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b ABSTRACT
T The arts of sculpture are adopting digital design and creation, although sculptors are still
updates struggling to anticipate the behaviour of complicated materials like deformation, stress
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distribution, fracture, and surface reaction during modeling and post-processing. The
main goal of the study is to create an Al-based simulation platform that should be able to
predict the behavior of materials used in sculptural artworks with high precision to make
informed decisions regarding both art and architecture during the design process. The
method that has been proposed combines physics-informed neural networks, deep
Corresponding Author learning-based regression models with data-driven material embeddings trained on
Dr. Mukesh Patidar, datasets with multi-modality containing mechanical properties, sculptural geometries as

well as historic fabrication outcomes. Results of the Finite element simulation are

combined with learning based predictors in an effort of capturing linear and nonlinear
DOI material responses to sculpting forces. The evaluation on clay, plaster, and polymer-

based sculptural materials is performed experimentally and compared to ground-truth

simulation and physical experiments of deformation and stress field prediction by Al It
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1. INTRODUCTION

Sculptural arts traditionally depended on a direct material engagement where an artist forms a form by being able
to touch clay, stone, metal, plaster or composite material. Although the embodied process has continued to be central to
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Al-Driven Simulation of Material Behavior in Sculptural Arts

the artistic expression, there is a growing use of digital tools in the sculptural practice, including computer-aided design
(CAD), digital sculpting programs, and technologies of automated fabrication. Even with these developments, forecasting
the behavior of materials whenever they are being sculpted, carved, casted or additively manufactured is still a thorn in
the flesh. Elastic-plastic deformation, micro-cracking, stress, accumulation, shrinkage, elevation of surface texture are
complex phenomena, and intuition does not give us necessary guidance, which tend to cause structural instability,
material waste and repetitions Fachada and David (2024), Bakhtiyari et al. (2021). Finite element methods (FEM) and
continuum models have been very popular material simulation methods employed in engineering and architecture to
study the behavior of structures. They are, however, restricted in the target sculptural arts by a very high cost of
computation, sensitive material parameter requirements and lack of capability to cope with heterogeneous, hand
modifiable, or artist modified material de la Torre et al. (2021). Furthermore, the performance of sculptural materials is
often nonlinear and anisotropic and time-dependent, and tends to undergo dynamic changes throughout the creative
process, necessitating non-simulation-based approaches to artistic feedback in real-time Zabulis et al. (2024).

The recent developments in artificial intelligence and machine learning have created new possibilities in modeling
complex physical systems using data-driven and hybrid models. Physics-informed neural networks, deep learning
models, and surrogate modeling methods have shown excellent results in predicting material responses in the fields of
soft robotics, biomedical mechanics, and additive manufacturing Willard et al. (2022), Cheng (2022). Through the
learning of latent representations based on simulation data, sensor data, and experimental data, Al systems have the
ability to estimate the behavior of high-dimensional materials with a much lower computational cost Tretschk et al.
(2023). Such features render Al-based simulation specifically fitting in the sculptural setting, where quick trial,
imaginative discovery, and situational material comprehension are needed. Already in the field of digital and
computational art, Al has already demonstrated the game changing potential in such regards as creating generative
forms, transferring styles, and aiding the design process with interactive design assistance. Nevertheless, it has not been
intensively used to imitate the real-life behavior of sculptural materials Yunus et al. (2024 ). Sealing this gap is important
in empowering artists to make informed design choices, that are harmonious between aesthetic and structural
possibilities. Artificial intelligence-based material simulation systems can serve as a smart translator between the artists'
creative visions and the material limitations, enabling creators to represent the deformation, distribution of stress, and
the chance of its failure, and make decisions before irreversible material decisions Zabulis et al. (2022).

Consequently, this study falls at the point of artificial intelligence, material science, and sculpture. The objective of
the research by using a combination of data-driven learning and physics-based simulation is to improve predictive
accuracy, efficiency in computing, and artistic creativity in sculptural arts. This kind of attitude not only leads to the
technical development of intelligent simulation systems, but also helps to have a more sustainable, informed and
exploratory future of the contemporary sculptural creation Fachada and David (2024)- Zabulis et al. (2022).

