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ABSTRACT 
In this paper, a multi-scale deep learning model that takes into account geometry to 
produce high-fidelity texture is proposed to condition on digital sculptures. The use of 
traditional 2D texture generation methods on complex 3D surfaces can be characterized 
by the presence of seam artifacts, distortions and disappearance of microstructural 
details, which makes them inappropriate in sculptural realism. The model is optimized 
on a multi-objective loss comprising of adversarial, perceptual and style components and 
patch-level and geometry-aware components and refined using differentiable rendering 
to match real lighting behaviour. It has been shown by experimental results of 
significantly better early results compared to classical techniques, StyleGAN-based 
baselines and diffusion-based generators, lower perceptual error (LPIPS), seam 
discontinuity (SCI, PBD) and multi-view consistency. Human perceptual research 
supports that the suggested approach prevails in almost 70% of the pair-wise tests with 
references to greater material authenticity and geometric consistency. The results 
illustrate the usefulness of viewing texture synthesis as a 2D-3D joint learning task and 
define the introduced system as a potential source of digital sculpting, heritage modeling, 
virtual production, and high-end assets all of which require material realist. 
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1. INTRODUCTION 
The human eye comprehends even yet the clarity of the fine furrows of chisel lines, the porous sandstone grit, or the 

drag of polished marble, or the patina of old bronze, even before the sense of form or silhouette is apprehended. These 
textures characterize identity of the material, craftsmanship of signals and create realism that makes sculptures belong 
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in the material space. The need to have realistic textures has risen so high with the development of digital sculpturing 
tools and 3D generation pipelines into film production, game design, restoration of cultural heritage and experiences in 
immersive VR. But sculptural realism is one of the most tedious and skills-intensive activities in computer graphics Cao 
et al. (2023). The classic work processes are textural painting by hand, high-resolution photogrammetry or procedural 
shaders, which do not necessarily have the expressive subtlety of actual materials. This means that digital sculptures 
often look artificial or unfinished with their surfaces not able to reflect some minor anomalies required to create a sense 
of believability to the eye. Deep learning has put a new frontier on texture synthesis by learning the grammar of surface 
patterns, through having examples Chan et al. (2022). Convolutional neural networks and generative models have shown 
an extraordinary performance in the multi-scale visual structure and, as a result, they can replicate the local chaos and 
general coherence nature of natural textures. These models are able to feel patterns in the sense in which a trained 
sculptor feels material; not in pixels, but as planes of structure which repeat, distort, intersect, and develop on a surface. 
In the application to sculptural realism, deep learning has the benefit of transforming texture synthesis by a crafty task 
into a data-driven task that can be driven by learned material priors Guerri et al. (2024). 

The proposed research seeks to tackle these issues by creating a deep learning-based system to create high-fidelity 
and structurally sound sculptural-realism-specific textures. The geometricia combines convolutional encoders which 
extract features and generative adversarial networks which reconstruct texture 3D surfaces do not care about the 
topology of their components Yu et al. (2024). The system aims at developing textures that can be in harmony with 
complex sculpture shapes with multi-level perceptual characteristic and spatial consistency limitations whilst 
maintaining visual identity and microstructural detail. The suggested solution aims to enhance realism in addition to 
making the process of creating production-ready digital sculptures less time and expertise intensive Rajaei et al. (2024). 
The main values of the work are the design of a hybrid neural texture generation architecture designed specifically to 
match sculptural materials, geometry-sensitive loss functions to smooth texture transfer between geometries, and a 
controlled multi-material dataset of a variety of sculptural textures. Collectively, these technologies open up access to 
more automated, easier, and aesthetic workflows of production in digital sculpting and in 3D art. This work contributes 
to the development of digital sculptures that are touchable even on a screen by identifying the ways deep learning models 
can be used to create touchable textured materials by transferring material essence onto a textured surface Chen et al. 
(2022). 

