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ABSTRACT 
The arts of sculpture are adopting digital design and creation, although sculptors are still 
struggling to anticipate the behaviour of complicated materials like deformation, stress 
distribution, fracture, and surface reaction during modeling and post-processing. The 
main goal of the study is to create an AI-based simulation platform that should be able to 
predict the behavior of materials used in sculptural artworks with high precision to make 
informed decisions regarding both art and architecture during the design process. The 
method that has been proposed combines physics-informed neural networks, deep 
learning-based regression models with data-driven material embeddings trained on 
datasets with multi-modality containing mechanical properties, sculptural geometries as 
well as historic fabrication outcomes. Results of the Finite element simulation are 
combined with learning based predictors in an effort of capturing linear and nonlinear 
material responses to sculpting forces. The evaluation on clay, plaster, and polymer-
based sculptural materials is performed experimentally and compared to ground-truth 
simulation and physical experiments of deformation and stress field prediction by AI. It 
has been found that the suggested framework reaches a median prediction accuracy of 
92.4% on deformation prediction, and the decrease in simulation error (RMSE) is 38 
percent smaller than that of traditional physics-only models. Also, theoretical time is cut 
down by about 45 percent, which means that artists can get close to real-time responses. 
The results reveal the opportunities of the creative control, material waste reduction, and 
the support of creative sculptural methods by AI-based material simulation, making 
intelligent simulation one of the primary support tools in the future of digital and physical 
sculpture. 
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1. INTRODUCTION
Sculptural arts traditionally depended on a direct material engagement where an artist forms a form by being able

to touch clay, stone, metal, plaster or composite material. Although the embodied process has continued to be central to 

P3#y P3#y P3#y3 P3#y4 P3#y5

P3#y6

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh
https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh
https://doi.org/10.29121/granthaalayah.v9.i6.2021.3923
https://dx.doi.org/10.29121/granthaalayah.v10.i3.2022.4503
https://dx.doi.org/10.29121/shodhkosh.v6.i5s.2025.6897
mailto:mukesh.patidar34885@paruluniversity.ac.in
mailto:mukesh.patidar34885@paruluniversity.ac.in
https://dx.doi.org/10.29121/shodhkosh.v6.i5s.2025.6897
https://dx.doi.org/10.29121/shodhkosh.v6.i5s.2025.6897
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-4401-8777
https://orcid.org/0009-0009-1179-7899
https://orcid.org/0009-0004-9791-2416
https://orcid.org/0000-0001-8328-3808
https://crossmark.crossref.org/dialog/?doi=10.29121/shodhkosh.v6.i5s.2025.6897&domain=pdf&date_stamp=2025-12-28
mailto:mukesh.patidar34885@paruluniversity.ac.in
mailto:om.prakash@niu.edu.in
mailto:gopal.goyal@vgu.ac.in
mailto:suhas.gupta.orp@chitkara.edu.in
mailto:anupama.deshpande1@vit.edu
mailto:m.mahe05@gmail.com


AI-Driven Simulation of Material Behavior in Sculptural Arts 
 

ShodhKosh: Journal of Visual and Performing Arts 352 
 

the artistic expression, there is a growing use of digital tools in the sculptural practice, including computer-aided design 
(CAD), digital sculpting programs, and technologies of automated fabrication. Even with these developments, forecasting 
the behavior of materials whenever they are being sculpted, carved, casted or additively manufactured is still a thorn in 
the flesh. Elastic-plastic deformation, micro-cracking, stress, accumulation, shrinkage, elevation of surface texture are 
complex phenomena, and intuition does not give us necessary guidance, which tend to cause structural instability, 
material waste and repetitions Fachada and David (2024), Bakhtiyari et al. (2021). Finite element methods (FEM) and 
continuum models have been very popular material simulation methods employed in engineering and architecture to 
study the behavior of structures. They are, however, restricted in the target sculptural arts by a very high cost of 
computation, sensitive material parameter requirements and lack of capability to cope with heterogeneous, hand 
modifiable, or artist modified material de la Torre et al. (2021). Furthermore, the performance of sculptural materials is 
often nonlinear and anisotropic and time-dependent, and tends to undergo dynamic changes throughout the creative 
process, necessitating non-simulation-based approaches to artistic feedback in real-time Zabulis et al. (2024). 

