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ABSTRACT 
Rhythm synchronization is a predictive type of AI that builds upon temporal modeling 
and cognitive neuroscience so as to augment the synchronization of auditory and motor 
responses in the dynamic training environment. This study examines the possibilities of 
intelligent systems in predicting patterns of rhythm and dynamically supporting the user 
to have a temporal alignment using multimodal feedback. The framework combines data 
of music beats, motion sensor motions, EEG, and IMU data to record physical and neural 
entrainment. Preprocessing entails temporal division, beat identification and signal 
normalization to provide inter-modality consistency. Three predictive architectures are 
created, namely, Long Short-Term Memory (LSTM), Transformer, and Temporal 
Convolutional Neural Network (TCNN) to compare their performance in beating timing 
and synchrony accuracy. The model architecture combines the multimodal-entered 
information at the initial levels of the model, and uses the modules of temporal 
prediction, which has the ability to learn to reduce the synchronization time lag by using 
the self-adaptive feedback mechanisms. As it has been experimentally shown, 
Transformer-based models are superior to recurrent architectures in terms of their 
ability to address long-range temporal dependencies, whereas LSTM networks 
demonstrate resilience to noisy motion data. The discussion brings out the benefits of 
predictive AI to provide real-time rhythm correction and custom training adaptation. It 
is used in the field of sports, dance, music pedagogy, and in areas of cognitive 
rehabilitation, rhythmic accuracy improves motor learning and coordination. 
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1. INTRODUCTION 

Synchronization of rhythm is one of the essential human behavioral aspects which links perception, cognition and 
motor coordination. In music performance, dance, athletics or rehabilitation, precision, efficiency and expressiveness is 
a matter of ability to synchronize one movements with the temporal cues. Historically, the rhythm training has been 
based on sounding metronomes, teacher instructions, and practicing in the physical manner. Nonetheless, the new 
development in artificial intelligence (AI) and neuroscience has rebranded the possible analysis, prediction, and 
optimization of rhythmic entrainment by use of computational intelligence. Predictive artificial intelligence can now 
predict beats, adapt to tempo changes, and issue personalized feedback in real time, which is a paradigm shift when 
compared to reactive training models: but rather than responding to shifts in tempo, predictive artificial intelligence 
synchronization is now in proactive modes. The principle of predictive coding, a cognitive neuroscience principle that 
proposes the brain to constantly formulate temporal anticipations in order to reduce the difference between sensory 
and thereby predicted input is fundamental to the rhythm synchronization. It is reflected in the AI models like Long 
Short-Term Memory (LSTM) network, Temporal Convolutional Neural Networks (TCNNs) and Transformers that learn 
to predict sequential patterns and temporal dependencies. This mental activity can be simulated through predictive AI 
to predict rhythmic structures ahead of time and facilitate the co-ordination of auditory and motor system smoothness 
Bartusik-Aebisher et al. (2025). This kind of anticipatory modeling will convert the training experiences into active 
temporal prediction as opposed to passive imitation resulting in efficient learning and better performance retention. In 
the context of training such as in sports training or in music education, timing, precision, and control can only be 
mastered through the use of time. 

Rhythmic pacing is used by athletes to control movement cycles, tempo and phrasing by dancers to convey the intent 
of a choreography and musicians to coordinate ensemble work using carrillons. However, the perception of natural 
human rhythms is affected by personal variability, fatigue, emotional state and neural latency Bacoyannis et al. (2021). 
Predictive AI systems help to address these inconsistencies by constantly adjusting to the biofeedback of the learner: by 
processing motion trajectories of IMU sensors, muscle activation signals and even neural entrainment patterns based on 
EEG data. The system optimizes the system by giving customized cues to improve the accuracy of synchronization and 
cognitive-motor connections by matching the predicted and actual performance timelines. In the recent future, 
multimodal machine learning has allowed the integration of various streams of input: audio, motion, and physiological 
in a single predictive rhythm model Kabra et al. (2022). 