 
2. BACKGROUND AND RELATED WORK 

Synthesizing texture has been one of the most significant areas of computer graphics research, determining how 
digital surfaces are able to obtain the small-scale irregularity that causes them to feel very real. The initial techniques 
viewed textures as statistical puzzles, i.e., the objective was to reproduce local sets of pixel that approximated hand 
picked reference patches. Such classical models such as Markov random fields down to patch-based quilting might be 
capable of replicating recent studies such as simple forms, but in many cases, the models failed to fold up when 
challenged to model the layered complexity of real sculptural materials Liu et al. (2023). Stone, clay, bronze, and wood 
have multi-scale structures, which are more like interwoven tales than is the case with repetitive tiles, and systems based 
on rules could easily fail to capture this richness, leading to artificial repetition or vague artifacts. This gave rise to 
procedural generation as an alternative, and increased computational power made it popular. Noise based techniques 
such as Perlin and Worley noise enabled artists to create textures using mathematical recipes, a mixture of deterministic 
rules with randomness Wang et al.  (2021). Although these techniques were potent, they required genius of artistic 
feeling as well as skill, and were lengthy to adjust to reality. More to the point, procedurally generated textures usually 
did not have the micro-historical peculiarities of real materials: the scrape-hatch of a chisel, the haphazard swelling of 
old wood fibers, or the dust-worn crevices of aged stone. It is these flaws that make sculptures emotionally significant 
and procedural systems could seldom render a believable one. With the introduction of the deep learning, the tide turned. 
The neural style transfer of Gatys et al. provided the insight that convolutional layers store textures as twisted networks 
of feature-correlations and the revelation led to the unlocking of the first generation of neural texture synthesis Vaidya 
et al. (2025). CNN based techniques were able to reproduce textures on a fine scale with a subtlety that was not 
achievable with earlier methods but they were still largely bound to 2D grids. This was constrained by the fact that when 
projected on a 3D surface, it was possible to see the warping, stretching, and mismatch of seams, which affected the visual 
coherence. Nevertheless, their future was obvious: neural networks were learning the texture as a not a flat, but a 
structured arrangement of repeated motifs Chu et al. (2021). 
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Table 1 

Table 1 Comparison of Key Deep Learning Models for Texture Synthesis 

Model Architecture Type Texture Quality Geometry 
Awareness 

Gatys et al. (Neural Style Transfer) CNN Feature Correlation Moderate to High for 2D 
Images 

None 

StyleGAN / StyleGAN2 Wang et al. (2021).  Style-based GAN Generator Very High with strong multi-
scale detail 

None 

TextureGAN Szegedy et al. (2017)  Conditional GAN with Mask/Sketch 
Guidance 

Good detail and structure 
control 

Low 

SPADE / SPADE-based Generators  Bellini et 
al. (2016).  

Spatially Adaptive Normalization 
Layers 

High visual coherence Low to Moderate 

Neural Implicit Texture Models (e.g., NeRF-
based) Frühstück et al. (2019)  

Implicit Neural Fields with Learned 
Texture Representations 

Very High with lighting-
awareness 

High 

Differentiable Rendering-based Models 
Frühstück et al. (2019)  

CNN/Transformer + Differentiable 
Renderer 

Excellent micro-detail and 
shading consistency 

High 

 
Utilized in the form of generative adversarial networks (GANs), this promise was stretched to include full-fledged 

synthesis engines, which are capable of generating large seamless and highly detailed textures Shabeer et al. (2025). The 
introduction of models such as StyleGAN introduced multi-scale control in the generative process which allows networks 
to generate finer and coarse detail at the same time as denoted in Table 1. Spatially adaptive generators and texture GAN 
also showed that geometry conditioning or segmentation map conditioning could be used to direct texture generation. 
However, even the sophisticate models have struggled to apply to the case of sculptural realism, where geometric 
complexities, like curvature, ridges, occlusions, etc, are intrinsic to 3D surfaces that the traditional 2D GANs lack an 
intrinsic concept of. In cases where one texture encloses around the UV seams or across the line of extremely curved 
areas, the sense of reality may collapse unless the generator takes into consideration topology. 

 
3. PROPOSED SYSTEM DESIGN MODEL 

Sculptural realism requires a formulation which not only explains the appearance in pixel-space, but also the 
underlying topology of the surface and multi-frequency structure of real-world materials. The section provides the 
formulation of the fundamental equations that will control the encoder-generator-discriminator pipeline, geometrical 
aware conditioning, and multi-objective loss functions that jointly determine the learning process. The texture that must 
be synthesized is expressed as a function: 

 
𝑇𝑇:𝛺𝛺 → 𝑅𝑅3, 

 
OR2 is used to represent UV texture space, and each value represents an RGB color. Given a sculptural surface S with 

UV parameterization ph S -O, the mapped texture is: 
 

𝑇𝑇𝑇𝑇(𝑝𝑝) = 𝑇𝑇(𝜙𝜙(𝑝𝑝)),𝑝𝑝 ∈ 𝑆𝑆. 
 
This is to learn T in a way that the mapped surface TS will have material fidelity, structural coherence and geometry 

alignment as shown in Figure 1 The encoder E(O) picks up multi scale features of exemplar material image I: F=E(I). 
These characteristics possess local textural clues and general material identity. 

