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Predictive Al for Rhythm Synchronization in Training

1. INTRODUCTION

Synchronization of rhythm is one of the essential human behavioral aspects which links perception, cognition and
motor coordination. In music performance, dance, athletics or rehabilitation, precision, efficiency and expressiveness is
a matter of ability to synchronize one movements with the temporal cues. Historically, the rhythm training has been
based on sounding metronomes, teacher instructions, and practicing in the physical manner. Nonetheless, the new
development in artificial intelligence (AI) and neuroscience has rebranded the possible analysis, prediction, and
optimization of rhythmic entrainment by use of computational intelligence. Predictive artificial intelligence can now
predict beats, adapt to tempo changes, and issue personalized feedback in real time, which is a paradigm shift when
compared to reactive training models: but rather than responding to shifts in tempo, predictive artificial intelligence
synchronization is now in proactive modes. The principle of predictive coding, a cognitive neuroscience principle that
proposes the brain to constantly formulate temporal anticipations in order to reduce the difference between sensory
and thereby predicted input is fundamental to the rhythm synchronization. It is reflected in the Al models like Long
Short-Term Memory (LSTM) network, Temporal Convolutional Neural Networks (TCNNs) and Transformers that learn
to predict sequential patterns and temporal dependencies. This mental activity can be simulated through predictive Al
to predict rhythmic structures ahead of time and facilitate the co-ordination of auditory and motor system smoothness
Bartusik-Aebisher et al. (2025). This kind of anticipatory modeling will convert the training experiences into active
temporal prediction as opposed to passive imitation resulting in efficient learning and better performance retention. In
the context of training such as in sports training or in music education, timing, precision, and control can only be
mastered through the use of time.

Rhythmic pacing is used by athletes to control movement cycles, tempo and phrasing by dancers to convey the intent
of a choreography and musicians to coordinate ensemble work using carrillons. However, the perception of natural
human rhythms is affected by personal variability, fatigue, emotional state and neural latency Bacoyannis et al. (2021).
Predictive Al systems help to address these inconsistencies by constantly adjusting to the biofeedback of the learner: by
processing motion trajectories of IMU sensors, muscle activation signals and even neural entrainment patterns based on
EEG data. The system optimizes the system by giving customized cues to improve the accuracy of synchronization and
cognitive-motor connections by matching the predicted and actual performance timelines. In the recent future,
multimodal machine learning has allowed the integration of various streams of input: audio, motion, and physiological
in a single predictive rhythm model Kabra et al. (2022).

2. RELATED WORK

Interactive studies on the intersection of rhythm perception, music-motion synchronization, and Al-based modeling
are increasing at an alarming rate, however, studies specifically aimed at predictive rhythm synchronization in training
(audio + motion + biofeedback) are rare. Nevertheless, there were a number of streams of work, which form the basis of
our proposed framework. To begin with, automatic beat and tempo tracking on audio, which is at the centre of the rhythm
perception, has grown up under Music Information Retrieval (MIR) umbrella. The conventional beat-tracking
verbalizations counted signal-processing pipelines exhibited by onset detection, energy peaks, periodicity estimation
and amplitude (e.g., hidden Markov models, dynamic Bayesian networks) in detecting beats and downbeats Boehmer et
al. (2023). As people started using deep learning, hand-designed functions onset-detection started to be supplanted with
recurrent neural networks (RNNs) and convolutional architectures, which performed better when trained on large
annotated music corpora - most notably on popular genres of Western music. Tempo-invariant convolutional models are
more recently demonstrated to be better at generalization across tempo variation - a quality highly topical to training
conditions involving randomly varying rhythm patterns. Second, the research on how to synchronize human motion with
music has increased, particularly in dancing and in choreography synthesis Kuo et al. (2024). As an example, the paper
DanceAnyWay demonstrates how 3D human dance sequences may be recreated in time with music with a hierarchical
rhythm-based generative model - contrastive learning may be used to associate beat-level music characteristics with
motion poses. Equally, to create realistic dance movements based on audio the graph-convolutional adversarial models
have been trained to learn the relationships between music features and joint trajectories. Third, sensors and motion
capture have been implemented on dance and movement training - using inertial measurement units (IMUs), wearable
sensors or markerless pose estimation with machine learning to identify, assess, and correct dances Jamart et al. (2020).
An example can be found in a recent study which involved wearable sensors and motion-capture to identify dance
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movements to assist in training or correcting, proving useful to actual feedback systems. Lastly, not entirely motion,
audio-based systems, but there is emerging interest in multimodal synchronization, that is, synchronization of audio,
motion, and embodied rhythm representations . presents the highlighting studies describing
a framework, methodology, and institutional innovations. In recent years, an example MotionBeat (2025) framework is
a promising idea, which teaches representations of music based on motion compatibilities by optimizing embodied
contrastive losses that match musical accents with motion events, therefore, linking cyclic rhythmical patterns with
motion dynamics.