The recent developments in artificial intelligence and machine learning have created new possibilities in modeling 
complex physical systems using data-driven and hybrid models. Physics-informed neural networks, deep learning 
models, and surrogate modeling methods have shown excellent results in predicting material responses in the fields of 
soft robotics, biomedical mechanics, and additive manufacturing Willard et al. (2022), Cheng (2022). Through the 
learning of latent representations based on simulation data, sensor data, and experimental data, AI systems have the 
ability to estimate the behavior of high-dimensional materials with a much lower computational cost Tretschk et al. 
(2023). Such features render AI-based simulation specifically fitting in the sculptural setting, where quick trial, 
imaginative discovery, and situational material comprehension are needed. Already in the field of digital and 
computational art, AI has already demonstrated the game changing potential in such regards as creating generative 
forms, transferring styles, and aiding the design process with interactive design assistance. Nevertheless, it has not been 
intensively used to imitate the real-life behavior of sculptural materials Yunus et al. (2024). Sealing this gap is important 
in empowering artists to make informed design choices, that are harmonious between aesthetic and structural 
possibilities. Artificial intelligence-based material simulation systems can serve as a smart translator between the artists' 
creative visions and the material limitations, enabling creators to represent the deformation, distribution of stress, and 
the chance of its failure, and make decisions before irreversible material decisions Zabulis et al. (2022). 

Consequently, this study falls at the point of artificial intelligence, material science, and sculpture. The objective of 
the research by using a combination of data-driven learning and physics-based simulation is to improve predictive 
accuracy, efficiency in computing, and artistic creativity in sculptural arts. This kind of attitude not only leads to the 
technical development of intelligent simulation systems, but also helps to have a more sustainable, informed and 
exploratory future of the contemporary sculptural creation Fachada and David (2024)- Zabulis et al. (2022). 

Contributions of the Paper 
1) Among them is the proposal of an AI-Integrated Material Simulation Framework suggesting a hybrid AI-based 

framework that integrates physics-driven neural networks and data-driven learning in an effort to accurately fit 
custom sculptural artistic physics with simulated long-range PDEs. 

2) Improved Predictive Accuracy and Efficiency: Has a higher level of deformation and stress prediction accuracy 
using less computational time than the more traditional physics-based simulations such that it can provide 
almost real-time artistic feedback. 

3) Sustainable and Creative Sculptural Practice Enabling: Firmly defines the AI-based simulation as a sensible 
measure to minimize the amount of material wastage, offer and assist creative decision-making, and broaden 
creative exploration across contemporary sculptural practices. 

 
2. LITERATURE REVIEW 

Material behavior simulation is an old subject in engineering, materials science, and computational mechanics, and 
finite element methods (FEM) have become the paradigm of choice in prediction of stress, strain, and deformation under 
applied forces. The pioneer research determined FEM as a sound method of elastic and plastic modeling in homogeneous 
materials, but its inability to consider nonlinear, heterogeneous, and evolving materials has been well documented Carré 
et al. (2022). Materials in artistic fields like sculptural arts do not always behave according to idealised assumptions 
because of the handles of the hand, the differing moisture content variation, internal porosity, and hand-imposed 
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changes, so conventional simulations tend to be ineffective and computationally costly Shih et al. (2025). In addressing 
these problems, simplified models and surrogate simulations that simulate physical behavior more cheaply have been 
considered, these solutions also make intensive use of a priori material parameters and simplified boundary conditions 
Wang et al. (2024). 

With the advent of machine learning, material modeling has been transformed in an important way, where complex 
physical responses can be predicted using data. Stress-strain relationships, fracture points and deformation field 
estimates have been performed using neural networks, Gaussian processes, and regression-based learners using data 
obtained through simulations or experiments Peng et al. (2025). Physics-informed neural networks (PINNs) have more 
recently been receiving interest as an embedding of governing equations in the learning process, which enhances 
generalization and physical consistency and decreases the data needs Kim et al. (2025). It has been demonstrated that 
PINNs perform better than purely data-inspired models where the data is scarce and the material is nonlinear, so they 
are especially useful in the case of artistic materials that do not have standardized data sets Fathallah et al. (2024). 
Simultaneously, AI-based simulation methods have been effectively implemented in additive manufacturing, soft 
material, and digital fabrication process. It has been shown that deep learning models are capable of predicting warping, 
shrinkage, and layer overdeformation in 3D printing much more accurately and quicker inference than classical solvers 
Wen and Cho (2023). The developments indicate the practicality of real-time or near real-time material feedback 
systems, which are a requirement of the interactive sculptural design. Nevertheless, in the majority of available studies, 
the industrial or engineering context is considered, and there is a limited amount of consideration of aesthetic objectives, 
creative flexibility, and usability that is artist-drive Dundar et al. (2025). 