 
𝑇𝑇^ = 𝐺𝐺(𝐹𝐹,𝐺𝐺𝐺𝐺) 

 
Geometry-aware conditioning Ga includes distortion fields D, curvature maps κ, and surface normal N: Ga={D,κ,N}. 
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Figure 1 

 
Figure 1 Geometry Aware Texture Mapping Design System 

 
These signs enable the generator to come to know how visual patterns are supposed to stretch, compress or fit the 

3-dimensional structure. Realism is based on adversarial learning: 
 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐸𝐸[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑇𝑇)] + 𝐸𝐸 �log �1 − 𝐷𝐷�𝑇𝑇 ���. 

 
In order to preserve perceptual structure and stylistic coherence a perceptual loss based on the VGG features is 

used: 
 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑙𝑙∑ ∥ 𝛷𝛷𝛷𝛷(𝑇𝑇) − 𝛷𝛷𝛷𝛷�𝑇𝑇 � ∥ 22, 
 
where Φl(⋅) denotes feature activations at layer l. Style similarity is enforced using Gram matrix correlations: 
 

𝐺𝐺𝐺𝐺(𝑥𝑥) = 𝛷𝛷𝛷𝛷(𝑥𝑥)𝛷𝛷𝛷𝛷(𝑥𝑥)⊤, 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑙𝑙∑ ∥ 𝐺𝐺𝐺𝐺(𝑇𝑇) − 𝐺𝐺𝐺𝐺�𝑇𝑇 � ∥ 𝐹𝐹2. 
 
To maintain continuity across UV seams and preserve fine-scale structure, a patch-consistency loss is introduced. 

Let Pi, Pj be adjacent UV patches: 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ = (𝑖𝑖, 𝑗𝑗)∑ ∥ 𝑃𝑃𝑃𝑃 − 𝑃𝑃𝑃𝑃 ∥ 1.   
This term reduces abrupt transitions, blending variations without erasing natural irregularities. Geometry-aware 

consistency penalizes misalignment between generated patterns and sculptural topology. Using the distortion map D: 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =∥ 𝛻𝛻𝛻𝛻^ ⊙𝐷𝐷 ∥ 1,where ⊙ denotes elementwise multiplication. This encourages the generator to strengthen detail 
in regions prone to stretching or compression. Curvature-driven alignment is introduced as 

 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =∥ 𝑇𝑇^ −𝛹𝛹(𝑇𝑇^, 𝜅𝜅) ∥ 1, 

 
where Ψ(⋅) aligns the texture orientation with principal curvature directions. To ensure correct surface-light 

interaction, differentiable rendering introduces a photometric loss. With renderer R(⋅) and lighting configuration L: 
 

𝐼𝐼𝑅𝑅 = 𝑅𝑅(𝑆𝑆,𝑇𝑇 ,𝐿𝐿) 
 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =∥ 𝐼𝐼𝑅𝑅 − 𝐼𝐼𝐼𝐼 ∥ 1. 
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This term gives a response of the manner in which the generated texture reacts when illuminated, which strengthens 
physical plausibility. Each of the components becomes a part of a multi-objective function. This formulation turns texture 
synthesis into a joint optimization of material realism, geometric flexibility and rendering realism. Surface consciousness 
in the generation of visuals, the framework guarantees that the textures generated by synthesis have aesthetic and 
physical integrity when applied to sculptural surfaces of complex shapes. 

 
4. PROPOSED HYBRID DEEP LEARNING FRAMEWORK DESIGN 

The suggested methodology introduces a deep learning protocol on synthesizing high-fidelity, geometry-aware, 
sculptural realistic textures. In contrast to traditional 2D texture generators which ignore topological features of the 
surface, this method jointly learns the neural texture generation and 3D-aware refinement to provide structural 
consistency to applied textures on highly sculptural surfaces. The framework is composed of four essential parts, such 
as dataset preparation, hybrid model architecture, geometry-aware conditioning, and multi-objective training. The 
preparation of databases starts with the process of gathering high-resolution textures of marble, sandstone, granite, clay, 
wood, and aged metal with the help of macro photography and specific repositories. Preprocessing eliminates lighting 
variations and obtains intrinsic appearance data through the use of cropping, patch sampling, histogram normalization 
and seamless tiling augmentation. In the case of materials having directional grain or tool marks, natural anisotropy is 
preserved with orientation preserving transformations. Multi-scale features that describe fine irregularities and general 
style hints are extracted by the encoder and the generator optimizes them by progressive decoding. Skip connections 
maintain high-frequency structure and style modulation layers are wider in range of appearance variation. The 
discriminator is acting worldwide to achieve the material identity of the material and locally to achieve the fidelity of the 
micro-details to generate the balance between sharpness and structural coherence, as depicted in Figure 2. In order to 
address the weaknesses of synthesis that is all 2D, a geometry-aware integration module combines surface topology 
directly into synthesis. Examples of auxiliary conditioning channels used by the model are UV distortion fields, curvature 
maps, and surface normal, which allow the model to predict stretching, seam boundaries, and areas with more detail. 
This conditioning provides for easy transitions between UV islands, minimises the occurrence of artifacts in high 
distorting regions, and makes either the direction of the grain or the chisel pattern coincide with the natural contours of 
the sculpture, leading to a significant enhancement in perceptual realism. 