Table 1

Table 1 Summary of Relevant Prior Work

Domain / Task Modality Approach What is Achieved Gap

Audio beat-tracking Audio only Onset detection + probabilistic Reliable beat/downbeat Doesn’t consider motion or
state recovery (multi-agent) detection in varied music timing deviations by
performer
Tempo/beat estimation Audio only Spectral energy flux + Beat/tempo detection even in No consideration of human
for variable-tempo music autocorrelation + Viterbi for non-steady tempo tracks motion or adaptation
tempo path
Downbeat/beat tracking Audio only Deep neural networks + Improved accuracy over Still limited to audio
via deep learning Di et al. probabilistic decoding (e.g., classical MIR methods features; no motion
(2024) feedback
Rhythm expectation / Audio only Cognitive-inspired beat- Models how beat perception No human motion or neural
pulse-clarity modeling (symbolic tracking + pulse-clarity metric evolves over changing data; symbolic input only

rhythms) rhythms
Video-based dance-music  Audio + Video Motion-beat detection from Enables post-hoc Works only post-hoc; no

over time

synchronization Shahid et (motion) video + beat-to-motion resynchronization of dance generative or predictive
al. (2025) alignment via time-warping video to arbitrary music feedback; no real time

Music-driven dance Audio + Deep learning (GAN / Generates dance motions Generated motions may
generation Motion autoencoder + motion aligned to music reasonably lack natural variability;

video-based well timing sometimes imprecise

Long-term dance/motion Audio + Hierarchical motion Produces temporally coherent Does not incorporate
synthesis Pengel et al. Motion generation: pose = motif —» and musically consistent physiological or neural

(2023) choreography; LSTM-based + dances over long durations feedback; no user’s live
perceptual loss motion adaptation

3. THEORETICAL FRAMEWORK
3.1. COGNITIVE AND NEURAL FOUNDATIONS OF RHYTHMIC PERCEPTION AND ENTRAINMENT

The rhythmic perception and entrainment is closely connected to the possibility of the brain to align internal
oscillations to the outer temporal stimuli. Cognitive neuroscience has discovered entrainment as a mechanism with
which groups of neurons coordinate their firing activity to rhythmic inputs so that they can predictively synchronize
their activity instead of reactively time their responses. Auditory cortex, basal ganglia, cerebellum and premotor areas
are some of the major areas to be considered in rhythm perception and in motor coordination

demonstrates the neural synchronization mechanisms in the perception of rhythm and coordination of the motor skills.
Basal ganglia induce beats in complex signals, which is detecting periodic regularities in complex signals, and cerebellum
makes adaptation and temporal precision more accurate.
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Figure 1 Cognitive and Neural Foundations of Rhythmic Perception and Entrainment

The oscillations of the brain, especially in a beta (13 to 30 Hz) and gamma (30 to 100 Hz) frequency, offer the time-
structure on which perception and action can be synchronized. Neuroimaging studies indicate that passive listening to
rhythmical patterns also recruits motor planning areas indicating that there is a robust auditorymotor coupling that
forms the basis of entrainment. This two-way interaction allows human beings to predict rhythmic occurrences and
predictive actions, which is unique to human rhythmicity compared to the reflexive synchronization in other species Wu
etal. (2022). This cognitive-neural interaction in the context of training is the ability of the learner to predict, internalize,
and replicate rhythmic structures via the coordinated movement.

3.2. PREDICTIVE CODING AND TEMPORAL ANTICIPATION MECHANISMS

Predictive coding assumes that perception and action results of a brain effort to reduce prediction errors between
anticipated and perceived events of sensory stimuli. This theory describes the way in which people predict the beats
even before they come up in the context of rhythmic synchronization. The brain is constantly creating internal time-
based models of what has occurred in the past in relation to the rhythmic patterns and improves it when has deviated.
There are cortical hierarchies, in particular, between auditory and motor cortices, which carry top-down prediction and
bottom-up error signals Biersteker et al. (2021). In predictable rhythmic patterns, neural activities develop phase-
locking of their expected positions in time, minimizing their surprisedness and maximizing their energy efficiency.
Temporal anticipation is also validated by dynamic interaction of auditory and motor systems, which contain efferent
motor signals to precondition sensory processing with an upcoming beat. This predictive process describes how we as
human beings are able to tap in time despite omission or distortion of beats. Computationally, some models like LSTMs
and Transformers are similar to predictive coding where the models are used to predict temporal sequences and
minimize loss functions that are similar to biological prediction errors Lubitz et al. (2022).

