is able to move on to dynamic dance patterns. Substantial experimental 
investigation shows that policy-gradient-related techniques are more convergent stable 
and realistic than value-based baselines. 
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1. INTRODUCTION
Dance is a very organized at the same time expressive type of movement of a man that combines biomechanics,

rhythm, emotion and artistic intention. Optimization of dances poses and transitions has been core to the use of expert 

P3#y P3#y P3#y3 P3#y4 P3#y5 P3#y6

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh
https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh
https://doi.org/10.29121/granthaalayah.v9.i6.2021.3923
https://dx.doi.org/10.29121/granthaalayah.v10.i3.2022.4503
https://dx.doi.org/10.29121/shodhkosh.v6.i5s.2025.6909
mailto:thilagavathi.avcs093@avit.ac.in
https://dx.doi.org/10.29121/shodhkosh.v6.i5s.2025.6909
https://dx.doi.org/10.29121/shodhkosh.v6.i5s.2025.6909
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-9859-1819
https://orcid.org/0000-0002-5985-9579
https://orcid.org/0000-0003-3046-8811
https://orcid.org/0009-0002-5658-5629
https://crossmark.crossref.org/dialog/?doi=10.29121/shodhkosh.v6.i5s.2025.6909&domain=pdf&date_stamp=2025-12-28
mailto:thilagavathi.avcs093@avit.ac.in
mailto:digvijay.pandya29007@paruluniversity.ac.in
mailto:asha.cse@sathyabama.ac.in
mailto:prince.kumar@niu.edu.in
mailto:leena.deshpande@vit.edu
mailto:jaspreet.sidhu.orp@chitkara.edu.in


Deep Reinforcement Learning for Dance Pose Optimization 
 

ShodhKosh: Journal of Visual and Performing Arts 537 
 

choreographers, instructors and repetitions, which makes the process time consuming and subjective. Due to the fast 
development of artificial intelligence, especially machine learning and computer vision, computational methodology is 
becoming a growing research area to model, analyze, and improve human motion. One of them, Deep Reinforcement 
Learning (DRL), provides an interesting paradigm of learning the optimal strategies of movements based on interaction, 
feedback, and optimization of long-term rewards. Optimization of the dance pose through DRA gives rise to new 
possibilities of the intelligent trainers, automated support of the choreography and analysis of the performance. Dance 
pose optimization is the production or optimization of forms of the body that fulfill a variety of, usually competing, goals. 
These are kinematic feasibility, balance stability, temporal smoothness, energy efficiency and aesthetic coherence. The 
problem with classical optimization and rule-based motion synthesis algorithms is that it is difficult to scale to high-
dimensional and continuous as well as temporally dependent human dance motions Lei et al. (2022). Though well-suited 
to pose estimation and motion prediction problems, supervised learning methods are constrained by the existence of 
labeled data, and have no explicit optimism of long-horizon performance objectives. Compared to it, DRL models 
sequential decision-making problems naturally and allows agents to optimize control policies that maximize cumulative 
rewards, and thus is well applied to complex motion optimization problems. DAO Dance pose optimization A control 
problem can be defined in a DRA environment in which an agent optimizes the joint configurations to attain desirable 
poses and transitions. Figure 1 demonstrates that it is possible to integrate states, rewards and policies to maximize 
dance poses. The agent monitors the present position of the dancer such as the angles of the joints, velocities, balance 
cues and time and decides what to do to alter the pose as time progresses. The agent discovers strategies through trial 
and error that do not only reproduce target poses, but also preserve physical plausibility as well as expressive continuity 
Zhai (2021).   

Figure 1 

 
Figure 1 Deep Reinforcement Learning–Based Framework for Dance Pose Optimization 

 
The given learning paradigm is quite similar to the way human dancers learn and become better at it due to the 

feedback, practice, and possible refinement, which is another reason to consider the reinforcement learning 
implementation in the specified area. The recent progress in pose estimation, physics-based simulation, and 
differentiable kinematic modelling have greatly reduced the difficulty of applying DRL to human movement Jin et al. 
(2022). Skeletal tracking can be done with accuracy to track states in detail, and physics-aware environments can impose 
biomechanical constraints, and exclude unrealistic motion artifacts. 