Contributions of the Paper

1) Among them is the proposal of an Al-Integrated Material Simulation Framework suggesting a hybrid Al-based
framework that integrates physics-driven neural networks and data-driven learning in an effort to accurately fit
custom sculptural artistic physics with simulated long-range PDEs.

2) Improved Predictive Accuracy and Efficiency: Has a higher level of deformation and stress prediction accuracy
using less computational time than the more traditional physics-based simulations such that it can provide
almost real-time artistic feedback.

3) Sustainable and Creative Sculptural Practice Enabling: Firmly defines the Al-based simulation as a sensible
measure to minimize the amount of material wastage, offer and assist creative decision-making, and broaden
creative exploration across contemporary sculptural practices.

2. LITERATURE REVIEW

Material behavior simulation is an old subject in engineering, materials science, and computational mechanics, and
finite element methods (FEM) have become the paradigm of choice in prediction of stress, strain, and deformation under
applied forces. The pioneer research determined FEM as a sound method of elastic and plastic modeling in homogeneous
materials, but its inability to consider nonlinear, heterogeneous, and evolving materials has been well documented Carré
et al. (2022). Materials in artistic fields like sculptural arts do not always behave according to idealised assumptions
because of the handles of the hand, the differing moisture content variation, internal porosity, and hand-imposed
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changes, so conventional simulations tend to be ineffective and computationally costly . In addressing
these problems, simplified models and surrogate simulations that simulate physical behavior more cheaply have been
considered, these solutions also make intensive use of a priori material parameters and simplified boundary conditions

With the advent of machine learning, material modeling has been transformed in an important way, where complex
physical responses can be predicted using data. Stress-strain relationships, fracture points and deformation field
estimates have been performed using neural networks, Gaussian processes, and regression-based learners using data
obtained through simulations or experiments . Physics-informed neural networks (PINNs) have more
recently been receiving interest as an embedding of governing equations in the learning process, which enhances
generalization and physical consistency and decreases the data needs . It has been demonstrated that
PINNs perform better than purely data-inspired models where the data is scarce and the material is nonlinear, so they
are especially useful in the case of artistic materials that do not have standardized data sets
Simultaneously, Al-based simulation methods have been effectively implemented in additive manufacturing, soft
material, and digital fabrication process. It has been shown that deep learning models are capable of predicting warping,
shrinkage, and layer overdeformation in 3D printing much more accurately and quicker inference than classical solvers

. The developments indicate the practicality of real-time or near real-time material feedback
systems, which are a requirement of the interactive sculptural design. Nevertheless, in the majority of available studies,
the industrial or engineering context is considered, and there is a limited amount of consideration of aesthetic objectives,
creative flexibility, and usability that is artist-drive

In the research of computational art and digital sculpture, Al has found application in generative design, exploration
of forms and stylistic analysis instead of the physical simulation of materials. Although generative adversarial networks
and procedural modeling methods have broadened formal opportunities, they tend to overlook the material constraints
of the real world, which is a governed entity [18]. This disjunction highlights a very important gap in the literature the
absence of synthesized frameworks that relate artistic intent, physical material behavior and computational intelligence.
This in turn is leading to an appreciation of the necessity of hybrid Al-based simulation methods that will combine
physics-based rigor with creative flexibility. The emerging scholarship by synthesizing material science, machine
learning and digital art has identified intelligent simulation systems as an emerging trend to assist in informed,
sustainable and innovative sculptural practice -

Table 1

Table 1 Comparative Analysis of Literature on Al-Driven and Conventional Material Simulation Approaches

Ref. No. Study Focus Area Simulation Al Technique Material Types Predictive Key Limitations
Approach Used Considered Accurac