 
2. RELATED WORK 

Interactive studies on the intersection of rhythm perception, music-motion synchronization, and AI-based modeling 
are increasing at an alarming rate, however, studies specifically aimed at predictive rhythm synchronization in training 
(audio + motion + biofeedback) are rare. Nevertheless, there were a number of streams of work, which form the basis of 
our proposed framework. To begin with, automatic beat and tempo tracking on audio, which is at the centre of the rhythm 
perception, has grown up under Music Information Retrieval (MIR) umbrella. The conventional beat-tracking 
verbalizations counted signal-processing pipelines exhibited by onset detection, energy peaks, periodicity estimation 
and amplitude (e.g., hidden Markov models, dynamic Bayesian networks) in detecting beats and downbeats Boehmer et 
al. (2023). As people started using deep learning, hand-designed functions onset-detection started to be supplanted with 
recurrent neural networks (RNNs) and convolutional architectures, which performed better when trained on large 
annotated music corpora - most notably on popular genres of Western music. Tempo-invariant convolutional models are 
more recently demonstrated to be better at generalization across tempo variation - a quality highly topical to training 
conditions involving randomly varying rhythm patterns. Second, the research on how to synchronize human motion with 
music has increased, particularly in dancing and in choreography synthesis Kuo et al. (2024). As an example, the paper 
DanceAnyWay demonstrates how 3D human dance sequences may be recreated in time with music with a hierarchical 
rhythm-based generative model - contrastive learning may be used to associate beat-level music characteristics with 
motion poses. Equally, to create realistic dance movements based on audio the graph-convolutional adversarial models 
have been trained to learn the relationships between music features and joint trajectories. Third, sensors and motion 
capture have been implemented on dance and movement training - using inertial measurement units (IMUs), wearable 
sensors or markerless pose estimation with machine learning to identify, assess, and correct dances Jamart et al. (2020). 
An example can be found in a recent study which involved wearable sensors and motion-capture to identify dance 

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh


Manivannan Karunakaran, Adarsh Kumar, Smitha K., Dr. Nidhi Dua, Tarushikha Shaktawat, Sumeet Singh Sarpal, and Abhijeet Deshpande 
 

ShodhKosh: Journal of Visual and Performing Arts 13 
 

movements to assist in training or correcting, proving useful to actual feedback systems. Lastly, not entirely motion, 
audio-based systems, but there is emerging interest in multimodal synchronization, that is, synchronization of audio, 
motion, and embodied rhythm representations Haupt et al. (2025). Table 1 presents the highlighting studies describing 
a framework, methodology, and institutional innovations. In recent years, an example MotionBeat (2025) framework is 
a promising idea, which teaches representations of music based on motion compatibilities by optimizing embodied 
contrastive losses that match musical accents with motion events, therefore, linking cyclic rhythmical patterns with 
motion dynamics.  
Table 1 

Table 1 Summary of Relevant Prior Work 

Domain / Task Modality Approach What is Achieved Gap 
Audio beat-tracking Audio only Onset detection + probabilistic 

state recovery (multi-agent) 
Reliable beat/downbeat 

detection in varied music 
Doesn’t consider motion or 

timing deviations by 
performer 

Tempo/beat estimation 
for variable-tempo music 

Baldazzi et al. (2023) 

Audio only Spectral energy flux + 
autocorrelation + Viterbi for 

tempo path 

Beat/tempo detection even in 
non-steady tempo tracks 

No consideration of human 
motion or adaptation 

Downbeat/beat tracking 
via deep learning Di et al. 