                                                                Figure 2 

 
Figure 2 Architecture of the Proposed Hybrid Texture Generator 

 
The total training of the framework is a multi-objective loss strategy that has to be well balanced. Conventional GAN 

loss gives adversarial supervision to refine details and make it look more realistic whereas the perceptual loss based on 
VGG features maintains structural fidelity and material identity. Style loss ensures the material coherence of the world 
by limiting statistics of feature correlations. These losses work together in a synergistic manner: the perceptual and style 
terms strengthen the holistic realism, patch and geometry terms guarantee continuity of the surfaces and the adversarial 
component enhances the sharpness of the visuals. This is a balanced goal which helps the generator to create textures 
that can be both believable in 2D and when applied to a 3D geometry. The last refinement phase uses differentiable 
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rendering to induce feedback of lighting. The model is provided with gradient signals associated with shading, 
illumination and general visual coherence by rendering the generated texture directly onto the 3D sculpture. Overall, the 
methodology puts texture synthesis in the perspective of geometry-aware multi-stage learning. Through the 
combination of curated data set, hybrid generative architectures, topology sensitive conditioning and extensive multi-
objective loss, framework addresses age-old limitations in sculptural texturing. It generates textures which are 
materially true, structurally consistent and visually consistent when used on complex 3D surfaces. 

 
5. RESULTS AND DISCUSSION 

The experimental findings are evident to reveal that the geometry-sensitive, multi-scale framework improves 
significantly the authenticity and integrity of generated sculptural textures. Quantitative evaluation shows that there are 
important improvements in the perception of fidelity and geometric consistency. The model scores significantly lower 
in FID and LPIPS, which means that it is more similar to real material exemplars. Its results in the Surface Consistency 
Index (SCI) and Patch Boundary Discontinuity (PBD) improvements (reductions over baselines greater than 30-45) 
indicate successful seam mitigation and even distribution of details between different areas of varying curvature. These 
measurements affirm that geometrical aware fusion module and patch-consistency mechanism is at the core of 
generation of seamless and topological coherent textures. 
                                                                     Figure 3 

 
Figure 3 Training Convergence Showing FID Reduction Across Epochs for all Competing Models 

 
The convergence plot of FID vs Epochs of the training depicts how fast and how steadily each of the models 

minimizes its error as it is being optimized and the proposed Hybrid-GeoTex framework evidently starts with a lower 
error and optimizes its error more effectively as the training rate increases. Its curve is very steep in early eras and has 
an unimpeding downward slant as compared to StyleGAN-Tex and Diffusion-UV whose convergence is slower and their 
plateau is earlier as depicted in Figure 3. This action indicates that the geometry-becoming aware conditioning enables 
the model to master material priors and structural regularities more efficiently, stimulating the enhancement of the 
perceptual fidelity with time. These benefits are also confirmed by qualitative renderings. The proposed model maintains 
grain direction, micro-cracks, mineral changes, and chisel marks on highly curved or densely stretched areas of the 
surface unlike the baseline methods which often have tiling artifacts, tonal breaks, over smoothing, or directional 
distortion. The model generates patterns in materials by conditioning generation based on curvature, UV distortion, and 
normal cues, which increases the sense of physical authenticity of the sculpture. 

Table 2  

Table 2 Perceptual Quality Comparison Across Models 

Model FID ↓ LPIPS ↓ V-LPIPS ↓ User Preference (%) ↑ 
StyleGAN2 (FT) 34.51 0.224 0.247 41.2 
Diffusion U-Net 29.48 0.198 0.212 47.8 

Texture GAN 37.62 0.241 0.267 39.5 

Proposed Hybrid Model 18.92 0.142 0.158 68.5 
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The model has stylistic coherence and structural accuracy when compared to baselines on unseen material families, 

making the model more successful than baselines which tend to render repetitive or desaturated textures. Such a 
behaviour demonstrates the effectiveness of the multi-scale feature extractor of the model and the possibility to learn 
the properties of materials in a semantic but not superficial way. 