In the research of computational art and digital sculpture, AI has found application in generative design, exploration 
of forms and stylistic analysis instead of the physical simulation of materials. Although generative adversarial networks 
and procedural modeling methods have broadened formal opportunities, they tend to overlook the material constraints 
of the real world, which is a governed entity [18]. This disjunction highlights a very important gap in the literature the 
absence of synthesized frameworks that relate artistic intent, physical material behavior and computational intelligence. 
This in turn is leading to an appreciation of the necessity of hybrid AI-based simulation methods that will combine 
physics-based rigor with creative flexibility. The emerging scholarship by synthesizing material science, machine 
learning and digital art has identified intelligent simulation systems as an emerging trend to assist in informed, 
sustainable and innovative sculptural practice Carré et al. (2022)- Deng et al. (2025). 
Table 1 

Table 1 Comparative Analysis of Literature on AI-Driven and Conventional Material Simulation Approaches 

Ref. No. Study Focus Area Simulation 
Approach 

AI Technique 
Used 

Material Types 
Considered 

Predictive 
Accuracy 

Key Limitations 

Carré et al. 
(2022) 

Classical material 
mechanics 

FEM-based 
physics 

simulation 

None Metals, 
homogeneous 

solids 

Moderate High computational 
cost, rigid assumptions 

Shih (2025) Material behavior in 
creative practice 

FEM with 
empirical tuning 

None Clay, plaster Moderate Poor adaptability to 
artistic variability 

Wang et al. 
(2024) 

Reduced-order 
material models 

Surrogate physics 
models 

Statistical 
regression 

Polymers, 
composites 

Moderate Loss of fine-grained 
physical detail 

Peng et al. 
(2025) 

Data-driven 
deformation 
prediction 

ML-based 
regression 

ANN, SVR Elastic materials High Requires large labeled 
datasets 

Kim et al. 
(2025) 

Physics-constrained 
learning 

Hybrid 
simulation 

PINNs Nonlinear 
materials 

High Training complexity 

Fathallah et 
al. (2024) 

Sparse-data material 
modeling 

Physics-informed 
ML 

PINNs Artistic soft 
materials 

High Limited artistic 
validation 

Wen and Cho 
(2023) 

Additive 
manufacturing 

simulation 

AI-assisted 
prediction 

CNN, Deep NN 3D printing 
polymers 

Very High Industrial focus only 

Dundar et al. 
(2025) 

Interactive 
fabrication systems 

Real-time AI 
simulation 

Deep learning Fabrication 
materials 

High Limited aesthetic 
modeling 
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Deng et al. 
(2025) 

Computational art 
and sculpture 

Generative 
modeling 

GANs, 
procedural AI 

Virtual materials Low Ignores physical 
constraints 

 
A potential research gap, emphasis of which is evident in Table 1, is the apparent lack of material simulations in 

engineering and sculpture in the hands of artists to support the proposed hybrid framework. 
 
3. PROPOSED AI-DRIVEN SIMULATION FRAMEWORK 
3.1. OVERALL SYSTEM ARCHITECTURE AND WORKFLOW 

The presented AI-based simulation model has been structured as a hybrid, multi-layer design that complies well 
with the purpose statements of the abstract, that is to be able to predict the behavior of sculptural materials accurately 
at a minimum computational cost and greater creatively usefulness. This information is passed to a material intelligence 
layer which orchestrates physics-based as well as A.I.-based simulation modules. A traditional finite element solver will 
first produce physical responses at baseline using known physical parameters like stress, strain and deformation fields 
under prescribed physical conditions. These, as well as geometric descriptors and material properties, are input into an 
AI based layer of surrogate modeling. The AI module is fast in narrowing down the forecasting by educating nonlinear 
tendencies and time progression of material actions that cannot be achieved through physics. Iterative updating is 
possible with a feedback loop, which will provide a close-to-real-time visualization of the deformation and risk of failure. 
Lastly, visual overlays and quantitative measurements are used to convert the results to the user. This structure 
enhances a smooth passage of artistic will to physically knowledgeable simulation, and it is directly in service of the 
abstract focus of the abstract of the abstract on predictive accuracy, computational economy, and interactive sculptural 
decision-making. In the Figure 1, an AI-based workflow is depicted to be a combination of material properties, predictive 
simulation, and cyclic 3D visualization. An AI simulation model is used to process input data to produce material 
response predictions and direct the refinement of the design and optimized manufacturing parameters through the 
continuous feedback loop. 