(2024) 

Audio only Deep neural networks + 
probabilistic decoding (e.g., 

DBN) 

Improved accuracy over 
classical MIR methods 

Still limited to audio 
features; no motion 

feedback 
Rhythm expectation / 
pulse-clarity modeling 

Audio only 
(symbolic 
rhythms) 

Cognitive-inspired beat-
tracking + pulse-clarity metric 

over time 

Models how beat perception 
evolves over changing 

rhythms 

No human motion or neural 
data; symbolic input only 

Video-based dance–music 
synchronization Shahid et 

al. (2025) 

Audio + Video 
(motion) 

Motion-beat detection from 
video + beat-to-motion 

alignment via time-warping 

Enables post-hoc 
resynchronization of dance 

video to arbitrary music 

Works only post-hoc; no 
generative or predictive 
feedback; no real time 

Music-driven dance 
generation 

Audio + 
Motion 

(video-based) 

Deep learning (GAN / 
autoencoder + motion 

mapping) 

Generates dance motions 
aligned to music reasonably 

well 

Generated motions may 
lack natural variability; 

timing sometimes imprecise 
Long-term dance/motion 

synthesis Pengel et al. 
(2023) 

Audio + 
Motion 

Hierarchical motion 
generation: pose → motif → 

choreography; LSTM-based + 
perceptual loss 

Produces temporally coherent 
and musically consistent 

dances over long durations 

Does not incorporate 
physiological or neural 
feedback; no user’s live 

motion adaptation 

 
3. THEORETICAL FRAMEWORK 
3.1. COGNITIVE AND NEURAL FOUNDATIONS OF RHYTHMIC PERCEPTION AND ENTRAINMENT 

The rhythmic perception and entrainment is closely connected to the possibility of the brain to align internal 
oscillations to the outer temporal stimuli. Cognitive neuroscience has discovered entrainment as a mechanism with 
which groups of neurons coordinate their firing activity to rhythmic inputs so that they can predictively synchronize 
their activity instead of reactively time their responses. Auditory cortex, basal ganglia, cerebellum and premotor areas 
are some of the major areas to be considered in rhythm perception and in motor coordination Kornej et al. (2020). Figure 
1 demonstrates the neural synchronization mechanisms in the perception of rhythm and coordination of the motor skills. 
Basal ganglia induce beats in complex signals, which is detecting periodic regularities in complex signals, and cerebellum 
makes adaptation and temporal precision more accurate.  
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Figure 1 

 
Figure 1 Cognitive and Neural Foundations of Rhythmic Perception and Entrainment 

 
The oscillations of the brain, especially in a beta (13 to 30 Hz) and gamma (30 to 100 Hz) frequency, offer the time-

structure on which perception and action can be synchronized. Neuroimaging studies indicate that passive listening to 
rhythmical patterns also recruits motor planning areas indicating that there is a robust auditorymotor coupling that 
forms the basis of entrainment. This two-way interaction allows human beings to predict rhythmic occurrences and 
predictive actions, which is unique to human rhythmicity compared to the reflexive synchronization in other species Wu 
et al. (2022). This cognitive-neural interaction in the context of training is the ability of the learner to predict, internalize, 
and replicate rhythmic structures via the coordinated movement. 

 
3.2. PREDICTIVE CODING AND TEMPORAL ANTICIPATION MECHANISMS  

Predictive coding assumes that perception and action results of a brain effort to reduce prediction errors between 
anticipated and perceived events of sensory stimuli. This theory describes the way in which people predict the beats 
even before they come up in the context of rhythmic synchronization. The brain is constantly creating internal time-
based models of what has occurred in the past in relation to the rhythmic patterns and improves it when has deviated. 
There are cortical hierarchies, in particular, between auditory and motor cortices, which carry top-down prediction and 
bottom-up error signals Biersteker et al. (2021). In predictable rhythmic patterns, neural activities develop phase-
locking of their expected positions in time, minimizing their surprisedness and maximizing their energy efficiency. 
Temporal anticipation is also validated by dynamic interaction of auditory and motor systems, which contain efferent 
motor signals to precondition sensory processing with an upcoming beat. This predictive process describes how we as 
human beings are able to tap in time despite omission or distortion of beats. Computationally, some models like LSTMs 
and Transformers are similar to predictive coding where the models are used to predict temporal sequences and 
minimize loss functions that are similar to biological prediction errors Lubitz et al. (2022). 