 
2. RELATED WORK  

The research of optimization of dance poses falls at the cross-section of human motion analysis, pose estimation, 
motion synthesis, and reinforcement learning. Early computational methods of simulating dance and human motion 
were based mainly on kinematic laws and physics-based methods of animation. These were based on the inverse 
kinematic, motion capture retargeting, and constraint optimization to guarantee joint limit consideration and balance 
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stability Dias Pereira Dos Santos et al. (2022). Proven to be useful at creating physically plausible poses, those techniques 
were not adaptive and could not learn variability in the style or maximize the quality of motion over the long term across 
sequences. Supervised models have taken over in the field of human pose estimation and motion prediction with the 
development of deep learning. Convolutional neural networks and graph-based models have been prevalently employed 
to predict 2D as well as 3D skeletal poses using video inputs as their base layer, upon which tasks of downstream motion 
analysis are based Davis et al. (2023).  Temporal convolutional and recurrent neural networks also allowed short-term 
predictions of motion and pose sequence smoothing. Nevertheless, these are guided methods whose ability to support 
global goals, like balance, energy-efficiency or aesthetic continuity of dance motions, is restricted by labelled data and 
usually optimizes frame-wise reconstruction loss. It has also been found that reinforcement learning is actively studied 
in human motion control, especially in robotics and in character animation Choi et al. (2021). 

DRA Physics-based DRA systems have shown to be able to learn locomotion, balance, and complicated motor skills 
like walking, running, and acrobats. It has been demonstrated that policy gradient and actor actorcritic methods are 
more successful than value-based methods in continuous control tasks with high action space dimensions. Through these 
studies, reinforcement learning has the potential to learn the long-horizon dependencies and optimize the quality of 
movement with a well-constructed reward function Guo et al. (2022).  Also more modern efforts have started to use DRL 
to generate expressive motions and tasks aimed at performance, such as gesture generation, music-driven movement 
generation and dance choreography generation support. Others use motion capture information as reference 
trajectories, and the imitation learning is reinforced to speed up convergence, and the stylistic characteristics are 
maintained. Others concentrate on reward shaping methods which entail the rhythm consistency, fluent motion and 
symmetry to promote aesthetically fulfilling movements Esaki and Nagao (2023). Table 1 provides an overview of 
previous literature that combines human motion, dance modelling and reinforcement learning despite these 
progressions, the current methodologies generally focus on producing full-body motions and not fine-grained pose 
optimization nor integrating biomechanical constraints. 
Table 1 

Table 1 Related Work on Human Motion, Dance Modelling, and Reinforcement Learning 

Application Domain Learning 
Paradigm 

Motion 
Representation 

Key Optimization 
Objective 

Limitations 

Character Animation DRL (Actor–Critic) Full-body joints Balance & locomotion Limited expressiveness 

Human Locomotion DRL (PPO) MoCap skeletal data Motion imitation Style rigidity 

Dance Generation Chan et al. 
(2011). 

Supervised DL Joint trajectories Sequence prediction No optimization feedback 

Pose Forecasting Supervised DL 3D joint angles Prediction accuracy No control mechanism 

Gesture Synthesis Iqbal and Sidhu 
(2022) 

Generative DL Upper-body joints Motion realism Unstable training 

Robotic Motion DRL (HRL) Kinematic chains Skill decomposition Complex architecture 

Dance Choreography Self-Supervised Pose + audio features Music–motion alignment No physical constraints 

Human Balance Control Li et al. 
(2021). 

DRL (DDPG) COM & joint states Stability optimization Limited aesthetics 

Expressive Motion DRL (SAC) Joint + style 
embeddings 

Expressiveness High data demand 

Sports Motion DRL (PPO) Skeletal + force data Injury-safe motion Domain-specific 

Dance Pose Learning Xie et al. 
(2021).  