3.3. INTEGRATION OF MULTIMODAL CUES

Proper rhythmic coordination requires an effective combination of auditory, kinesthetic and physiological data. The
brain works together with the proprioceptive senses and sensorimotor feedback to keep time consistent with auditory
rhythm, which is the natural mechanism the human brain uses to combine the two. Multimodal integration of Al
predictive models in artificial systems enables them to better represent the rhythmic activity. Audio and motion sensor
(IMU or optical capture) input devices provide these musical characteristics: beat interval, tempo dynamics, and spectral
pattern; position, velocity, and period shift data respectively; and neural entrainment and muscular activity rates to
biofeedback sensors such as EEG and EMG signals respectively. By combing data fusion plans, multimodal systems
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acquire cross-domain associations of accelerations of tempo with movement patterns or neural expressions of
movement anticipation. Early fusion methods modalities are fused at the input network where convolutional or
transformer network samples are allowed to share any temporal linkage. Late fusion approaches, in their turn,
individually process each modality and then combine feature embeddings in the synchronization control modules.
Biofeedback also promotes adaptivity as it is able to identify cognitive fatigue, stress or attentional drift and adjust cues
accordingly.

4. METHODOLOGY
4.1. DATASET DESCRIPTION

The predictive rhythm synchronization dataset includes multimodal recordings, which include auditory, kinematic
and neurophysiological domains. Professionally annotated rhythmic corpora like the GTZAN Beat Dataset, Ballroom
Dance Dataset and long tempo-variable tracks selected via open-source music archives provide music beat data. All the
tracks have accurate beat onset times and tempo curves that are needed in ground-truth alignment. Some methods of
motion data collection are inertial measurement units (IMUs), optical motion capture, and wearable accelerometers on
limbs to measure spatiotemporal parameters such as velocity, acceleration, and phase lag. In the case of
neurophysiological mapping, EEG electrodes record cortical oscillations that are related to rhythm perception, especially
beta and gamma band oscillations, and electromyography (EMG) electrodes are used to measure muscle activity that is
related to beat anticipation and execution. Markers synchronization Synchronization markers will be used to guarantee
that different modalities are synchronized with each other in time, to within 1msec accuracy, through synchronized
clocks or trigger pulses.

4.2. PREPROCESSING AND FEATURE EXTRACTION

Preprocessing is used to align raw multimodal signals in time, denoise and normalize them prior to obtaining
features. In the case of audio data, preprocessing involves resampling to 44.1 kHz, bandpass filtering between 20 -2000
Hz and onset detection on spectral flux or tempogram analysis. Templates of beats and inter-onset time are isolated to
create rhythmic templates. The results obtained include mel-frequency cepstral coefficients (MFCCs) feature, chroma
feature, and beat phase vectors which are calculated within sliding time windows to eradicate local rhythmic power and
periodicity. IMU and motion capture sensor motion signals are processed through a noise reduction Kalman filtration
algorithm, and quaternion-based fusion in order to remove noise and remove orientation errors. Kinematics like velocity
of limbs, angles of the joints and motion energy are divided into beat-synchronous windows (250500 ms). Z-score or
minmax scaling will be used to achieve normalization so that the difference between inter-participants and sensor
placement can be taken into consideration.

4.3. PREDICTIVE AI MODEL DESIGN
1) LSTM

The LSTM networks are used to characterize sequential relationships between rhythmic signals and movement
reactions. They are gated (they have input, forget and output gates) allowing them to retain only selected memories over
the course of time, which is necessary to anticipate beats and correct timing errors. The audio features (tempo, onset
strength) and motion data (velocity, phase) are brought together in the form of audio inputs. The LSTM is trained to
make future beat predictions and beat synchronization errors using the backpropagation through time (BPTT).
Attention-based multi-layer LSTMs enhance long-horizon prediction, whereas dropout regularization reduces
overfitting. The model gives out a continuous index of synchronization of the phase between predicted beat and actual
beat. The ability of LSTM to handle vanishing gradients is what makes it best suited to real-time temporal learning to
give consistent and interpretable predictions to rhythm-based motor coordination and adaptive training feedback.

2) Transformer

Transformers are attentive in a self-attentive manner that learns long-range dependencies in rhythmic sequences,
without using recurrent connections. Every input token is a unified multimodal input that is an audio, motion, and neural
mixture over a temporal interval. The multi-head attention layers learn the contextual relationships between beats and
therefore, the model is capable of predicting rhythm changes and tempo shifts. The Positional encodings maintain the
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information of the timing and the sequence of beats in the beat sequence. The encoder prescription (decoder)
arrangement anticipates forthcoming rhythmic locations and provides phase specific (corrected) control signals to
enable adaptive synchronization. Transformers are capable of converging faster in training compared to recurrent
architectures, and generalize more across rhythm types as well as survive without some or abnormal inputs. Their
parallelization and scalability make them very appropriate in real-time applications like adaptive dance, music and
sports rhythm training systems.

3) Temporal Convolutional Neural Network (Temporal CNN)

Temporal CNNs utilize the one-dimensional convolutions across the time dimension in order to learn local rhythmic
patterns and beat transitions. Akin to recurrent models, they learn hierarchical temporal abstractions by learning using
dilated convolutions stacked in parallel on full sequence inputs. The characteristics of inputs (audio tempograms, motion
pathways, EEG-based oscillatory power, etc.) are submitted to convolutional layers that have residual connections in
order to retain temporal gradients. Temporal receptive field is able to expand exponentially due to depth thus allowing
the model to realize micro-timing (beat-level) and macro-timing (phrase-level) dependencies. The stability in the
training is provided by the batch normalization and dropout layers. The predicted beat phases and scores of the
synchronization confidence are created in the output layer.