 Figure 1 

 
Figure 1 AI-Driven Material Behavior Simulation and Iterative Sculptural Design Framework 

 
3.2. DATA ACQUISITION AND MATERIAL CHARACTERIZATION 

The basis of the proposed framework is based on accurate data acquisition and material characterization. To fit the 
aim of the research, which is to model real sculptural materials, the system uses multi-source datasets that display 
physical and artistic variation. Mechanical properties i.e. Youngs modulus, poisons ratio, yield stress, moisture content 
and density are gathered as material data through laboratory tests and manufacturer specifications. Also, the data of 
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sculptural processes are measured, including the pressure of tools, direction of forces, the speed of manipulation, and 
the thickness of layers of the material by digital sculpting environment and sensor-guided experiments. Evolution of the 
sculptural shapes are defined in High-resolution geometric mesh and voxels. 
 
3.3. INTEGRATION OF PHYSICS-BASED SIMULATION AND AI MODELS 

The combination of AI models with physics-based simulation is the major innovation of the given framework. The 
system does not substitute the physical laws, but instead uses a complementary strategy where the finite element 
simulations are used to give physically consistent solutions at the baseline, and the AI models are used to give intelligent 
accelerators and refiners. The physicsinformed neural networks are also used to incorporate the governing equations, 
boundary constraints and conservation laws into the learning process in such a way that the AI predictions are physically 
plausible. Deep regression and surrogate learners are then trained to learn the residual patterns between FEM responses 
and noticed ground-truth behavior more so in nonlinear deformation, micro-cracking, and time-evolutionary impacts. 
 
3.4. TRANSFER LEARNING MODELS IN THE PROPOSED FRAMEWORK 

The original transfer learning architecture that is utilized in the designed framework is a Pretrained Physics-
Informed Neural Network (PINN) that is pretrained on large-scale simulated images of standard sculptural materials, 
including clay and plaster. The model acquires the basic stressstrain relationships, deformation behavior as well as 
responses of boundaries that are mostly material agnostic. In case of a novel sculptural medium, e.g., polymer composites 
or mixed media, only the top layers are then refined with a limited set of material specific samples. This greatly saves on 
data needs and training time as well as maintaining physical consistency. Experiments indicate that fine-tuned PINNs 
are 30-35x faster than training from scratch, and thus are very suitable to scaling simulations to new artistic media with 
slight experimental evidence. 

The second transfer learning model is Deep Feature Embedding Regression Network that is trained on multimodal 
sculptural datasets that include geometry, tool interaction parameters and historical fabrication results. Such a model 
trains a high-level representation of the evolution of the sculptural form and pattern of response to material regardless 
of the type of material. New materials / sculpting techniques the learned embeddings are re-utilized, and only lightweight 
regression heads are retrained. The method enhances generalization of the various sculptural styles and sizes at a 
maximum of 25 % reduction of prediction error, as opposed to non-transfer baselines. When combined, these two 
models allow the fast, efficient and artist-friendly adaptation of AI-based material simulation. 

Algorithm: Transfer Learning–Based AI Simulation for Sculptural Material Behavior 
Step 1: Input Acquisition 
        Load sculptural geometry, tool interaction parameters, and base material properties. 
Step 2: Base Model Initialization 
        Initialize pretrained models: 

1) Physics-Informed Neural Network (PINN) 
2) Deep Feature Embedding Regression Network. 

Step 3: Feature Extraction 
        Extract geometric descriptors, force vectors, and material feature embeddings. 
Step 4: Transfer Learning Adaptation 
        Freeze shared layers of pretrained models. 
        Fine-tune final layers using limited target-material data. 
Step 5: Hybrid Simulation Prediction 
        Combine FEM baseline outputs with AI model predictions to estimate deformation, stress, and failure indicators. 
Step 6: Output and Feedback 
        Visualize predicted material behavior and update sculptural design iteratively with real-time feedback. 
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4. EXPERIMENTAL SETUP AND METHODOLOGY 
4.1. SCULPTURAL MATERIALS AND DATASET DESCRIPTION 

The experimental assessment is performed with the help of a conditioned dataset of the most frequently used 
sculptural materials in order to define the correspondence with the artistic practice in the real world. The data set 
consists of clay, plaster and polymer based composite materials, which are chosen on the basis of their individual 
mechanical and deformation properties. In each material, measurements are taken in a variety of sculptural conditions 
with different magnitudes of force, tool geometry and tool manipulation velocity. The data set consists of high-resolution 
3D mesh models, voxelized deformation states, and stressstrain tensors which have been obtained in finite element 
calculations and physical experiments that are validated. The number of samples used is about 18,000 and there are 
equal representation of materials and sculptural actions. The dataset assists the focus on heterogeneous material 
modeling and practicability of sculpture arts in the abstract by including imperfect and artist-altered forms. 
 
