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ABSTRACT

In this paper, a multi-scale deep learning model that takes into account geometry to
produce high-fidelity texture is proposed to condition on digital sculptures. The use of
traditional 2D texture generation methods on complex 3D surfaces can be characterized
by the presence of seam artifacts, distortions and disappearance of microstructural
details, which makes them inappropriate in sculptural realism. The model is optimized
on a multi-objective loss comprising of adversarial, perceptual and style components and
patch-level and geometry-aware components and refined using differentiable rendering
to match real lighting behaviour. It has been shown by experimental results of
significantly better early results compared to classical techniques, StyleGAN-based
baselines and diffusion-based generators, lower perceptual error (LPIPS), seam
discontinuity (SCI, PBD) and multi-view consistency. Human perceptual research
supports that the suggested approach prevails in almost 70% of the pair-wise tests with
references to greater material authenticity and geometric consistency. The results
illustrate the usefulness of viewing texture synthesis as a 2D-3D joint learning task and
define the introduced system as a potential source of digital sculpting, heritage modeling,
virtual production, and high-end assets all of which require material realist.

Keywords: Deep Learning, Texture Synthesis, Sculptural Realism, Geometry-Aware
Generation, UV Mapping, Generative Adversarial Networks, Differentiable Rendering,

Multi-Scale Feature Learning, Perceptual Loss
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1. INTRODUCTION

The human eye comprehends even yet the clarity of the fine furrows of chisel lines, the porous sandstone grit, or the
drag of polished marble, or the patina of old bronze, even before the sense of form or silhouette is apprehended. These
textures characterize identity of the material, craftsmanship of signals and create realism that makes sculptures belong
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Deep Learning-Based Texture Synthesis for Sculptural Realism

in the material space. The need to have realistic textures has risen so high with the development of digital sculpturing
tools and 3D generation pipelines into film production, game design, restoration of cultural heritage and experiences in
immersive VR. But sculptural realism is one of the most tedious and skills-intensive activities in computer graphics Cao
et al. (2023). The classic work processes are textural painting by hand, high-resolution photogrammetry or procedural
shaders, which do not necessarily have the expressive subtlety of actual materials. This means that digital sculptures
often look artificial or unfinished with their surfaces not able to reflect some minor anomalies required to create a sense
of believability to the eye. Deep learning has put a new frontier on texture synthesis by learning the grammar of surface
patterns, through having examples Chan et al. (2022). Convolutional neural networks and generative models have shown
an extraordinary performance in the multi-scale visual structure and, as a result, they can replicate the local chaos and
general coherence nature of natural textures. These models are able to feel patterns in the sense in which a trained
sculptor feels material; not in pixels, but as planes of structure which repeat, distort, intersect, and develop on a surface.
In the application to sculptural realism, deep learning has the benefit of transforming texture synthesis by a crafty task
into a data-driven task that can be driven by learned material priors Guerri et al. (2024).

The proposed research seeks to tackle these issues by creating a deep learning-based system to create high-fidelity
and structurally sound sculptural-realism-specific textures. The geometricia combines convolutional encoders which
extract features and generative adversarial networks which reconstruct texture 3D surfaces do not care about the
topology of their components Yu et al. (2024). The system aims at developing textures that can be in harmony with
complex sculpture shapes with multi-level perceptual characteristic and spatial consistency limitations whilst
maintaining visual identity and microstructural detail. The suggested solution aims to enhance realism in addition to
making the process of creating production-ready digital sculptures less time and expertise intensive Rajaei et al. (2024).
The main values of the work are the design of a hybrid neural texture generation architecture designed specifically to
match sculptural materials, geometry-sensitive loss functions to smooth texture transfer between geometries, and a
controlled multi-material dataset of a variety of sculptural textures. Collectively, these technologies open up access to
more automated, easier, and aesthetic workflows of production in digital sculpting and in 3D art. This work contributes
to the development of digital sculptures that are touchable even on a screen by identifying the ways deep learning models
can be used to create touchable textured materials by transferring material essence onto a textured surface Chen et al.
(2022).