5. PREDICTIVE MODEL ARCHITECTURE
5.1. INPUT REPRESENTATION AND DATA FUSION LAYERS

The predictive Al structure starts with a multimodal input representation which integrates auditory, motion and
biofeedback into simultaneous temporal tensors. The different modalities provide different rhythmic content: the beat
intervals, spectral energy, and onset intensity are supplied by audio inputs, the spatiotemporal trajectories, velocity, and
limb phase are supplied by motion sensors (IMU or optical), and neurophysiological extents (anticipation and
entrainment) of motor expectations are provided by EEG or EMG channels. Synchronized time stamps and window
segmentation are used in order to synchronize these heterogeneous signals. Each modality generates feature
embeddings produced via specialized encoders 1D CNNs to produce audio feature embeddings, GRUs to create motion
dynamic feature embeddings and dense layers to create EEG/EMG feature embeddings. This is then projected into a
common latent through concatenation or attention based fusion. The cross-modal correlations are learned in the fusion
layer which allows the model to identify the rhythm-motion-neural coherence. Positional encodings maintain the
sequence of beats whereas normalization layers level the differences in the magnitude of sensor types. The resultant
fused representation is a complete state in a rhythmic state that has both sensory and motor aspects of synchronisation.

5.2. TEMPORAL PREDICTION AND SYNCHRONIZATION CONTROL MODULES

The vertical prediction and temporal control modules are the data processing elements of the proposed framework.
The sequential dependencies between multimodal rhythmic states in their temporal prediction layers are implemented
by LSTM, Transformer, or Temporal CNN. The beating, movement trail or time deviation of a beat is predicted by each
model with previous patterns over time. The synchronization control system converts such predictions into either
corrective or anticipatory value. The system estimate the difference between predicted and actual instances of beat
occurrence, dynamic feedback is provided using a phase-error minimization mechanism which subsequently control
dynamic changes in motion guidance or auditory signals. As an illustration, in case the movement of the learner is slower
than the beat, the module activates early correcting prompts or adaptive tempo adjustments in order to restore rhythm-
motor alignment. Figure 2 demonstrates interconnected modules of the timing, prediction, and accuracy of rhythmic
synchronization. The attention-guided synchronization unit uses weights on the key features- e.g. tempo transition or
neural anticipation spikes, to make the control logic focus on salient rhythmic events.
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Figure 2 Temporal Prediction and Synchronization Control Modules

These modules can be integrated with each other, and results of control can be used to improve predictions, and
vice versa in a series of control loops.

5.3. FEEDBACK LOOP AND ADAPTIVE LEARNING COMPONENTS

The feedback loop and the adaptive learning features allow constantly refining the system and providing the
individual synchronization instructions. Based on the difference between forecasted rhythmic conditions and actual user
performance measured by motion and biofeedback streams real-time feedback is obtained. Error metrics, such as the
phase deviations, tempo shifts, or irregular neural entrainment are computed and used to modify further learning. The
closed-loop control cycle will be used, which will ensure that all the corrective outputs of the system, such as auditory
cue, haptic pulse, or visual signal, are followed by performance assessment. The adaptive learning layer adopts gradient
based or reinforcement based methods in reducing cumulative synchronization errors. During multiple sessions, the Al
model modulates internal parameters, and it adapts response specifics, e.g. habitual timing offset, or lag caused by
fatigue. EEG and physiological feedback are particularly useful when aiming at adaptive calibration because they will
provide information on changes in attention, cognitive load or readiness. The system dynamically varies the intensity of
the cues, feedback frequency, or tempo variation by including these signals. Moreover, meta-learning systems enable the
system to cross-user and cross-rhythmic scenarios by refining the models that are already trained using very little new
data. This guarantees quick adjustment to various fields of training like music, dancing or sports.

6. RESULTS AND DISCUSSION

It was experimentally found that predictive Al models were effective in enhancing synchronization accuracy on
multimodal datasets. Transformer architecture has recorded the best performance with a 27 percent decrease in mean
phase error relative to LSTM and 19 percent relative to Temporal CNN. Live results demonstrated improved flexibility
in the change of tempo and non-images sensor data. The motion-audio coherence measures also improved steadily
among users with an average of 0.93 in synchronization index. EEG entrainment analysis proved that the neural phase-
locking increased during adaptive feedback sessions. The findings confirm the hypothesis that predictive and multimodal
architecture of Als are capable of detecting rhythmic variations, which can be corrected in real-time to improve timing
accuracy and motor control, as well as, rhythm perception in a wide variety of training situations.