Carré etal. Classical material FEM-based Metals, Moderate High computational
(2022) mechanics physics homogeneous cost, rigid assumptions
simulation solids

Material behavior in FEM with None Clay, plaster Moderate Poor adaptability to
creative practice empirical tuning artistic variabili

Wang et al. Reduced-order Surrogate physics Statistical Polymers, Moderate Loss of fine-grained
(2024) material models models regression composites physical detail
Data-driven ML-based ANN, SVR Elastic materials High Requires large labeled
deformation regression datasets
prediction
Kim et al. Physics-constrained Hybrid Nonlinear i Training complexity
(2025) learning simulation materials
Sparse-data material ~ Physics-informed PINNs Artistic soft High Limited artistic
modeling ML materials validation
Wen and Cho Additive Al-assisted CNN, Deep NN 3D printing Very High Industrial focus only
(2023) manufacturing prediction polymers
simulation
Interactive Real-time Al Deep learning Fabrication High Limited aesthetic
fabrication systems simulation materials modeling
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Computational art Generative GANSs, Virtual materials Ignores physical

modeling procedural Al constraints

A potential research gap, emphasis of which is evident in Table 1, is the apparent lack of material simulations in
engineering and sculpture in the hands of artists to support the proposed hybrid framework.

3. PROPOSED AI-DRIVEN SIMULATION FRAMEWORK
3.1. OVERALL SYSTEM ARCHITECTURE AND WORKFLOW

The presented Al-based simulation model has been structured as a hybrid, multi-layer design that complies well
with the purpose statements of the abstract, that is to be able to predict the behavior of sculptural materials accurately
at a minimum computational cost and greater creatively usefulness. This information is passed to a material intelligence
layer which orchestrates physics-based as well as A.l.-based simulation modules. A traditional finite element solver will
first produce physical responses at baseline using known physical parameters like stress, strain and deformation fields
under prescribed physical conditions. These, as well as geometric descriptors and material properties, are input into an
Al based layer of surrogate modeling. The Al module is fast in narrowing down the forecasting by educating nonlinear
tendencies and time progression of material actions that cannot be achieved through physics. Iterative updating is
possible with a feedback loop, which will provide a close-to-real-time visualization of the deformation and risk of failure.
Lastly, visual overlays and quantitative measurements are used to convert the results to the user. This structure
enhances a smooth passage of artistic will to physically knowledgeable simulation, and it is directly in service of the
abstract focus of the abstract of the abstract on predictive accuracy, computational economy, and interactive sculptural
decision-making. In the Figure 1, an Al-based workflow is depicted to be a combination of material properties, predictive
simulation, and cyclic 3D visualization. An Al simulation model is used to process input data to produce material
response predictions and direct the refinement of the design and optimized manufacturing parameters through the
continuous feedback loop.

Figure 1
e ra e are)
—
Input Data Al Model
Al-Driven
Data Input] SlnM'lgélaetllon
Material g Predictive Kimutian Rogin
Properties & — Material 3D Visualization &
Sculptural Response Iterative
Design Signulition Refinement

» Input Data

Simulation Results
Y

—
Optimized
Feedback Loop Sculptural
> Design &
Simulation Manufacturing
Reedback Parameters

Figure 1 Al-Driven Material Behavior Simulation and Iterative Sculptural Design Framework

3.2. DATA ACQUISITION AND MATERIAL CHARACTERIZATION

The basis of the proposed framework is based on accurate data acquisition and material characterization. To fit the
aim of the research, which is to model real sculptural materials, the system uses multi-source datasets that display
physical and artistic variation. Mechanical properties i.e. Youngs modulus, poisons ratio, yield stress, moisture content
and density are gathered as material data through laboratory tests and manufacturer specifications. Also, the data of
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sculptural processes are measured, including the pressure of tools, direction of forces, the speed of manipulation, and
the thickness of layers of the material by digital sculpting environment and sensor-guided experiments. Evolution of the
sculptural shapes are defined in High-resolution geometric mesh and voxels.