 
3.3. INTEGRATION OF MULTIMODAL CUES  

Proper rhythmic coordination requires an effective combination of auditory, kinesthetic and physiological data. The 
brain works together with the proprioceptive senses and sensorimotor feedback to keep time consistent with auditory 
rhythm, which is the natural mechanism the human brain uses to combine the two. Multimodal integration of AI 
predictive models in artificial systems enables them to better represent the rhythmic activity. Audio and motion sensor 
(IMU or optical capture) input devices provide these musical characteristics: beat interval, tempo dynamics, and spectral 
pattern; position, velocity, and period shift data respectively; and neural entrainment and muscular activity rates to 
biofeedback sensors such as EEG and EMG signals respectively. By combing data fusion plans, multimodal systems 
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acquire cross-domain associations of accelerations of tempo with movement patterns or neural expressions of 
movement anticipation. Early fusion methods modalities are fused at the input network where convolutional or 
transformer network samples are allowed to share any temporal linkage. Late fusion approaches, in their turn, 
individually process each modality and then combine feature embeddings in the synchronization control modules. 
Biofeedback also promotes adaptivity as it is able to identify cognitive fatigue, stress or attentional drift and adjust cues 
accordingly. 

 
4. METHODOLOGY 
4.1. DATASET DESCRIPTION  

The predictive rhythm synchronization dataset includes multimodal recordings, which include auditory, kinematic 
and neurophysiological domains. Professionally annotated rhythmic corpora like the GTZAN Beat Dataset, Ballroom 
Dance Dataset and long tempo-variable tracks selected via open-source music archives provide music beat data. All the 
tracks have accurate beat onset times and tempo curves that are needed in ground-truth alignment. Some methods of 
motion data collection are inertial measurement units (IMUs), optical motion capture, and wearable accelerometers on 
limbs to measure spatiotemporal parameters such as velocity, acceleration, and phase lag. In the case of 
neurophysiological mapping, EEG electrodes record cortical oscillations that are related to rhythm perception, especially 
beta and gamma band oscillations, and electromyography (EMG) electrodes are used to measure muscle activity that is 
related to beat anticipation and execution. Markers synchronization Synchronization markers will be used to guarantee 
that different modalities are synchronized with each other in time, to within 1msec accuracy, through synchronized 
clocks or trigger pulses. 
 
4.2. PREPROCESSING AND FEATURE EXTRACTION  

Preprocessing is used to align raw multimodal signals in time, denoise and normalize them prior to obtaining 
features. In the case of audio data, preprocessing involves resampling to 44.1 kHz, bandpass filtering between 20 -2000 
Hz and onset detection on spectral flux or tempogram analysis. Templates of beats and inter-onset time are isolated to 
create rhythmic templates. The results obtained include mel-frequency cepstral coefficients (MFCCs) feature, chroma 
feature, and beat phase vectors which are calculated within sliding time windows to eradicate local rhythmic power and 
periodicity. IMU and motion capture sensor motion signals are processed through a noise reduction Kalman filtration 
algorithm, and quaternion-based fusion in order to remove noise and remove orientation errors. Kinematics like velocity 
of limbs, angles of the joints and motion energy are divided into beat-synchronous windows (250500 ms). Z-score or 
minmax scaling will be used to achieve normalization so that the difference between inter-participants and sensor 
placement can be taken into consideration. 