2. BACKGROUND AND RELATED WORK

Synthesizing texture has been one of the most significant areas of computer graphics research, determining how
digital surfaces are able to obtain the small-scale irregularity that causes them to feel very real. The initial techniques
viewed textures as statistical puzzles, i.e., the objective was to reproduce local sets of pixel that approximated hand
picked reference patches. Such classical models such as Markov random fields down to patch-based quilting might be
capable of replicating recent studies such as simple forms, but in many cases, the models failed to fold up when
challenged to model the layered complexity of real sculptural materials Liu et al. (2023). Stone, clay, bronze, and wood
have multi-scale structures, which are more like interwoven tales than is the case with repetitive tiles, and systems based
on rules could easily fail to capture this richness, leading to artificial repetition or vague artifacts. This gave rise to
procedural generation as an alternative, and increased computational power made it popular. Noise based techniques
such as Perlin and Worley noise enabled artists to create textures using mathematical recipes, a mixture of deterministic
rules with randomness Wang et al. (2021). Although these techniques were potent, they required genius of artistic
feeling as well as skill, and were lengthy to adjust to reality. More to the point, procedurally generated textures usually
did not have the micro-historical peculiarities of real materials: the scrape-hatch of a chisel, the haphazard swelling of
old wood fibers, or the dust-worn crevices of aged stone. It is these flaws that make sculptures emotionally significant
and procedural systems could seldom render a believable one. With the introduction of the deep learning, the tide turned.
The neural style transfer of Gatys et al. provided the insight that convolutional layers store textures as twisted networks
of feature-correlations and the revelation led to the unlocking of the first generation of neural texture synthesis Vaidya
et al. (2025). CNN based techniques were able to reproduce textures on a fine scale with a subtlety that was not
achievable with earlier methods but they were still largely bound to 2D grids. This was constrained by the fact that when
projected on a 3D surface, it was possible to see the warping, stretching, and mismatch of seams, which affected the visual
coherence. Nevertheless, their future was obvious: neural networks were learning the texture as a not a flat, but a
structured arrangement of repeated motifs Chu et al. (2021).
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Table 1

Table 1 Comparison of Key Deep Learning Models for Texture Synthesis

Model Architecture Type Texture Quality Geometry
Awareness
Gatys et al. (Neural Style Transfer) CNN Feature Correlation Moderate to High for 2D
Images
StyleGAN / StyleGAN2 Style-based GAN Generator Very High with strong multi- None
scale detail
TextureGAN Szegedy et al. (2017) Conditional GAN with Mask/Sketch Good detail and structure
Guidance control
SPADE / SPADE-based Generators Spatially Adaptive Normalization High visual coherence Low to Moderate
Layers
Neural Implicit Texture Models (e.g., NeRF- Implicit Neural Fields with Learned Very High with lighting-
based) Friihstiick et al. (2019) Texture Representations awareness
Differentiable Rendering-based Models CNN/Transformer + Differentiable Excellent micro-detail and High
Renderer shading consistency

Utilized in the form of generative adversarial networks (GANs), this promise was stretched to include full-fledged
synthesis engines, which are capable of generating large seamless and highly detailed textures .The
introduction of models such as StyleGAN introduced multi-scale control in the generative process which allows networks
to generate finer and coarse detail at the same time as denoted in . Spatially adaptive generators and texture GAN
also showed that geometry conditioning or segmentation map conditioning could be used to direct texture generation.
However, even the sophisticate models have struggled to apply to the case of sculptural realism, where geometric
complexities, like curvature, ridges, occlusions, etc, are intrinsic to 3D surfaces that the traditional 2D GANs lack an
intrinsic concept of. In cases where one texture encloses around the UV seams or across the line of extremely curved
areas, the sense of reality may collapse unless the generator takes into consideration topology.

3. PROPOSED SYSTEM DESIGN MODEL

Sculptural realism requires a formulation which not only explains the appearance in pixel-space, but also the
underlying topology of the surface and multi-frequency structure of real-world materials. The section provides the
formulation of the fundamental equations that will control the encoder-generator-discriminator pipeline, geometrical
aware conditioning, and multi-objective loss functions that jointly determine the learning process. The texture that must
be synthesized is expressed as a function:

T:) — R3,

OR2 is used to represent UV texture space, and each value represents an RGB color. Given a sculptural surface S with
UV parameterization ph S -0, the mapped texture is:

TS(p) =T(d()).p €S.