DRL + MoCap Pose sequences Pose accuracy Weak generalization 

Interactive Avatars Ahir et al. 
(2020). 

Actor–Critic Real-time pose states Responsiveness Limited complexity 

Dance Pose Optimization PPO / SAC Joint + temporal + 
balance 

Multi-objective 
optimization 

Scalability & real-time 
limits 

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh


Deep Reinforcement Learning for Dance Pose Optimization 
 

ShodhKosh: Journal of Visual and Performing Arts 539 
 

 
3.  PROBLEM FORMULATION AND THEORETICAL FRAMEWORK 
3.1. FORMAL DEFINITION OF DANCE POSE OPTIMIZATION AS A MARKOV DECISION PROCESS 

(MDP) 
Dance pose optimization is defined as Markov Decision Process (MDP) in order to represent the sequential and 

decision-making characteristic of human motion. An MDP can be defined as ⟨ 𝒮𝒮, 𝒜𝒜, 𝒫𝒫, acute, γ ∈ (0,1]) where distinctly 𝒮𝒮 
is the state space, 𝒜𝒜 the action space, 𝒫𝒫 is the state transition dynamics, acute the reward function, and γ is the discount 
factor. In every discrete time t, the agent receives the current state s -n - of the dancer which is the pose and contextual 
motion information, and chooses an action a -n - of the dancer which is an action that alters the pose Izard et al. (2018). 
The dynamics of the environment then changes to a new state’s n 0 with probabilistic dynamics p(s n 0 | s n, a n) which 
represent biomechanical constraints and time continuity. The reward term ar(s n, a n, s n +1) represents several goals 
of interest to dance such as the accuracy of the poses against a reference, balance and smoothness of motion and energy 
efficiency. The agent is trained to maximize the expected cumulative discounted reward to learn a policy: π(a|s) that 
generates sequences of poses optimized over time as opposed to single frames Lugaresi et al. (2019). This formulation 
of MDP, especially in dance, is especially appropriate since it is inherently open to long-horizon optimization to enable 
the agent to take into account the future feasibility of poses and aesthetic flow. It is also through this theoretical framing 
that well-established DRA algorithms can be applied in order to have a principled foundation of learning adaptive and 
expressive policies to control dance pose. 

 
3.2. STATE SPACE REPRESENTATION (JOINT ANGLES, TEMPORAL DYNAMICS, BALANCE 

METRICS) 
The state space is an important element in the dance pose optimization modelling since it determines the data that 

the learning agent possesses at a given time step. According to this, the state vector will be formulated to reflect 
instantaneous pose features as well as the time-varying context. Joint-level kinematic properties of the state (joint angles, 
angular velocities, relative limb orientations) are calculated on a skeletal model. These parameters have a compressed 
but expressive description of the pose configuration of the dancer in the present moment. The state is used to include 
motion history of stacked frames, velocity profiles or recurrent embeddings which condense recent pose transitions 
Grishchenko et al. (2022). This time data is necessary in motion continuity enforcement and avoiding sudden or 
unnatural variations of postures. In the absence of time, the actor can optimize single poses and generate sequences 
which are visually incoherent. Balance and stability signatures also enhance the state representation. These are center 
of mass projection, relationships of support polygons, joint torque estimates and indicators of symmetry. These 
characteristics enable the agent to make reasoning to determine whether the physical movements are feasible or not 
and to be in equilibrium in a dynamic movement. The state space allows the informed decision making by connecting the 
descriptors of kinematics, time, and the balance, which makes the biomechanical realism and the intent to express 
intersect. 