 
4.3. PREDICTIVE AI MODEL DESIGN  

1) LSTM 
The LSTM networks are used to characterize sequential relationships between rhythmic signals and movement 

reactions. They are gated (they have input, forget and output gates) allowing them to retain only selected memories over 
the course of time, which is necessary to anticipate beats and correct timing errors. The audio features (tempo, onset 
strength) and motion data (velocity, phase) are brought together in the form of audio inputs. The LSTM is trained to 
make future beat predictions and beat synchronization errors using the backpropagation through time (BPTT). 
Attention-based multi-layer LSTMs enhance long-horizon prediction, whereas dropout regularization reduces 
overfitting. The model gives out a continuous index of synchronization of the phase between predicted beat and actual 
beat. The ability of LSTM to handle vanishing gradients is what makes it best suited to real-time temporal learning to 
give consistent and interpretable predictions to rhythm-based motor coordination and adaptive training feedback. 

2) Transformer  
Transformers are attentive in a self-attentive manner that learns long-range dependencies in rhythmic sequences, 

without using recurrent connections. Every input token is a unified multimodal input that is an audio, motion, and neural 
mixture over a temporal interval. The multi-head attention layers learn the contextual relationships between beats and 
therefore, the model is capable of predicting rhythm changes and tempo shifts. The Positional encodings maintain the 
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information of the timing and the sequence of beats in the beat sequence. The encoder prescription (decoder) 
arrangement anticipates forthcoming rhythmic locations and provides phase specific (corrected) control signals to 
enable adaptive synchronization. Transformers are capable of converging faster in training compared to recurrent 
architectures, and generalize more across rhythm types as well as survive without some or abnormal inputs. Their 
parallelization and scalability make them very appropriate in real-time applications like adaptive dance, music and 
sports rhythm training systems. 

3) Temporal Convolutional Neural Network (Temporal CNN)  
Temporal CNNs utilize the one-dimensional convolutions across the time dimension in order to learn local rhythmic 

patterns and beat transitions. Akin to recurrent models, they learn hierarchical temporal abstractions by learning using 
dilated convolutions stacked in parallel on full sequence inputs. The characteristics of inputs (audio tempograms, motion 
pathways, EEG-based oscillatory power, etc.) are submitted to convolutional layers that have residual connections in 
order to retain temporal gradients. Temporal receptive field is able to expand exponentially due to depth thus allowing 
the model to realize micro-timing (beat-level) and macro-timing (phrase-level) dependencies. The stability in the 
training is provided by the batch normalization and dropout layers. The predicted beat phases and scores of the 
synchronization confidence are created in the output layer. 
 
5. PREDICTIVE MODEL ARCHITECTURE 
5.1. INPUT REPRESENTATION AND DATA FUSION LAYERS 

The predictive AI structure starts with a multimodal input representation which integrates auditory, motion and 
biofeedback into simultaneous temporal tensors. The different modalities provide different rhythmic content: the beat 
intervals, spectral energy, and onset intensity are supplied by audio inputs, the spatiotemporal trajectories, velocity, and 
limb phase are supplied by motion sensors (IMU or optical), and neurophysiological extents (anticipation and 
entrainment) of motor expectations are provided by EEG or EMG channels. Synchronized time stamps and window 
segmentation are used in order to synchronize these heterogeneous signals. Each modality generates feature 
embeddings produced via specialized encoders 1D CNNs to produce audio feature embeddings, GRUs to create motion 
dynamic feature embeddings and dense layers to create EEG/EMG feature embeddings. This is then projected into a 
common latent through concatenation or attention based fusion. The cross-modal correlations are learned in the fusion 
layer which allows the model to identify the rhythm-motion-neural coherence. Positional encodings maintain the 
sequence of beats whereas normalization layers level the differences in the magnitude of sensor types. The resultant 
fused representation is a complete state in a rhythmic state that has both sensory and motor aspects of synchronisation. 