This is to learn T in a way that the mapped surface TS will have material fidelity, structural coherence and geometry
alignment as shown in The encoder E(O) picks up multi scale features of exemplar material image I: F=E(I).
These characteristics possess local textural clues and general material identity.

T = G(F, Ga)

Geometry-aware conditioning Ga includes distortion fields D, curvature maps x, and surface normal N: Ga={D,k,N}.
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Figure 1 Geometry Aware Texture Mapping Design System

These signs enable the generator to come to know how visual patterns are supposed to stretch, compress or fit the
3-dimensional structure. Realism is based on adversarial learning:

LGAN = E[logD(T)] + E [1og (1 —D(T ))]

In order to preserve perceptual structure and stylistic coherence a perceptual loss based on the VGG features is
used:

Lperc =13, || @U(T) — @I(T ) Il 22,
where ®I(-) denotes feature activations at layer l. Style similarity is enforced using Gram matrix correlations:
Gl(x) = PU(x)PI(xX)T, Lstyle = Iy | GU(T) — Gl(T ) I F2.
To maintain continuity across UV seams and preserve fine-scale structure, a patch-consistency loss is introduced.
Let Pi, Pj be adjacent UV patches: Lpatch = (i,j)3 | Pi — Pj Il 1.
This term reduces abrupt transitions, blending variations without erasing natural irregularities. Geometry-aware
consistency penalizes misalignment between generated patterns and sculptural topology. Using the distortion map D:

Lgeo =|| VT O D |l 1,where (© denotes elementwise multiplication. This encourages the generator to strengthen detail
in regions prone to stretching or compression. Curvature-driven alignment is introduced as

Leurv = T =¥ (T 1) Il 1,

where W(:) aligns the texture orientation with principal curvature directions. To ensure correct surface-light
interaction, differentiable rendering introduces a photometric loss. With renderer R(:) and lighting configuration L:

IR = R(S,TH)

Lrender =|| IR — IR || 1.
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This term gives a response of the manner in which the generated texture reacts when illuminated, which strengthens
physical plausibility. Each of the components becomes a part of a multi-objective function. This formulation turns texture
synthesis into a joint optimization of material realism, geometric flexibility and rendering realism. Surface consciousness
in the generation of visuals, the framework guarantees that the textures generated by synthesis have aesthetic and
physical integrity when applied to sculptural surfaces of complex shapes.

4. PROPOSED HYBRID DEEP LEARNING FRAMEWORK DESIGN

The suggested methodology introduces a deep learning protocol on synthesizing high-fidelity, geometry-aware,
sculptural realistic textures. In contrast to traditional 2D texture generators which ignore topological features of the
surface, this method jointly learns the neural texture generation and 3D-aware refinement to provide structural
consistency to applied textures on highly sculptural surfaces. The framework is composed of four essential parts, such
as dataset preparation, hybrid model architecture, geometry-aware conditioning, and multi-objective training. The
preparation of databases starts with the process of gathering high-resolution textures of marble, sandstone, granite, clay,
wood, and aged metal with the help of macro photography and specific repositories. Preprocessing eliminates lighting
variations and obtains intrinsic appearance data through the use of cropping, patch sampling, histogram normalization
and seamless tiling augmentation. In the case of materials having directional grain or tool marks, natural anisotropy is
preserved with orientation preserving transformations. Multi-scale features that describe fine irregularities and general
style hints are extracted by the encoder and the generator optimizes them by progressive decoding. Skip connections
maintain high-frequency structure and style modulation layers are wider in range of appearance variation. The
discriminator is acting worldwide to achieve the material identity of the material and locally to achieve the fidelity of the
micro-details to generate the balance between sharpness and structural coherence, as depicted in Figure 2. In order to
address the weaknesses of synthesis that is all 2D, a geometry-aware integration module combines surface topology
directly into synthesis. Examples of auxiliary conditioning channels used by the model are UV distortion fields, curvature
maps, and surface normal, which allow the model to predict stretching, seam boundaries, and areas with more detail.
This conditioning provides for easy transitions between UV islands, minimises the occurrence of artifacts in high
distorting regions, and makes either the direction of the grain or the chisel pattern coincide with the natural contours of
the sculpture, leading to a significant enhancement in perceptual realism.