 
3.3. ACTION SPACE DESIGN FOR POSE ADJUSTMENT AND TRANSITION 

The space of action characterizes the way the agent can affect the pose of the dancer in the time, and it is the main 
means of obtaining the smooth and manageable movement. Under the proposed framework, actions are represented as 
continuous valued modification to the joint parameters which may be incremental modification of the joint angles or the 
target joint velocities. Continuous spaces are better than discrete ones, because the moves in dancing are best viewed as 
fine-grained and within transitions that cannot be correctly represented by the crudity of action discretization. Action 
vectors describe synchronized changes in all the joints and allow the agent to learn to move the limbs in sync and not 
separately. In order to maintain biomechanical validity, action limits are place on anatomy-based limits of the joints, and 
the limits of the total angular velocities. These bounds originate impractical or dangerous pose specifications and less 
exploration of impractical corners of the action area. In the case of pose transitions, the design that should be used should 
facilitate temporal smoothness, disliking acceleration or jerk.  
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4. PROPOSED DEEP REINFORCEMENT LEARNING FRAMEWORK 
4.1. OVERALL SYSTEM ARCHITECTURE FOR DRL-BASED DANCE POSE OPTIMIZATION 

The suggested Deep Reinforcement Learning (DRL) framework is structured in the form of a modular and end-to-
end model, which combines the perception, decision-making, and motion execution in the process of dance pose 
optimization. It has a pose acquisition module as an initial part, which derives skeletal representations on motion capture 
data or vision-based pose estimation systems. Such skeletal characteristics will be converted into structured state 
vectors with description of joint kinematics, time context and balance related information. This information on the 
processed state is then inputted into the DRL agent which is the heart decision-maker. The DRA agent is used in an 
environment of simulation or physics-awareness which represents biomechanical limitations and temporal pose 
dynamics. The environment reacts by taking control actions generated by the agent each time step by changing the joint 
configurations, and the environment then responds by changing the pose and providing a reward signal. Multi-objective 
feedback is calculated by using a reward evaluation module that uses pose accuracy, stability, smoothness and energy 
efficiency. This feedback loop interaction is maintained among long sequences, which allows to optimize dance 
movements at long horizons. 

 
4.2. POLICY AND VALUE NETWORK DESIGN (DQN, PPO, SAC, OR ACTOR–CRITIC VARIANTS) 

The learning foundation of the proposed DRL framework is made up of the policy and value networks. Various 
network architectures are used depending on the action space formulation. To compute the action-value functions, Deep 
Q-Networks (DQN) are applied to the discrete or quantized pose adjustments to allow the agent to choose pose 
adjustments with the maximum expected return. Nevertheless, the nature of the dance movements is continuous, and 
therefore, the policy-gradient-based approaches are better. PPO uses an actor-critic architecture, in which the actor 
network provides a stochastic policy of continuous actions, and the critic network computes numbers of the state. The 
concept of Soft Actor Critic (SAC) is also expounded to promote effective exploration by maximizing the expected reward 
and the policy entropy which is favourable to finding a variety of expressive movement patterns. The networks are 
usually 100 percent connected networks extended by time encoders like LSTM or temporal convolution units in order 
to include dynamics of motion. 

 
5. LEARNING STRATEGY AND OPTIMIZATION PROCESS 
5.1. EXPLORATION–EXPLOITATION MECHANISMS IN DANCE POSE LEARNING 

The exploration and exploitation must be balanced in learning the high-quality dance pose control policies since the 
agent should find a variety of possible movement strategies and gradually improve the best behaviors. The exploration 
methods that are promoted in the proposed framework are stochastic policy representations and entropy-based 
regularization, especially when policy-gradient algorithms like PPO and SAC are utilized. These processes enable the 
agent to explore a broad set of pose variations when learning very early in the training process such that it can discover 
both expressive and non-obvious movement patterns that might be absent in reference data. Figure 2 illustrates 
exploration exploitation architecture trade-off between policy learning, policy stability, and policy motion diversity. 