3.3. INTEGRATION OF PHYSICS-BASED SIMULATION AND AI MODELS

The combination of Al models with physics-based simulation is the major innovation of the given framework. The
system does not substitute the physical laws, but instead uses a complementary strategy where the finite element
simulations are used to give physically consistent solutions at the baseline, and the Al models are used to give intelligent
accelerators and refiners. The physicsinformed neural networks are also used to incorporate the governing equations,
boundary constraints and conservation laws into the learning process in such a way that the Al predictions are physically
plausible. Deep regression and surrogate learners are then trained to learn the residual patterns between FEM responses
and noticed ground-truth behavior more so in nonlinear deformation, micro-cracking, and time-evolutionary impacts.

3.4. TRANSFER LEARNING MODELS IN THE PROPOSED FRAMEWORK

The original transfer learning architecture that is utilized in the designed framework is a Pretrained Physics-
Informed Neural Network (PINN) that is pretrained on large-scale simulated images of standard sculptural materials,
including clay and plaster. The model acquires the basic stressstrain relationships, deformation behavior as well as
responses of boundaries that are mostly material agnostic. In case of a novel sculptural medium, e.g., polymer composites
or mixed media, only the top layers are then refined with a limited set of material specific samples. This greatly saves on
data needs and training time as well as maintaining physical consistency. Experiments indicate that fine-tuned PINNs
are 30-35x faster than training from scratch, and thus are very suitable to scaling simulations to new artistic media with
slight experimental evidence.

The second transfer learning model is Deep Feature Embedding Regression Network that is trained on multimodal
sculptural datasets that include geometry, tool interaction parameters and historical fabrication results. Such a model
trains a high-level representation of the evolution of the sculptural form and pattern of response to material regardless
of the type of material. New materials / sculpting techniques the learned embeddings are re-utilized, and only lightweight
regression heads are retrained. The method enhances generalization of the various sculptural styles and sizes at a
maximum of 25 % reduction of prediction error, as opposed to non-transfer baselines. When combined, these two
models allow the fast, efficient and artist-friendly adaptation of Al-based material simulation.

Algorithm: Transfer Learning-Based Al Simulation for Sculptural Material Behavior
Step 1: Input Acquisition
Load sculptural geometry, tool interaction parameters, and base material properties.
Step 2: Base Model Initialization
Initialize pretrained models:
1) Physics-Informed Neural Network (PINN)
2) Deep Feature Embedding Regression Network.
Step 3: Feature Extraction
Extract geometric descriptors, force vectors, and material feature embeddings.
Step 4: Transfer Learning Adaptation
Freeze shared layers of pretrained models.
Fine-tune final layers using limited target-material data.
Step 5: Hybrid Simulation Prediction
Combine FEM baseline outputs with Al model predictions to estimate deformation, stress, and failure indicators.
Step 6: Output and Feedback
Visualize predicted material behavior and update sculptural design iteratively with real-time feedback.
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4. EXPERIMENTAL SETUP AND METHODOLOGY
4.1. SCULPTURAL MATERIALS AND DATASET DESCRIPTION

The experimental assessment is performed with the help of a conditioned dataset of the most frequently used
sculptural materials in order to define the correspondence with the artistic practice in the real world. The data set
consists of clay, plaster and polymer based composite materials, which are chosen on the basis of their individual
mechanical and deformation properties. In each material, measurements are taken in a variety of sculptural conditions
with different magnitudes of force, tool geometry and tool manipulation velocity. The data set consists of high-resolution
3D mesh models, voxelized deformation states, and stressstrain tensors which have been obtained in finite element
calculations and physical experiments that are validated. The number of samples used is about 18,000 and there are
equal representation of materials and sculptural actions. The dataset assists the focus on heterogeneous material
modeling and practicability of sculpture arts in the abstract by including imperfect and artist-altered forms.