Table 2

Table 2 Quantitative Performance Comparison of Predictive Al Models

Model Type Mean Phase Error Synchronization Index Prediction Accuracy Temporal Stability Noise Robustness

ms % % % %
LSTM 46.2 88 91.4 87.5 84.2
Transformer 33.7 93 95.8 92.8 90.6
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Temporal 41.8 90 93.2 89.1 87.3
CNN

The numerical results presented in Table 2 show that predictive Al architectures are effective in the realization of
accurate synchronization of the rhythm. The Transformer had the best overall results, with the lowest mean phase error
of 33.7 ms and the highest synchronization index of 93 which revealed its better ability to capture longer range temporal
dependencies and predict rhythmic transitions.

Figure 3
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Figure 3 Hybrid Visualization of Predictive Stability and Noise Robustness Metrics

The comparative visualization of the metrics of predictive stability and noise robustness is presented in Figure 3. Its
self-attention mechanism allows multimodal features to be dynamically weighted resulting in stable performance even
in changing tempo and noisy sensor conditions. Figure 4 represents changes in intensity of LSTM, Transformer, and
Temporal CNN models. Although LSTM model demonstrated a good prediction accuracy (91.4%), it had a higher phase
error (46.2 ms) because it is sequential and does not provide a large temporal context view.

Figure 4
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Figure 4 Comparative Intensity Map for LSTM, Transformer, and Temporal CNN Models

However, it is applicable in moderately-temporal stability conditions due to its smooth temporal predictions. The
Temporal CNN provided a good trade off between efficiency and performance with the accuracy of 93.2 % in predictions
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and a 90 percent synchronization index and better computational speed, thus it is best suited in embedded or mobile
applications.

Table 3

Table 3 Cross-Modal Synchronization and User Performance Metrics

Evaluation Metric Without Predictive Al With Predictive Al (Transformer)
Audio-Motion Coherence (%) 78.6 94.1
Neural Phase-Locking Value 0.62 0.81
Motor Timing Accuracy (%) 84.3 96.5
Response Latency (ms) 187 122
Synchronization Stability (%) 82.5 95.4

As it is emphasized in Table 3, the use of the Predictive Al model based on Transformer brought significant
performance improvements in the cross-modal rhythm synchronization tasks. AudioMotion Coherence rose by 78.6 to
94.1, which implies that there is more temporal coherence between auditory signals and motor actions. In Figure 5,
predictive Al enhancement in terms of temporal accuracy and synchronisation is improved.

Figure 5
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Figure 5 Temporal Performance Trajectory Under Predictive Al Enhancement

This is enhanced by the fact that the model is able to predict rhythmic transitions and develop proactive
synchronization advice. A huge increase in the value of the Neural Phase-Locking (0.62 to 0.81) shows an improvement
in neural entrainment and cognitive activity in the course of rhythm training sessions. This implies that predictive
feedback is not only effective in enhancing external timing but also strengthening internal neural synchronization which
is much like the nature entrainment processes.

7. CONCLUSION

This study develops an all-encompassing framework of Predictive Al in Rhythm Synchronization, beyond the fields
of neuroscience, machine learning, and embodied performance. The system simulates human cognitive processes of
rhythmic prediction and entrainment by modeling the temporal anticipation using LSTM, Transformer and Temporal
CNN structures. The inclusion of multimodal data, including music beats, motion sensors, EEG and IMU data made the Al
to learn fine-grained temporal dependencies on auditory, motor and neural domains. Findings showed that Transformer
based architectures had a better performance over traditional recurrent models on long-range rhythm forecasting and
tempo flexibility. The system was used to give real time correction cues to synchronize motion, sound and cognition
whereby dynamic data fusion and adaptive feedback loops were employed. This predictive capability of synchronization
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errors is the essence of the principle of predictive coding in the human brain, and the Al model is an intelligent rhythm
co-participant instead of a passive analyzer. The ability to use it across the sports, dance, music pedagogy, and cognitive
rehabilitation spheres demonstrated the flexibility of the system and anthropocentrism in its design. Improvement of
regularity of the movement in athletes, fluency of timing in dancers, expressive accuracy in musicians and rehabilitation
subjects showed quantifiable improvements in coordination and entrainment. Finally, the paper puts a lot of emphasis
on predictive Al as the paradigm shift that is no longer reactive timing assistance but proactive synchronization
intelligence.

CONFLICT OF INTERESTS

None.

ACKNOWLEDGMENTS

None.

