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ABSTRACT 
A two-way frequency table that categorizes all corporate bonds rated by Standard & 
Poor's and Moody's, or the well-known father-son social mobility data matrix that is 
frequently cited as an example of a Markov chain in human resources, are two examples 
to consider. Given that bond ratings and social class have a similar natural ordering, both 
are instances of contingency tables with rows and columns that represent ordinal 
categorical variables. The degree of association between such row and column variables 
is measured and quantified in this study. When it comes to cardinal variables, correlation 
provides a clear indicator of linkage that doesn't require category scaling. A measure of 
connection could be calculated using sup correlation, a scheme similar to eigen analysis, 
if the order relationships involved do not need to be respected. Methods for ordinal 
categorical data, like Spearman's or Kendall's tau, assign numerical values to the 
categories. We introduce a few novel methods for assessing the correlation between 
ordinal variables. The idea of monotone correlation is used to develop four new statistical 
measures of monotone relationships. The particular circumstance that produced the data 
determines whether each of these metrics is appropriate. An iterative process is the only 
way to obtain these metrics of association. These metrics are evaluated and the 
corresponding monotone scalings are obtained using a nonlinear optimization approach. 
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1. INTRODUCTION 
The intelligent use of statistics and a deeper understanding of the underlying bivariate probabilistic structures depend on the 

measurement and comprehension of the basis for the relationship between two random variables, X and Y. This work focuses on the 
relationship between ordinal random variables, or random variables whose observed values have a natural ordering but do not 
necessarily have numerical values that are naturally assigned. The values might be derived, for instance, from agree-based 
questionnaire responses. 

It makes sense to require that the resulting numerical measure of association depend only on the orderings and not on the 
actual numerical values when assessing the association between two ordinal variables using a five-point scale: strongly disagree, 
disagree, no opinion, agree, and strongly measure. This characteristic is known as monotone scale invariance. The scale is invariant 
when the values 1... N are assigned to the scale levels in order to apply Pearson's correlation coefficient. A monotone invariant 
measure of association would not be obtained by computing the Pearson correlation for the five-point example, where 1 would 
represent strongly disagree and 5 would represent strongly agree. Gebelein [1941] introduced the sup correlation 𝜌𝜌', which was 
later developed by Sarmanov [1958a and 1958b], Rényi [1959], and Lancaster [1969]. It is defined as follows: 𝜌𝜌’ (X, Y) = sup 𝜌𝜌(f(X), 
g(Y)), where the supremum is taken over all Borel-measurable functions, f and g, such that 0 < var f (X) < ∞ and 0. An important 
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dependence concept between two random variables is that of complete dependence, introduced by Lancaster [1963]. A random 
variable Y is said to be completely dependent on a random variable X if there exists a function g such that 

 

 
 
If Y is completely dependent on X and vice versa, then X and Y are said to be mutually completely dependent, in this case X and 

Y are perfectly predictable from each other. Observe that if X and Y are mutually completely dependent, then 𝜌𝜌 (X, Y) = 1. 
Kimeldorf and Sampson [1978] provided an example of random variables X and Y which were mutually completely dependent 

and yet were "almost" stochastically independent. To circumvent this difficulty, Kimeldorf and Sampson defined Y to be monotone 
increasing (decreasing) dependent on X if (1) holds for a monotone increasing (decreasing) function g. Furthermore, motivated by 
trying to measure the degree of monotone dependence, they defined the monotone correlation between random variables X and Y 
by 

        

 
 
where the supremum is taken over all monotone functions f and g for which 0 < var f (X) < ∞ and 0<var g(Y)< ∞. The monotone 

correlation is a monotone scale-invariant measure of association and the maximizing functions (assuming they exist) for (2) are the 
best monotone scalings for cross linear predictability of X and Y. (Monotone scalings are order-preserving assignments of numerical 
values to ordinal data.) Kimeldorf and Sampson evaluated the monotone correlation in only two special situations: (i) X and Y 
bivariate normal, in which case 𝜌𝜌* = 𝜌𝜌; and (ii) X and Y independent, in which case 𝜌𝜌*=0. 

In this study of the paper there are two-folds. One is to derive new measures associated with the monotone correlation and to 
study their applicability. A second is to provide a computational procedure and computer program to evaluate the monotone 
correlation and these derived measures for the case when X and Y assume a finite number of values. The approach is to find an 
equivalent nonlinear program and then employ a modification of the optimization algorithm of J.H.May [1979] to compute the 
maximizing values and the points at which they occur. In section 2 we introduce the concepts of concordancy, discordancy, and 
isoscaling for measuring the monotone association. The equivalent nonlinear programs are given in section 3. The specific algorithm 
and the computer program, which we call MONCOR, are described in section 4. A number of interesting applications and examples 
are considered in section 5 and discussion is given in section 6. 