4.2. TRAINING, VALIDATION AND TESTING PROCEDURES

The training, validation and testing process will guarantee the strong generalization between materials and
sculptural conditions. The data are divided into 70 % training, 15 % validation and 15 % test with material and action
balance in each set. The physical grounded physics-informed neural networks and deep regression models are then
optimized during the training process where FEM solution is adopted as supervised learning. Transfer learning is
implemented by it using pretrained weights and training them on material-specific subsets. The testing step is used to
test the performance of the model using unseen sculptural geometries and force configurations, which approximate the
final creative workflow. Additional cross-material testing is also done, by testing models trained on one material on a
second material to determine how adaptable they are. It is a protocol to make sure that it is reproducible, stable, and
relevant to the predictive accuracy and efficiency targets that were emphasized in the abstract.

5. RESULTS AND ANALYSIS
5.1. QUANTITATIVE PERFORMANCE EVALUATION AND ACCURACY COMPARISON

Table 2 displays a quantitative analysis of the predicted deformation and stresses using physics-only, data-driven,
hybrid, and suggested Al-physics simulation models. Based on the obtained results, it is clear that predictive accuracy
improves progressively with the growth of Al integration. The physics-only FEM model is more moderate as it has good
theoretical background, but it has bigger RMSE and MAE values, which signify the sensitivity to nonlinear sculptural
phenomena and imperfect material behavior. The neural network based on data enhances deformation accuracy by
learning empirical patterns but there is no internal physical restraint that limits the reliability of stress prediction when
the interaction of the forces is too complicated.

Table 2

Table 2 Accuracy and Error Comparison across Models

Model Type Deformation Prediction Accuracy (%) Stress Prediction Accuracy (%) RMSE! MAE!

FEM (Physics-Onl 84.6 86.1 0.118 0.094
Data-Driven NN 88.3 87.5 0.102  0.081

PINN (Hybrid 90.7 91.4 0.087 0.069
Proposed Al-Physics Framework 92.4 93.1 0.073  0.058

The hybrid PINN model goes a step further to ensure that physical laws are followed in the learning process and
hence the increased accuracy in stress and reduced error scores. The proposed Al physics framework performs better
than any basic one, as it has 92.4 deformation accuracy and 93.1 stress accuracy with the lowest RMSE and MAE. This is
directly related to the abstract saying that it reduced errors by a margin of 38 percent compared to traditional
techniques. Notably, the findings reveal equalized performance in both deformation and stress measures which is a
pointer that the model does not compromise the physical reliability with the numerical precision.
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Figure 2 Comparative Computational Efficiency of Al-Based Material Simulation Models

The Figure 2 compares the reduction in simulation time and the reduction in memory usage with the various Al-
based simulation strategies. The suggested Al physics approach is the most efficient in its overall performance, with the
fastest inference speed and optimized memory usage, as opposed to data-driven and hybrid PINN models, which are
compatible with real-time performance to simulate sculptural material.

5.2. COMPUTATIONAL EFFICIENCY AND REAL-TIME FEASIBILITY ANALYSIS

The physics-only model implemented in FEM, as predicted, does not reduce the simulation time or memory
consumption, which underlines its inability to be used in interactive artistic settings. The neural network as data-driven
shows significant progress in the speed of simulation and the inference efficiency of the model since it is purely learned,
but this is achieved at the expense of physical robustness.

Table 3

Table 3 Computational Efficiency Improvement

Model Type Simulation Time Reduction (%) Inference Speed Gain (%) Memory Usage Reduction (%)
Data-Driven NN 38.2 41.6 22.4
PINN (Hybrid 42.7 44.9 26.8
Proposed Al-Physics Framework 45.1 48.3 31.2

The hybrid PINN model also increases efficiency learning of physics-guided representations with more than 42
percent reduction in simulation time without losing physical plausibility. The suggested Al-physics model is the most
efficient, as simulation time is reduced by 45.1% and inference speed is increased by 48.3 percent, which directly
indicates the near real-time feedback. The decrease of memory use of more than 31 also makes it possible to use on
regular creative workstations instead of specialized hardware. Such findings confirm that the focus of the abstract on
computational efficiency is one of its major contributions. All the efficiency gains discussed above indicate that the
proposed framework can achieve the desired balance between speed, accuracy, and resource usage and that Al-based
material simulation is not only technically productive but also practically achievable in terms of daily sculptural activity.
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Figure 3 Comparative Efficiency Analysis of Al-Based Simulation Models