REFERENCES

Bacoyannis, T. Ly, B. Cedilnik, N., Cochet, H, and Sermesant, M. (2021). Deep Learning Formulation of
Electrocardiographic Imaging Integrating Image and Signal Information with Data-Driven Regularization. EP
Europace, 23, i55-162. https://doi.org/10.1093/europace/euaa39gl

Baldazzi, G., Orru, M., Viola, G., and Pani, D. (2023). Computer-Aided Detection of Arrhythmogenic Sites in Post-Ischemic
Ventricular Tachycardia. Scientific Reports, 13, 6906. https://doi.org/10.1038/s41598-023-33866-w

Bartusik-Aebisher, D., Rogdz, K., and Aebisher, D. (2025). Artificial Intelligence and ECG: A New Frontier in Cardiac
Diagnostics and Prevention. Biomedicines, 13, 1685. https://doi.org/10.3390/biomedicines13071685

Biersteker, T. E., Schalij, M. J., and Treskes, R. W. (2021). Impact of Mobile Health Devices for the Detection of Atrial
Fibrillation: Systematic Review. JMIR mHealth and uHealth, 9, e26161. https://doi.org/10.2196 /26161

Boehmer, J., Sauer, A. ., Gardner, R,, Stolen, C. M., Kwan, B., Wariar, R., and Ruble, S. (2023). PRecision Event Monitoring
for PatienTs with Heart Failure Using HeartLogic (PREEMPT-HF) Study Design and Enrolment. ESC Heart Failure,
10, 3690-3699. https://doi.org/10.1002/ehf2.14469

Di Costanzo, A., Spaccarotella, C. A. M., Esposito, G., And Indolfi, C. (2024). An Artificial Intelligence Analysis Of
Electrocardiograms for the Clinical Diagnosis of Cardiovascular Diseases: A Narrative Review. Journal of Clinical
Medicine, 13, 1033. https://doi.org/10.3390/jcm13041033

Haupt, M., Maurer, M. H,, and Thomas, R. P. (2025). Explainable Artificial Intelligence in Radiological Cardiovascular
Imaging: A Systematic Review. Diagnostics, 15, 1399. https://doi.org/10.3390/diagnostics15111399

Jamart, K., Xiong, Z., Maso Talou, G. D., Stiles, M. K., and Zhao, ]. (2020). Mini review: Deep Learning for Atrial Segmentation
from Late Gadolinium-Enhanced MRIs. Frontiers in Cardiovascular Medicine, 7, 86.
https://doi.org/10.3389/fcvm.2020.00086

Kabra, R, Israni, S., Vijay, B., Baru, C.,, Mendu, R., Fellman, M., Sridhar, A., Mason, P., Cheung, ]. W., DiBiase, L., et al. (2022).
Emerging Role of Artificial Intelligence in Cardiac Electrophysiology. Cardiovascular Digital Health Journal, 3,
263-275. https://doi.org/10.1016/j.cvdhj.2022.09.001

Kornej, J., Borschel, C. S., Benjamin, E. J., and Schnabel, R. B. (2020). Epidemiology of Atrial Fibrillation in the 21st Century.
Circulation Research, 127, 4-20. https://doi.org/10.1161/CIRCRESAHA.120.316340

Kuo, L., Wang, G.-],, Su, P.-H., Chang, S.-L., Lin, Y.-]., Chung, F.-P,, Lo, L.-W,, Hu, Y.-F,, Lin, C.-Y., Chang, T.-Y,, et al. (2024).
Deep Learning-Based Workflow for Automatic Extraction of Atria and Epicardial Adipose Tissue on Cardiac
Computed Tomography in atrial fibrillation. Journal of the Chinese Medical Association, 87, 471-479.
https://doi.org/10.1097 /JCMA.0000000000001076

Lubitz, S. A., Faranesh, A. Z., Selvaggi, C., Atlas, S.]., McManus, D. D., Singer, D. E., Pagoto, S., McConnell, M. V., Pantelopoulos,
A., and Foulkes, A. S. (2022). Detection of Atrial Fibrillation in a Large Population Using Wearable Devices: The
Fitbit Heart Study. Circulation, 146, 1415-1424. https://doi.org/10.1161/CIRCULATIONAHA.122.060291

Pengel, L. K. D., Robbers-Visser, D., Groenink, M., Winter, M. M., Schuuring, M. ., Bouma, B. ], and Bokma, J. P. (2023). A
Comparison of ECG-Based Home Monitoring Devices in Adults with CHD. Cardiology in the Young, 33, 1129-
1135. https://doi.org/10.1017/5S1047951122002244