As learning continues to advance, the structure is slowly converted to exploitation as it minimizes exploration noises 
and narrows policy distributions. This shift allows the agent to unify the learned behaviors and produce stable 
aesthetically coherent poses again and again. Sample efficiency is further enhanced by using experience replay and mini-
batch updates that enable the agent to re-use informative transitions as well as prevents the agent to be prematurely 
drawn to suboptimal movement strategies. Biomechanical restrictions and action limits to the space of admissible pose 
adjustments allow preventing excessive and unsafe exploration. 
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Figure 2 

 
Figure 2 Architecture of Exploration–Exploitation Mechanisms in DRL-Based Dance Pose Learning 

 
5.2. CURRICULUM LEARNING FOR PROGRESSIVE POSE COMPLEXITY 

Learning of curriculum is also utilized to deal with the complexity character of the dance movements as well as in 
stabilizing the training of deep reinforcement learning agents. The agent is not presented to full body highly dynamic 
dance sequences immediately, but rather to simple tasks in the beginning of the learning process. Preliminary training 
levels concentrate on poses that are standing or even semi-standing and do not have a great number of joints and 
temporal fluctuation. This helps the agent to gain fundamental balance control and coordination of the joint without 
having to deal with high-dimensional dynamics. The more advanced the performance, the more pose complexity is 
gradually introduced into the curriculum, such as more joints, more extensive range of motions and more time-
dependent Ness. Dynamism, rhythmic movements, partial choreography parts are gradually introduced, which promotes 
the agent to generalise acquired skills to a variety of movement patterns. The degree of difficulty in the tasks is also 
modified dynamically depending on the performance levels such that the agent only progresses when he develops 
adequate competence in each stage. This planned learning approach makes convergence less unstable and fast by 
matching task demand and the changing abilities of the agent. 

 
5.3. REWARD SHAPING AND MULTI-OBJECTIVE OPTIMIZATION 

The design of rewards is central to directing the learning process with meaningful maximization of outcomes of a 
dance pose. The suggested framework utilizes the concept of reward shaping which breaks the overall goal down into 
decipherable units all of which are relevant to a particular aspect of dance quality. These elements are relative precision 
of the pose to a reference or target pose, the smoothness of temporal change between poses, stability in balancing and 
energy efficiency. Reward shaping facilitates learning and reduces sparse reward problems that are usually faced in long-
horizon problems by giving intermediate feedback. Multi-objective optimization is obtained by assigning weights to 
individual terms of the reward to indicate their relative weight. As an example, the reward of stability and safety is 
considered during the initial training and after an agent grows, the rewards of aesthetics and expressiveness are more 
considered. Adaptive weighting schemes also enable the reward system to change with time, such that optimization 
objectives are in step with curriculum development. Regularization terms are also included in an attempt to penalize 
unnatural joint movements, undue acceleration or even anisotropy. 
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6. LIMITATIONS AND FUTURE RESEARCH DIRECTIONS 
6.1. SCALABILITY TO FULL-BODY, LONG-SEQUENCE CHOREOGRAPHY 

Although the suggested framework of the deep reinforcement learning proves to be effective in terms of dance pose 
optimization, it is important to note that extending the framework to full-body and full-sequence choreography is a 
challenge. The number of joints and degrees of freedom increases and the state and action space expand defeating the 
convergence rate and enhancing the complexity of computation. The use of long choreography sequences also create a 
problem in assigning temporal credit, in which the effect of early choices in the pose may not be realized until well into 
the sequence. This complicates learning of policy and leads to the possibility of unstable training. Also, prolonged dance 
moves are commonly associated with the stylistic variations, change of direction, and switching between movement 
motifs. The hierarchical or modular reinforcement learning architectures might need to capture such diversity in one 
policy and add more design complexity. The existing models also can be unable to uphold long-term aesthetic integrity, 
because local pose optimization does not necessarily imply globally consistent choreography. 