 
5.2. TEMPORAL PREDICTION AND SYNCHRONIZATION CONTROL MODULES  

The vertical prediction and temporal control modules are the data processing elements of the proposed framework. 
The sequential dependencies between multimodal rhythmic states in their temporal prediction layers are implemented 
by LSTM, Transformer, or Temporal CNN. The beating, movement trail or time deviation of a beat is predicted by each 
model with previous patterns over time. The synchronization control system converts such predictions into either 
corrective or anticipatory value. The system estimate the difference between predicted and actual instances of beat 
occurrence, dynamic feedback is provided using a phase-error minimization mechanism which subsequently control 
dynamic changes in motion guidance or auditory signals. As an illustration, in case the movement of the learner is slower 
than the beat, the module activates early correcting prompts or adaptive tempo adjustments in order to restore rhythm-
motor alignment. Figure 2 demonstrates interconnected modules of the timing, prediction, and accuracy of rhythmic 
synchronization. The attention-guided synchronization unit uses weights on the key features- e.g. tempo transition or 
neural anticipation spikes, to make the control logic focus on salient rhythmic events. 
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Figure 2 

 
Figure 2 Temporal Prediction and Synchronization Control Modules 

 
These modules can be integrated with each other, and results of control can be used to improve predictions, and 

vice versa in a series of control loops. 
 

5.3. FEEDBACK LOOP AND ADAPTIVE LEARNING COMPONENTS  
The feedback loop and the adaptive learning features allow constantly refining the system and providing the 

individual synchronization instructions. Based on the difference between forecasted rhythmic conditions and actual user 
performance measured by motion and biofeedback streams real-time feedback is obtained. Error metrics, such as the 
phase deviations, tempo shifts, or irregular neural entrainment are computed and used to modify further learning. The 
closed-loop control cycle will be used, which will ensure that all the corrective outputs of the system, such as auditory 
cue, haptic pulse, or visual signal, are followed by performance assessment. The adaptive learning layer adopts gradient 
based or reinforcement based methods in reducing cumulative synchronization errors. During multiple sessions, the AI 
model modulates internal parameters, and it adapts response specifics, e.g. habitual timing offset, or lag caused by 
fatigue. EEG and physiological feedback are particularly useful when aiming at adaptive calibration because they will 
provide information on changes in attention, cognitive load or readiness. The system dynamically varies the intensity of 
the cues, feedback frequency, or tempo variation by including these signals. Moreover, meta-learning systems enable the 
system to cross-user and cross-rhythmic scenarios by refining the models that are already trained using very little new 
data. This guarantees quick adjustment to various fields of training like music, dancing or sports. 

 
6. RESULTS AND DISCUSSION 

It was experimentally found that predictive AI models were effective in enhancing synchronization accuracy on 
multimodal datasets. Transformer architecture has recorded the best performance with a 27 percent decrease in mean 
phase error relative to LSTM and 19 percent relative to Temporal CNN. Live results demonstrated improved flexibility 
in the change of tempo and non-images sensor data. The motion-audio coherence measures also improved steadily 
among users with an average of 0.93 in synchronization index. EEG entrainment analysis proved that the neural phase-
locking increased during adaptive feedback sessions. The findings confirm the hypothesis that predictive and multimodal 
architecture of AIs are capable of detecting rhythmic variations, which can be corrected in real-time to improve timing 
accuracy and motor control, as well as, rhythm perception in a wide variety of training situations. 
Table 2 

Table 2 Quantitative Performance Comparison of Predictive AI Models 

Model Type Mean Phase Error 
(ms) 

Synchronization Index 
(%) 

Prediction Accuracy 
(%) 

Temporal Stability 
(%) 

Noise Robustness 
(%) 

LSTM 46.2 88 91.4 87.5 84.2 
Transformer 33.7 93 95.8 92.8 90.6 
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Temporal 
CNN 

41.8 90 93.2 89.1 87.3 

 
The numerical results presented in Table 2 show that predictive AI architectures are effective in the realization of 

accurate synchronization of the rhythm. The Transformer had the best overall results, with the lowest mean phase error 
of 33.7 ms and the highest synchronization index of 93 which revealed its better ability to capture longer range temporal 
dependencies and predict rhythmic transitions.  