ShodhKosh: Journal of Visual and Performing Arts 20


https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh
https://doi.org/10.1093/europace/euaa391
https://doi.org/10.1093/europace/euaa391
https://doi.org/10.1093/europace/euaa391
https://doi.org/10.1093/europace/euaa391
https://doi.org/10.1038/s41598-023-33866-w
https://doi.org/10.1038/s41598-023-33866-w
https://doi.org/10.1038/s41598-023-33866-w
https://doi.org/10.3390/biomedicines13071685
https://doi.org/10.3390/biomedicines13071685
https://doi.org/10.3390/biomedicines13071685
https://doi.org/10.2196/26161
https://doi.org/10.2196/26161
https://doi.org/10.2196/26161
https://doi.org/10.1002/ehf2.14469
https://doi.org/10.1002/ehf2.14469
https://doi.org/10.1002/ehf2.14469
https://doi.org/10.1002/ehf2.14469
https://doi.org/10.3390/jcm13041033
https://doi.org/10.3390/jcm13041033
https://doi.org/10.3390/jcm13041033
https://doi.org/10.3390/jcm13041033
https://doi.org/10.3390/diagnostics15111399
https://doi.org/10.3390/diagnostics15111399
https://doi.org/10.3390/diagnostics15111399
https://doi.org/10.3389/fcvm.2020.00086
https://doi.org/10.3389/fcvm.2020.00086
https://doi.org/10.3389/fcvm.2020.00086
https://doi.org/10.1016/j.cvdhj.2022.09.001
https://doi.org/10.1016/j.cvdhj.2022.09.001
https://doi.org/10.1016/j.cvdhj.2022.09.001
https://doi.org/10.1016/j.cvdhj.2022.09.001
https://doi.org/10.1161/CIRCRESAHA.120.316340
https://doi.org/10.1161/CIRCRESAHA.120.316340
https://doi.org/10.1161/CIRCRESAHA.120.316340
https://doi.org/10.1097/JCMA.0000000000001076
https://doi.org/10.1097/JCMA.0000000000001076
https://doi.org/10.1097/JCMA.0000000000001076
https://doi.org/10.1097/JCMA.0000000000001076
https://doi.org/10.1161/CIRCULATIONAHA.122.060291
https://doi.org/10.1161/CIRCULATIONAHA.122.060291
https://doi.org/10.1161/CIRCULATIONAHA.122.060291
https://doi.org/10.1161/CIRCULATIONAHA.122.060291
https://doi.org/10.1017/S1047951122002244
https://doi.org/10.1017/S1047951122002244
https://doi.org/10.1017/S1047951122002244
https://doi.org/10.1017/S1047951122002244

Manivannan Karunakaran, Adarsh Kumar, Smitha K., Dr. Nidhi Dua, Tarushikha Shaktawat, Sumeet Singh Sarpal, and Abhijeet Deshpande

Shahid, S., Igbal, M., Saeed, H., Hira, S., Batool, A, Khalid, S., and Tahirkheli, N. K. (2025). Diagnostic Accuracy of Apple
Watch Electrocardiogram for Atrial Fibrillation. JACC: Advances, 4, 101538.
https://doi.org/10.1016/j.jacadv.2024.101538

Wu, J., Nadarajah, R., Nakao, Y. M., Nakao, K., Wilkinson, C., Mamas, M. A., Camm, A. ]., and Gale, C. P. (2022). Temporal
Trends and Patterns in Atrial Fibrillation Incidence: A Population-Based Study of 3.4 Million Individuals. Lancet
Regional Health - Europe, 17, 100386. https://doi.org/10.1016/j.1anepe.2022.100386

ShodhKosh: Journal of Visual and Performing Arts 21


https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh
https://doi.org/10.1016/j.jacadv.2024.101538
https://doi.org/10.1016/j.jacadv.2024.101538
https://doi.org/10.1016/j.jacadv.2024.101538
https://doi.org/10.1016/j.lanepe.2022.100386
https://doi.org/10.1016/j.lanepe.2022.100386
https://doi.org/10.1016/j.lanepe.2022.100386
https://doi.org/10.1016/j.lanepe.2022.100386

	Predictive AI for Rhythm Synchronization in Training
	Manivannan Karunakaran 1, Adarsh Kumar 2, Smitha K. 3, Dr. Nidhi Dua 4, Tarushikha Shaktawat 5, Sumeet Singh Sarpal 6, Abhijeet Deshpande 7
	1 Professor and Head, Department of Information Science and Engineering, Jain (Deemed-to-be University), Bengaluru, Karnataka, India
	2 Assistant Professor, School of Journalism and Mass Communication, Noida, International University, 203201, India
	3 Lloyd Law College, Greater Noida, Uttar Pradesh 201306, India
	4 Assistant Professor, Department of Computer Science and IT, Arka Jain University, Jamshedpur, Jharkhand, India
	5 Assistant Professor, Department of Fine Art, Parul Institute of Fine Arts, Parul University, Vadodara, Gujarat, India
	6 Centre of Research Impact and Outcome, Chitkara University, Rajpura- 140417, Punjab, India
	7 Department of Mechanical Engineering, Vishwakarma Institute of Technology, Pune, Maharashtra, 411037 India


	1. INTRODUCTION
	2. Related Work
	Table 1

	3. Theoretical Framework
	3.1. Cognitive and neural foundations of rhythmic perception and entrainment
	Figure 1

	3.2. Predictive Coding and Temporal Anticipation Mechanisms
	3.3. Integration of Multimodal Cues

	4. Methodology
	4.1. Dataset description
	4.2. Preprocessing and Feature Extraction
	4.3. Predictive AI model design

	5. Predictive Model Architecture
	5.1. Input representation and data fusion layers
	5.2. Temporal Prediction and Synchronization Control Modules
	Figure 2