These objective findings are supported by the study of human perception. The outputs of the proposed method were 
found by the participants to be more realistic in almost 70 percent of the pairwise comparisons, with fewer apparent 
seams, increased surface integrity, and more believable interaction between light and material. The increase in inter-
rater agreement and shorter response time are the signs of high and stable preference to the created textures. 

Table 3 

Table 3 Surface Consistency and Seam Quality 

Model SCI ↓ (Surface Consistency) PBD ↓ (Patch Boundary Discontinuity) Seam Visibility Score ↓ 
Patch Match 0.214 0.189 2.97 
StyleGAN2 0.167 0.142 2.16 

Diffusion U-Net 0.153 0.131 1.88 

Proposed Hybrid Model 0.097 0.089 1.03 

 
The results of ablation bring to light the role each of the modules could play: the perceptual and style losses are 

reduced to make the world look better; the patch-consistency component reduces discontinuities between UV islands; 
the geometry-aware fusion layer brings the biggest improvements, as the texture behavior is adjusted in response to 
local topology. All of these make up a synergistic architecture that is sculpturally realistic. 
                                                                                 Figure 4  

 
Figure 4 PSNR versus SSIM Scatter Plot Demonstrating the Global Image-Quality Trade-Off Among Models. 

 
The plot of runtime-scaling can provide an idea about viable feasibility. The computation time is proportional to the 

resolution in texture resolution, but with a much flatter slope than diffusion-based and neural style-transfer baselines, 
Hybrid-GeoTex cannot differentiate between models. This implies that the architecture can be made computationally 
accessible even at the increased resolutions, and hence can be applied to the actual production processes like 4K or 8K 
sculptural assets as illustrated in Figure 4. The performance is worst when subjected to extreme UV distortion or with 
meshes whose geometry resolution is too low resulting in repetition of patterns or loss of local details on some occasions. 
Differentiable rendering is a more expensive operation, and necessary in refinement based on lighting awareness. Future 
research can look into implicit or UV-free texture representations, better sampling of topology and more efficient 
rendering methods to decrease training costs. 
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                                                                           Figure 5 

 
Figure 5 Boxplot of Human Preference Scores Evaluating Subjective Realism Across Models 

 
The visual representation of human evaluation with the help of preference-score boxplot presents the results of the 

evaluation by users in terms of average, but also the distribution and regularity of user responses. The participants are 
overwhelmingly more accepting of outputs of Hybrid-GeoTex, which is evidenced by its better median and mean values 
with a smaller quartile range as indicated in Figure 5. The wider distribution observed in the competing methods implies 
that there is uncertainty in the perceived realism, but the narrowed distribution observed in Hybrid-GeoTex implies that 
there is greater and more visual credibility between subjects. On the whole, these findings prove that geometry-sensitive 
cues in conjunction with profound synthesis can result in substantial increases in the texture of sculptures. The 
framework provides a solid basis of digital sculpting, rebuilding of cultural heritage, the generation of game assets, and 
virtual production that is evident through quantitative measures, qualitative evaluation, and human perception. 

 
6. CONCLUSION 

This paper proposed a multi-scale deep learning architecture which is geometric-sensitive, and aim to solve an 
ongoing issue of creating real-like textures to a digital sculpture. The 2D texture synthesis algorithms do not work in 3D 
(complex) surfaces and usually result inappearances and distortions in the textures, as well as the loss of microstructural 
information. By incorporating both perceptual style and patch consistency and geometry adaptive learning into the 
proposed hybrid generative model, the proposed model models texture synthesis as a coupled 2D-3D process, which is 
able to make textures naturally match to the curvature, UV distortion and local surface structures. The experiments 
demonstrate steady state enhancements over classical and neural baselines, as subsequently demonstrated through 
improved perceptual fidelity, multiple-view coherence and much less seam artifacts. Represented images show that basic 
micro-elements such as grain direction, mineral variations and chisel marks are preserved in even extremely curved 
areas. The human perception studies further prove the excellence of the proposed approach and the participants 
significantly like its results on wide variety of materials and types of sculptures. In addition to the benefits to 
performance, this framework should propagate the use of generative models combined with 3D geometry, which reduce 
the cleanup of hands and result in production efficiency. The rest of the problems are excessive UV distortion, non-
uniform mesh topology, and lack of training material on extreme materials. The future work can be implicit texture 
representation or UV free rendering methods, differentiable rendering with improved rendering times, and multimodal 
learning with physical material properties. To conclude, the presented geometry-aware hybrid framework is a powerful, 
scalable and perceptually based solution to sculptural realism, which can use to give a solid base towards further 
developments in neural texture synthesis in digital art, cultural heritage and virtual production. 
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