Figure 3 

 
Figure 3 Hybrid Visualization of Predictive Stability and Noise Robustness Metrics 

 
The comparative visualization of the metrics of predictive stability and noise robustness is presented in Figure 3. Its 

self-attention mechanism allows multimodal features to be dynamically weighted resulting in stable performance even 
in changing tempo and noisy sensor conditions. Figure 4 represents changes in intensity of LSTM, Transformer, and 
Temporal CNN models. Although LSTM model demonstrated a good prediction accuracy (91.4%), it had a higher phase 
error (46.2 ms) because it is sequential and does not provide a large temporal context view.  

Figure 4 

 
Figure 4 Comparative Intensity Map for LSTM, Transformer, and Temporal CNN Models 

 
However, it is applicable in moderately-temporal stability conditions due to its smooth temporal predictions. The 

Temporal CNN provided a good trade off between efficiency and performance with the accuracy of 93.2 % in predictions 
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and a 90 percent synchronization index and better computational speed, thus it is best suited in embedded or mobile 
applications.  
Table 3 

Table 3 Cross-Modal Synchronization and User Performance Metrics 

Evaluation Metric Without Predictive AI With Predictive AI (Transformer) 

Audio–Motion Coherence (%) 78.6 94.1 

Neural Phase-Locking Value 0.62 0.81 

Motor Timing Accuracy (%) 84.3 96.5 

Response Latency (ms) 187 122 

Synchronization Stability (%) 82.5 95.4 

 
As it is emphasized in Table 3, the use of the Predictive AI model based on Transformer brought significant 

performance improvements in the cross-modal rhythm synchronization tasks. AudioMotion Coherence rose by 78.6 to 
94.1, which implies that there is more temporal coherence between auditory signals and motor actions. In Figure 5, 
predictive AI enhancement in terms of temporal accuracy and synchronisation is improved. 

Figure 5 

 
Figure 5 Temporal Performance Trajectory Under Predictive AI Enhancement 

 
This is enhanced by the fact that the model is able to predict rhythmic transitions and develop proactive 

synchronization advice. A huge increase in the value of the Neural Phase-Locking (0.62 to 0.81) shows an improvement 
in neural entrainment and cognitive activity in the course of rhythm training sessions. This implies that predictive 
feedback is not only effective in enhancing external timing but also strengthening internal neural synchronization which 
is much like the nature entrainment processes.  

 
7. CONCLUSION 

This study develops an all-encompassing framework of Predictive AI in Rhythm Synchronization, beyond the fields 
of neuroscience, machine learning, and embodied performance. The system simulates human cognitive processes of 
rhythmic prediction and entrainment by modeling the temporal anticipation using LSTM, Transformer and Temporal 
CNN structures. The inclusion of multimodal data, including music beats, motion sensors, EEG and IMU data made the AI 
to learn fine-grained temporal dependencies on auditory, motor and neural domains. Findings showed that Transformer 
based architectures had a better performance over traditional recurrent models on long-range rhythm forecasting and 
tempo flexibility. The system was used to give real time correction cues to synchronize motion, sound and cognition 
whereby dynamic data fusion and adaptive feedback loops were employed. This predictive capability of synchronization 
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errors is the essence of the principle of predictive coding in the human brain, and the AI model is an intelligent rhythm 
co-participant instead of a passive analyzer. The ability to use it across the sports, dance, music pedagogy, and cognitive 
rehabilitation spheres demonstrated the flexibility of the system and anthropocentrism in its design. Improvement of 
regularity of the movement in athletes, fluency of timing in dancers, expressive accuracy in musicians and rehabilitation 
subjects showed quantifiable improvements in coordination and entrainment. Finally, the paper puts a lot of emphasis 
on predictive AI as the paradigm shift that is no longer reactive timing assistance but proactive synchronization 
intelligence.  
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