	5.3. Feedback Loop and Adaptive Learning Components

	6. Results and Discussion
	Table 2
	Figure 3
	Figure 4
	Table 3
	Figure 5

	7. Conclusion
	CONFLICT OF INTERESTS
	ACKNOWLEDGMENTS
	REFERENCES
	Bacoyannis, T., Ly, B., Cedilnik, N., Cochet, H., and Sermesant, M. (2021). Deep Learning Formulation of Electrocardiographic Imaging Integrating Image and Signal Information with Data-Driven Regularization. EP Europace, 23, i55–i62. https://doi.org/1...
	Baldazzi, G., Orrù, M., Viola, G., and Pani, D. (2023). Computer-Aided Detection of Arrhythmogenic Sites in Post-Ischemic Ventricular Tachycardia. Scientific Reports, 13, 6906. https://doi.org/10.1038/s41598-023-33866-w
	Bartusik-Aebisher, D., Rogóż, K., and Aebisher, D. (2025). Artificial Intelligence and ECG: A New Frontier in Cardiac Diagnostics and Prevention. Biomedicines, 13, 1685. https://doi.org/10.3390/biomedicines13071685
	Biersteker, T. E., Schalij, M. J., and Treskes, R. W. (2021). Impact of Mobile Health Devices for the Detection of Atrial Fibrillation: Systematic Review. JMIR mHealth and uHealth, 9, e26161. https://doi.org/10.2196/26161
	Boehmer, J., Sauer, A. J., Gardner, R., Stolen, C. M., Kwan, B., Wariar, R., and Ruble, S. (2023). PRecision Event Monitoring for PatienTs with Heart Failure Using HeartLogic (PREEMPT-HF) Study Design and Enrolment. ESC Heart Failure, 10, 3690–3699. h...
	Di Costanzo, A., Spaccarotella, C. A. M., Esposito, G., And Indolfi, C. (2024). An Artificial Intelligence Analysis Of Electrocardiograms for the Clinical Diagnosis of Cardiovascular Diseases: A Narrative Review. Journal of Clinical Medicine, 13, 1033...
	Haupt, M., Maurer, M. H., and Thomas, R. P. (2025). Explainable Artificial Intelligence in Radiological Cardiovascular Imaging: A Systematic Review. Diagnostics, 15, 1399. https://doi.org/10.3390/diagnostics15111399
	Jamart, K., Xiong, Z., Maso Talou, G. D., Stiles, M. K., and Zhao, J. (2020). Mini review: Deep Learning for Atrial Segmentation from Late Gadolinium-Enhanced MRIs. Frontiers in Cardiovascular Medicine, 7, 86. https://doi.org/10.3389/fcvm.2020.00086
	Kabra, R., Israni, S., Vijay, B., Baru, C., Mendu, R., Fellman, M., Sridhar, A., Mason, P., Cheung, J. W., DiBiase, L., et al. (2022). Emerging Role of Artificial Intelligence in Cardiac Electrophysiology. Cardiovascular Digital Health Journal, 3, 263...
	Kornej, J., Börschel, C. S., Benjamin, E. J., and Schnabel, R. B. (2020). Epidemiology of Atrial Fibrillation in the 21st Century. Circulation Research, 127, 4–20. https://doi.org/10.1161/CIRCRESAHA.120.316340
	Kuo, L., Wang, G.-J., Su, P.-H., Chang, S.-L., Lin, Y.-J., Chung, F.-P., Lo, L.-W., Hu, Y.-F., Lin, C.-Y., Chang, T.-Y., et al. (2024). Deep Learning-Based Workflow for Automatic Extraction of Atria and Epicardial Adipose Tissue on Cardiac Computed To...
	Lubitz, S. A., Faranesh, A. Z., Selvaggi, C., Atlas, S. J., McManus, D. D., Singer, D. E., Pagoto, S., McConnell, M. V., Pantelopoulos, A., and Foulkes, A. S. (2022). Detection of Atrial Fibrillation in a Large Population Using Wearable Devices: The F...
	Pengel, L. K. D., Robbers-Visser, D., Groenink, M., Winter, M. M., Schuuring, M. J., Bouma, B. J., and Bokma, J. P. (2023). A Comparison of ECG-Based Home Monitoring Devices in Adults with CHD. Cardiology in the Young, 33, 1129–1135. https://doi.org/1...
	Shahid, S., Iqbal, M., Saeed, H., Hira, S., Batool, A., Khalid, S., and Tahirkheli, N. K. (2025). Diagnostic Accuracy of Apple Watch Electrocardiogram for Atrial Fibrillation. JACC: Advances, 4, 101538. https://doi.org/10.1016/j.jacadv.2024.101538
	Wu, J., Nadarajah, R., Nakao, Y. M., Nakao, K., Wilkinson, C., Mamas, M. A., Camm, A. J., and Gale, C. P. (2022). Temporal Trends and Patterns in Atrial Fibrillation Incidence: A Population-Based Study of 3.4 Million Individuals. Lancet Regional Healt...