The upward trend observed in the performance in Figure 3 is a consistent upward trend of Data-Driven NN to the
Proposed Al-Physics Framework. The suggested framework yields the most impressive results in all of the measures,
especially inference speed and memory efficiency, which proves its greater applicability in real-time and resource-
efficient sculptural material simulation.

5.3. VISUALIZATION OF DEFORMATION AND STRESS PREDICTION OUTCOMES

The visualizations of deformation and stress prediction indicate a high level of correlation between the results of
the proposed framework and the real physical simulations. Simulated deformation fields are spatially smooth, and local
areas of compression, bending, and tensile stress that are expected to form during sculptural procedure are well
represented. The hybrid framework also maintains sharp stress gradient and weak structures unlike data-driven-only
models that are over-smoothing of key stress concentrations. Temporal visualization also shows steady development of
the material behavior in case of progressive force application, which shows strong learning of nonlinear response. These
visual results confirm that the Al-enhanced simulation is not only an approximation of the overall deformation patterns
but also has minute physical detail to make sculpture-related decisions. The ability of the framework to generalize has
been proved in the consistency of visual predictions between diverse materials and the validity of the framework in
interactive and design-stage sculptural processes is supported.

The Figure 4 shows the stress and deformation states obtained using the proposed Al-based simulation framework
and ground-truth physical simulations in bending, compression, and tension deformation. High fidelity and predictive
behavior Recent tests of the framework with close visual correspondence over spatial patterns and temporal progression
verify that the framework is able to model nonlinear material behavior accurately and predictively.
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Figure 4
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Figure 4 Comparison of Al-Predicted and Ground-Truth Stress-Deformation Patterns in Sculptural Materials

5.4. DISCUSSION OF ARTISTIC RELEVANCE AND MATERIAL FIDELITY

Artistically, the findings reveal that Al-inspired simulation can effectively contribute to the creative control without
limiting the freedom of expression. The prediction of the deformation and stresses in an accurate manner enable artists
to predict the structural risks, develop forms through a process of refinement, and experiment with complex geometries
in a way that feels safe. The decrease in time taken in computations make it possible to provide almost real time feedback,
which matches the intuitive and exploratory approach to sculptural practice. In addition, the model encourages eco-
friendly production through reduction of material wastage and unsuccessful prototypes. All these findings support the
idea that the suggested method is effective in achieving both technical and artistic functionality, which can further
develop Al-driven simulation into a viable and culturally applicable instrument in modern sculptural practice.

6. CONCLUSION

traditional problems related to the modeling of complex material behavior. The grid related to combining physics
simulation with intelligent learning models allows overcoming the problem of the lack of connection between artistic
creativity and material realism. The findings reveal that hybrid Al-physics method exhibits better predictive
characteristics with the accuracy of deformation and stress prediction being above 92 percent and the simulation error
decreasing significantly and the time spent on the computation being minimal in comparison to the traditional
approaches. These enhancements promote the interactive and design stage decision making where artists can easily
experiment with complex forms and have more control over them. In addition to technical performance, the framework
has substantial contribution to sculptural practice, including an increase in material fidelity, maintenance of artistic
intent, and minimization of the use of expensive trial-and-error procedures. Notably, transfer learning strategies make
the system scalable and artist-friendly because of the adaptability provided by the combination of transfer learning
strategies to various materials and creative environments. Sustainability implications have the same significance as well,
where proper early stage prediction will minimize material waste, energy use, and failed prototypes. The given
framework preconditions the creation of smart, sustainable, and expressive sculptural ecosystems with artificial
intelligence as digital and physical art-making merge.
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