 
6.2. REAL-TIME DEPLOYMENT CHALLENGES AND LATENCY CONSTRAINTS 

The practical limitation of real-time deployment of DRL-based systems that perform optimisation in dance pose is 
associated with the latency, computational cost, and system responsiveness. Latencies even as small as these may 
interfere with the natural movement flow and decrease the usefulness of these systems in form of real-time feedback. 
The second difficulty is occasioned by the necessity of precise and low-latency identification of poses. The problem of 
noise, occlusions or frame drop may be experienced in vision-based pose tracking systems, and this can propagate the 
error into the reinforcement learning policy. Of great importance to real-world application is ensuring that it will not be 
affected by such uncertainties. Moreover, running models on edge devices or wearable platforms is a very demanding 
task in terms of memory and power consumption. 

 
6.3. EXTENSION TO MULTIMODAL FEEDBACK (MUSIC, EMOTION, RHYTHM) 

A significant weakness of the existing framework is that it mainly emphasizes the notion of kinematic optimization, 
and pays little attention to the multimodal environment of the context of dance. Dance movements are closely connected 
with music, rhythm, expression and these elements cannot be completely represented using solely the pose-based state 
representations and reward functions. Consequently, the optimized poses can be technically accurate, but not expressive 
in a way that they correspond to musical form or emotional purpose. Multimodal feedbacks also come with added 
problems, namely, representation and synchronization of heterogeneous data streams like audio features, beat structure, 
and affective cues. To implement these modalities into the framework of the reinforcement learning, significant attention 
should be paid to the design of the states and rewards in order to guarantee that movement and the external stimuli are 
meaningfully correlated. The way forward in future study is the use of multimodal reinforcement learning methods that 
would combine motion, audio, and affective cues. Emotion-sensitive reward and rhythm-consistent time limits might 
promote more expressive movements and time-consistent musical movements 

 
7. RESULTS AND PERFORMANCE ANALYSIS 
7.1. QUANTITATIVE PERFORMANCE COMPARISON ACROSS DRL MODELS 

There was quantitative assessment to determine the performance of various DRL methods such as DQN, PPO, SAC, 
and Actor Critic variants on the optimization of dance poses. Measures like accuracy of poses, balance stability, 
smoothness of motion and cumulative reward were measured. The policy-gradient-based approaches always performed 
better than the value-based ones as PPO and SAC converged faster and obtained higher final rewards. SAC proved to be 
more efficient in exploration, resulting in an easier transition and higher energy efficiency and PPO showed more 
consistent training behaviour when trained in varying initialize conditions.  
Table 2 

Table 2 Comparative Performance of DRL Models for Dance Pose Optimization 
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DRL Model Pose Accuracy (%) Motion Smoothness Score Balance Stability (%) Energy Efficiency (%) 

DQN 81.6 0.62 78.4 74.9 

Actor–Critic 86.9 0.71 84.6 81.3 

PPO 91.8 0.83 90.2 87.6 

SAC 93.5 0.88 92.1 89.4 

 
Table 2 is a comparative quantitative analysis of four deep reinforcement learning models DQN, ActorCritic, PPO, 

and SAC trained on the optimization of dance poses to dance on a variety of performance aspects. The findings show that 
there is a definite hierarchy in the performance based on the appropriateness of each algorithm in the continuous control 
tasks.  

Figure 3 

 
Figure 3 Comparison of DRL Model Performance Metrics 

 
DQN has the lowest scores on all of these metrics, with pose accuracy of 81.6% and motion smoothness of 0.62, 

indicating that it has a weakness in operating on continuous, high-dimensional action spaces, which are common to 
human dance movements.  

Figure 4 

 
Figure 4 DRL Model Performance Across Control Dimensions 

 
There is a modest increase in the Actor-Critic model, with 86.9% pose accuracy and improved balance of 84.6% of 

the times, which shows the advantage of policy-value separation in the learning of coordinated motion patterns. PPO 
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further increases performance to 91.8% pose accuracy and smoothness score of 0.83, which implies that the learning 
becomes more stable and the transition of poses is more constant. 