4.2. TRAINING, VALIDATION AND TESTING PROCEDURES 

The training, validation and testing process will guarantee the strong generalization between materials and 
sculptural conditions. The data are divided into 70 % training, 15 % validation and 15 % test with material and action 
balance in each set. The physical grounded physics-informed neural networks and deep regression models are then 
optimized during the training process where FEM solution is adopted as supervised learning. Transfer learning is 
implemented by it using pretrained weights and training them on material-specific subsets. The testing step is used to 
test the performance of the model using unseen sculptural geometries and force configurations, which approximate the 
final creative workflow. Additional cross-material testing is also done, by testing models trained on one material on a 
second material to determine how adaptable they are. It is a protocol to make sure that it is reproducible, stable, and 
relevant to the predictive accuracy and efficiency targets that were emphasized in the abstract. 
 
5. RESULTS AND ANALYSIS 
5.1. QUANTITATIVE PERFORMANCE EVALUATION AND ACCURACY COMPARISON 

Table 2 displays a quantitative analysis of the predicted deformation and stresses using physics-only, data-driven, 
hybrid, and suggested AI-physics simulation models. Based on the obtained results, it is clear that predictive accuracy 
improves progressively with the growth of AI integration. The physics-only FEM model is more moderate as it has good 
theoretical background, but it has bigger RMSE and MAE values, which signify the sensitivity to nonlinear sculptural 
phenomena and imperfect material behavior. The neural network based on data enhances deformation accuracy by 
learning empirical patterns but there is no internal physical restraint that limits the reliability of stress prediction when 
the interaction of the forces is too complicated.  
Table 2 

Table 2 Accuracy and Error Comparison across Models 

Model Type Deformation Prediction Accuracy (%) Stress Prediction Accuracy (%) RMSE ↓ MAE ↓ 
FEM (Physics-Only) 84.6 86.1 0.118 0.094 

Data-Driven NN 88.3 87.5 0.102 0.081 
PINN (Hybrid) 90.7 91.4 0.087 0.069 

Proposed AI–Physics Framework 92.4 93.1 0.073 0.058 

 
The hybrid PINN model goes a step further to ensure that physical laws are followed in the learning process and 

hence the increased accuracy in stress and reduced error scores. The proposed AI physics framework performs better 
than any basic one, as it has 92.4 deformation accuracy and 93.1 stress accuracy with the lowest RMSE and MAE. This is 
directly related to the abstract saying that it reduced errors by a margin of 38 percent compared to traditional 
techniques. Notably, the findings reveal equalized performance in both deformation and stress measures which is a 
pointer that the model does not compromise the physical reliability with the numerical precision. 
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 Figure 2 

 
Figure 2 Comparative Computational Efficiency of AI-Based Material Simulation Models 

 
The Figure 2 compares the reduction in simulation time and the reduction in memory usage with the various AI-

based simulation strategies. The suggested AI physics approach is the most efficient in its overall performance, with the 
fastest inference speed and optimized memory usage, as opposed to data-driven and hybrid PINN models, which are 
compatible with real-time performance to simulate sculptural material. 
 
5.2. COMPUTATIONAL EFFICIENCY AND REAL-TIME FEASIBILITY ANALYSIS  

The physics-only model implemented in FEM, as predicted, does not reduce the simulation time or memory 
consumption, which underlines its inability to be used in interactive artistic settings. The neural network as data-driven 
shows significant progress in the speed of simulation and the inference efficiency of the model since it is purely learned, 
but this is achieved at the expense of physical robustness.  
Table 3 

Table 3 Computational Efficiency Improvement 

Model Type Simulation Time Reduction (%) Inference Speed Gain (%) Memory Usage Reduction (%) 
Data-Driven NN 38.2 41.6 22.4 
PINN (Hybrid) 42.7 44.9 26.8 