Figure 2

Suplem
Ocurrtural
Mesh

S =

< uv o

\)_’ Unwraping @
‘..6.'_“)" i

Texture
Dataset

-

Geomettry-

Aware
Mapping
Module

GAN/Diffusion
Generator

(a) System Overview Pipeline

[0

Encoder

Patci & Content
Feature Extractor

A

Perceptudl Loss
Geometry-

Patch-Consistency
Module

Aware
Fusion Layer

Style Loss

Rendered
Seuchure

Synthesized
Texture

Figure 2 Architecture of the Proposed Hybrid Texture Generator

The total training of the framework is a multi-objective loss strategy that has to be well balanced. Conventional GAN
loss gives adversarial supervision to refine details and make it look more realistic whereas the perceptual loss based on
VGG features maintains structural fidelity and material identity. Style loss ensures the material coherence of the world
by limiting statistics of feature correlations. These losses work together in a synergistic manner: the perceptual and style
terms strengthen the holistic realism, patch and geometry terms guarantee continuity of the surfaces and the adversarial
component enhances the sharpness of the visuals. This is a balanced goal which helps the generator to create textures
that can be both believable in 2D and when applied to a 3D geometry. The last refinement phase uses differentiable
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rendering to induce feedback of lighting. The model is provided with gradient signals associated with shading,
illumination and general visual coherence by rendering the generated texture directly onto the 3D sculpture. Overall, the
methodology puts texture synthesis in the perspective of geometry-aware multi-stage learning. Through the
combination of curated data set, hybrid generative architectures, topology sensitive conditioning and extensive multi-
objective loss, framework addresses age-old limitations in sculptural texturing. It generates textures which are
materially true, structurally consistent and visually consistent when used on complex 3D surfaces.

5. RESULTS AND DISCUSSION

The experimental findings are evident to reveal that the geometry-sensitive, multi-scale framework improves
significantly the authenticity and integrity of generated sculptural textures. Quantitative evaluation shows that there are
important improvements in the perception of fidelity and geometric consistency. The model scores significantly lower
in FID and LPIPS, which means that it is more similar to real material exemplars. Its results in the Surface Consistency
Index (SCI) and Patch Boundary Discontinuity (PBD) improvements (reductions over baselines greater than 30-45)
indicate successful seam mitigation and even distribution of details between different areas of varying curvature. These
measurements affirm that geometrical aware fusion module and patch-consistency mechanism is at the core of
generation of seamless and topological coherent textures.

Figure 3
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Figure 3 Training Convergence Showing FID Reduction Across Epochs for all Competing Models

The convergence plot of FID vs Epochs of the training depicts how fast and how steadily each of the models
minimizes its error as it is being optimized and the proposed Hybrid-GeoTex framework evidently starts with a lower
error and optimizes its error more effectively as the training rate increases. Its curve is very steep in early eras and has
an unimpeding downward slant as compared to StyleGAN-Tex and Diffusion-UV whose convergence is slower and their
plateau is earlier as depicted in Figure 3. This action indicates that the geometry-becoming aware conditioning enables
the model to master material priors and structural regularities more efficiently, stimulating the enhancement of the
perceptual fidelity with time. These benefits are also confirmed by qualitative renderings. The proposed model maintains
grain direction, micro-cracks, mineral changes, and chisel marks on highly curved or densely stretched areas of the
surface unlike the baseline methods which often have tiling artifacts, tonal breaks, over smoothing, or directional
distortion. The model generates patterns in materials by conditioning generation based on curvature, UV distortion, and
normal cues, which increases the sense of physical authenticity of the sculpture.

Table 2

Table 2 Perceptual Quality Comparison Across Models

Model FID! LPIPS! V-LPIPS! User Preference (%) 1
StyleGAN2 (FT) 34.51 0.224 0.247 41.2

Diffusion U-Net 2948 0.198 0.212 47.8
Texture GAN 37.62 0.241 0.267 39.5
Proposed Hybrid Model 1892 0.142 0.158 68.5
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The model has stylistic coherence and structural accuracy when compared to baselines on unseen material families,
making the model more successful than baselines which tend to render repetitive or desaturated textures. Such a
behaviour demonstrates the effectiveness of the multi-scale feature extractor of the model and the possibility to learn
the properties of materials in a semantic but not superficial way.