 
7.2. ABLATION STUDY ON REWARD COMPONENTS AND STATE REPRESENTATIONS 

A study that ablated components of rewards and design of the state representation was conducted to determine the 
effect of these two on the performance of learning. The removal of temporal smoothness rewards caused sharp changes 
of poses and a lack of motion coherence, although the poses remained accurate. Omission of balance-related rewards led 
to shaky and physically unsustainable postures. In the same manner, state representations that were simplified and did 
not have time context also resulted in a performance drop since the agent could not foresee future pose feasibility. On 
the contrary, the addition of balance measures and motion history was a significant enhancement of the stability and 
visual quality. The results of these studies indicate that well designed rewards and rich representations of state are vital 
to obtaining strong, expressive, and physically sound optimization of dance poses with the help of DRL. 
Table 3 

Table 3 Impact of Reward and State Ablations on Performance 

Configuration Pose Accuracy (%) Motion Smoothness Score Balance Stability (%) 

Full Model (All Components) 93.5 0.88 92.1 

Without Smoothness Reward 90.1 0.64 91.3 

Without Balance Reward 89.4 0.82 78.6 

Without Temporal State Features 87.2 0.69 84.1 

Kinematics-Only State 84.6 0.61 80.3 

 
Table 3 evaluates the effects of reward design and representation of the state selection on the performance of the 

suggested DRL framework to optimize dance poses. The complete model, a model that integrates all elements of the 
rewards and rich state features, shows the highest overall performance where the pose accuracy value is 93.5, motion 
smoothness of the model is 0.88, and balance stability of the model is 92.1.  

Figure 5 

 
Figure 5 Ablation Analysis: Area Graph of Pose, Smoothness, and Balance Across Configurations 

 
The effectiveness of simultaneous modelling of kinematic, temporal, and balance-related data in a multi-objective 

reward framework was proven by these results. Figure 5 illustrates the effect of components on pose accuracy, 
smoothness and balance stability Eliminating the smoothness reward causes a significant loss of motion smoothness, 
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which drops to 0.64, but pose accuracy does not substantially decrease. Relative performance degradation is indicated 
in figure 6 in the presence of deletion of key elements of DRL. This shows that the smooth transitions do not automatically 
follow and have to be encouraged with the help of incentives.  

Figure 6 

 
Figure 6 Plot of Performance Drop Relative to Full DRL Model 

 
Omitting the balance reward leads to a very large decrease in the balance stability to 78.6, even though the 

smoothness score is not very low, which again demonstrates the importance of stability-conscious rewards in physically 
realistic dance movements. The lack of features of temporal states also further reduces the performance, making pose 
accuracy only 87.2% and smoothness decreased, which proves the significance of motion history in anticipatory control. 

 
8.  CONCLUSION 

In this work, we introduced a fully developed Deep Reinforcement Learning (DRL) model of optimization of dance 
poses, including the multifaceted nature of the interaction between the biomechanical and the temporal and the artistic 
expressiveness. Developed as a Markov Decision Process of the optimization of the dance poses, the proposed solution 
allowed the sequential decision-making process that considers long-horizon dependencies and cumulative quality of 
movements instead of individual pose accuracy. The combination of joint-level kinematics, time dynamics, and balance 
metrics in the state space presented an informative and rich representation of state space learning of stable and 
expressive control policies. By using a systemic analysis of the various DRL protocols such as DQN, PPO, SAC, and the 
actor-critic variants, the outcomes established that policy-gradient-based frameworks are especially practical in 
continuous, high-dimensional optimization of the dance movements. Such models had better convergence stability, 
better pose transitions, and better balance control than value-based baselines. Reward shaping and multi-objective 
optimization was essential in matching the learning goals with both technical and aesthetic movements attributes, and 
curriculum learning was important in enhancing training stability and scalability as the complexity of poses is increased. 
The proposed framework also highly considered the need to combine the pose estimation outputs with kinematic 
constraints to make them physically possible and safe. This constraint-sensitive learning approach eliminated 
impracticable motion artifacts as well as enabled the production of human like dances that could be used in practice. 
Scalability, real-time deployment and multimodal expressiveness issues are still there despite these advancements, 
making significant future research directions. 
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