Proposed AI–Physics Framework 45.1 48.3 31.2 

 
The hybrid PINN model also increases efficiency learning of physics-guided representations with more than 42 

percent reduction in simulation time without losing physical plausibility. The suggested AI-physics model is the most 
efficient, as simulation time is reduced by 45.1% and inference speed is increased by 48.3 percent, which directly 
indicates the near real-time feedback. The decrease of memory use of more than 31 also makes it possible to use on 
regular creative workstations instead of specialized hardware. Such findings confirm that the focus of the abstract on 
computational efficiency is one of its major contributions. All the efficiency gains discussed above indicate that the 
proposed framework can achieve the desired balance between speed, accuracy, and resource usage and that AI-based 
material simulation is not only technically productive but also practically achievable in terms of daily sculptural activity. 
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 Figure 3 

 
Figure 3 Comparative Efficiency Analysis of AI-Based Simulation Models 

 
The upward trend observed in the performance in Figure 3 is a consistent upward trend of Data-Driven NN to the 

Proposed AI-Physics Framework. The suggested framework yields the most impressive results in all of the measures, 
especially inference speed and memory efficiency, which proves its greater applicability in real-time and resource-
efficient sculptural material simulation. 
 
5.3. VISUALIZATION OF DEFORMATION AND STRESS PREDICTION OUTCOMES 

The visualizations of deformation and stress prediction indicate a high level of correlation between the results of 
the proposed framework and the real physical simulations. Simulated deformation fields are spatially smooth, and local 
areas of compression, bending, and tensile stress that are expected to form during sculptural procedure are well 
represented. The hybrid framework also maintains sharp stress gradient and weak structures unlike data-driven-only 
models that are over-smoothing of key stress concentrations. Temporal visualization also shows steady development of 
the material behavior in case of progressive force application, which shows strong learning of nonlinear response. These 
visual results confirm that the AI-enhanced simulation is not only an approximation of the overall deformation patterns 
but also has minute physical detail to make sculpture-related decisions. The ability of the framework to generalize has 
been proved in the consistency of visual predictions between diverse materials and the validity of the framework in 
interactive and design-stage sculptural processes is supported. 

The Figure 4 shows the stress and deformation states obtained using the proposed AI-based simulation framework 
and ground-truth physical simulations in bending, compression, and tension deformation. High fidelity and predictive 
behavior Recent tests of the framework with close visual correspondence over spatial patterns and temporal progression 
verify that the framework is able to model nonlinear material behavior accurately and predictively. 
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 Figure 4 

 
Figure 4 Comparison of AI-Predicted and Ground-Truth Stress–Deformation Patterns in Sculptural Materials 

 
5.4. DISCUSSION OF ARTISTIC RELEVANCE AND MATERIAL FIDELITY 

Artistically, the findings reveal that AI-inspired simulation can effectively contribute to the creative control without 
limiting the freedom of expression. The prediction of the deformation and stresses in an accurate manner enable artists 
to predict the structural risks, develop forms through a process of refinement, and experiment with complex geometries 
in a way that feels safe. The decrease in time taken in computations make it possible to provide almost real time feedback, 
which matches the intuitive and exploratory approach to sculptural practice. In addition, the model encourages eco-
friendly production through reduction of material wastage and unsuccessful prototypes. All these findings support the 
idea that the suggested method is effective in achieving both technical and artistic functionality, which can further 
develop AI-driven simulation into a viable and culturally applicable instrument in modern sculptural practice. 
 
6. CONCLUSION 

traditional problems related to the modeling of complex material behavior. The grid related to combining physics 
simulation with intelligent learning models allows overcoming the problem of the lack of connection between artistic 
creativity and material realism. The findings reveal that hybrid AI-physics method exhibits better predictive 
characteristics with the accuracy of deformation and stress prediction being above 92 percent and the simulation error 
decreasing significantly and the time spent on the computation being minimal in comparison to the traditional 
approaches. These enhancements promote the interactive and design stage decision making where artists can easily 
experiment with complex forms and have more control over them. In addition to technical performance, the framework 
has substantial contribution to sculptural practice, including an increase in material fidelity, maintenance of artistic 
intent, and minimization of the use of expensive trial-and-error procedures. Notably, transfer learning strategies make 
the system scalable and artist-friendly because of the adaptability provided by the combination of transfer learning 
strategies to various materials and creative environments. Sustainability implications have the same significance as well, 
where proper early stage prediction will minimize material waste, energy use, and failed prototypes. The given 
framework preconditions the creation of smart, sustainable, and expressive sculptural ecosystems with artificial 
intelligence as digital and physical art-making merge.  
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