These objective findings are supported by the study of human perception. The outputs of the proposed method were
found by the participants to be more realistic in almost 70 percent of the pairwise comparisons, with fewer apparent
seams, increased surface integrity, and more believable interaction between light and material. The increase in inter-
rater agreement and shorter response time are the signs of high and stable preference to the created textures.

Table 3

Table 3 Surface Consistency and Seam Quality

Model SCI | (Surface Consistenc PBD | (Patch Boundary Discontinui Seam Visibility Score |
StyleGAN2 0.167 0.142 2.16

Proposed Hybrid Model 0.097 0.089 1.03

The results of ablation bring to light the role each of the modules could play: the perceptual and style losses are
reduced to make the world look better; the patch-consistency component reduces discontinuities between UV islands;
the geometry-aware fusion layer brings the biggest improvements, as the texture behavior is adjusted in response to
local topology. All of these make up a synergistic architecture that is sculpturally realistic.

Figure 4
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Figure 4 PSNR versus SSIM Scatter Plot Demonstrating the Global Image-Quality Trade-Off Among Models.

The plot of runtime-scaling can provide an idea about viable feasibility. The computation time is proportional to the
resolution in texture resolution, but with a much flatter slope than diffusion-based and neural style-transfer baselines,
Hybrid-GeoTex cannot differentiate between models. This implies that the architecture can be made computationally
accessible even at the increased resolutions, and hence can be applied to the actual production processes like 4K or 8K
sculptural assets as illustrated in Figure 4. The performance is worst when subjected to extreme UV distortion or with
meshes whose geometry resolution is too low resulting in repetition of patterns or loss of local details on some occasions.
Differentiable rendering is a more expensive operation, and necessary in refinement based on lighting awareness. Future
research can look into implicit or UV-free texture representations, better sampling of topology and more efficient
rendering methods to decrease training costs.
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Figure 5 Boxplot of Human Preference Scores Evaluating Subjective Realism Across Models

The visual representation of human evaluation with the help of preference-score boxplot presents the results of the
evaluation by users in terms of average, but also the distribution and regularity of user responses. The participants are
overwhelmingly more accepting of outputs of Hybrid-GeoTex, which is evidenced by its better median and mean values
with a smaller quartile range as indicated in Figure 5. The wider distribution observed in the competing methods implies
that there is uncertainty in the perceived realism, but the narrowed distribution observed in Hybrid-GeoTex implies that
there is greater and more visual credibility between subjects. On the whole, these findings prove that geometry-sensitive
cues in conjunction with profound synthesis can result in substantial increases in the texture of sculptures. The
framework provides a solid basis of digital sculpting, rebuilding of cultural heritage, the generation of game assets, and
virtual production that is evident through quantitative measures, qualitative evaluation, and human perception.

6. CONCLUSION

This paper proposed a multi-scale deep learning architecture which is geometric-sensitive, and aim to solve an
ongoing issue of creating real-like textures to a digital sculpture. The 2D texture synthesis algorithms do not work in 3D
(complex) surfaces and usually result inappearances and distortions in the textures, as well as the loss of microstructural
information. By incorporating both perceptual style and patch consistency and geometry adaptive learning into the
proposed hybrid generative model, the proposed model models texture synthesis as a coupled 2D-3D process, which is
able to make textures naturally match to the curvature, UV distortion and local surface structures. The experiments
demonstrate steady state enhancements over classical and neural baselines, as subsequently demonstrated through
improved perceptual fidelity, multiple-view coherence and much less seam artifacts. Represented images show thatbasic
micro-elements such as grain direction, mineral variations and chisel marks are preserved in even extremely curved
areas. The human perception studies further prove the excellence of the proposed approach and the participants
significantly like its results on wide variety of materials and types of sculptures. In addition to the benefits to
performance, this framework should propagate the use of generative models combined with 3D geometry, which reduce
the cleanup of hands and result in production efficiency. The rest of the problems are excessive UV distortion, non-
uniform mesh topology, and lack of training material on extreme materials. The future work can be implicit texture
representation or UV free rendering methods, differentiable rendering with improved rendering times, and multimodal
learning with physical material properties. To conclude, the presented geometry-aware hybrid framework is a powerful,
scalable and perceptually based solution to sculptural realism, which can use to give a solid base towards further
developments in neural texture synthesis in digital art, cultural heritage and virtual production.
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