 
2. CONCORDANCY, DISCORDANCY, AND ISOSCALING 

The concept of a monotone correlation can be refined by measuring separately the strength of the relationship between X and 
Y in a positive direction and the strength of the relationship in a negative direction, i.e. to measure separately the extent of 
concordancy and of discordancy between X and Y. These concepts are related to so-called measures of disagreement and measures 
of dissociation. If in (2) ƒ and g are both restricted to be (nonstrictly) increasing (or equivalently both decreasing (nonstrictly)), the 
resulting measure is called the concordant monotone correlation (CMC). When f is restricted to be increasing and g decreasing (or 
equivalently f decreasing and g increasing), we find it convenient to examine -sup𝜌𝜌 (f(X), g(Y)), which in turn can be expressed as -
sup 𝜌𝜌 (f(X), -g(Y)), where both f and g are increasing. This leads naturally to defining the discordant monotone correlation (DMC) by 
inf 𝜌𝜌 (f(X). g(Y)), where f and g are both restricted to be increasing. 

The DMC and CMC have natural interpretations as measures of negative and positive association, respectively, for ordinal 
random variables. They also can be interpreted as providing bounds for the correlation between any arbitrary monotone scalings; 
specifically, for arbitrary increasing f and g. 

 
 

 
 
Suppose it is desired to impose numeric monotone scalings for a pair of new tests; if the CMC and DMC are close, then by (3) it 

makes little difference which monotone scales are used. Also, if CMC = DMC = 0, then X and Y are independent random variables; 
however, it is possible for DMC <CMC=0 and X and Y not to be independent. Furthermore, note that if X and Y are increasing monotone 
dependent then CMC = 1; and if X and Y are decreasing monotone dependent, then DMC=-1.  

Sometimes the situation occurs when X and Y should have the same scaling. For example, suppose that X is a psychological test 
score pre-treatment and Y is the score post-treatment on the same test. This leads to another extension of the monotone correlation, 
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which we refer to as isoscaling. If in (2) we restrict f=g, the resulting measure is called the isoconcordant monotone correlation 
(ICMC). Analogous to the DMC definition, the isodiscordant monotone correlation (IDMC) is given by inf   (f(X), g(Y)), where f=g. 
Obviously, isoscaling is not appropriate in practice when X and Y have essentially different ranges of values. If X and Y are 
exchangeable ordinal random variables it might be conjectured, due to all the symmetries involved, that ICMC=CMC (and IDMC= 
DMC). However, as is shown in section 5, surprisingly this is not the case. The actual functions that maximize the correlations 
(assuming they exist) are generically called monotone variables; their specific interpretation depends upon which monotone 
correlation measure is used in their derivation. When measuring the monotone association using one of our monotone measures, we 
strongly advocate simultaneously examining the values of the corresponding monotone variables. Otherwise, there can be potential 
misinterpretations. For instance, Hall [1969, example 7] presents an example where the support of X and Y is three monotone 
disjunct pieces and the CMC=1. In this example, corresponding monotone variables are  and  , where   is the indicator function of the 
set A. Also, as we note in section 6 below, the monotone variables themselves may be quite useful in constructing scales for ordinal 
data. 

 
3. FORMULATION 

The preceding extensions of the monotone correlation are applicable to all suitable pairs of random variables, continuous or 
discrete. We now focus on the case where X and Y jointly take on a finite number of values (ai, bj), i=1,2,…..,I, j=1,2,…..,J and prob (X = 
ai,Y= bj)=pi j, Then: 

 

 
 

Subject to f and g being increasing functions for which denominator in (4) is non-zero and where . 1
J

i i jjp p
=

=∑  and 

. 1
I

j i jip p
=

=∑  denote the values ( )if a  by xi, i=1,2,…..,I, and  by yj ,j=1,2,…..,J, so that (4) can be formulated as: 

 

 
 
 
subject to 
x1≤…...≤xI and y1≤…...≤yJ; x ≠c1e and y≠c2e, where x = (x1 ...,xI)’, y =(y1 ,...,yJ)’, P=( pi j) and e=(1,……,1). Thus, to compute the CMC all 

that is required is the matrix P of probabilities. For instance, the values a1……,a5 could be the five-point scale strongly disagree,...., 
strongly agree. The resultant monotone variable x would then provide a numerical scale assigning x1 to strongly disagree, ……, x5 to 
strongly agree. Analogous formulations of (5) can be given for ICMC, DMC, and IDMC. Again, the ICMC and IDMC are not defined when 
I≠J. When reporting the monotone variables, we standardize them without loss of generality so that in (5), for example, x1= y1= 0 and 
xI=yJ=1. Until this point, the CMC, etc. have been defined as population quantities. For data from finite discrete distributions, the joint 
probabilities can be estimated from the data viewed in ordinal contingency table form. Then the CMC can be evaluated based upon 
the estimated probabilities. In this situation the CMC can either be viewed as an estimate of the "true" CMC or be viewed as a measure 
of monotone association for the ordinal contingency table. 
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4. OPTIMIZATION APPROACH AND MONCOR DESCRIPTION 

The nonlinear programming problem (5) involves the optimization of a nonlinear fractional form subject to linear constraints. 
Note that if it were not for the monotone constraints, (5) would be an eigenvalue problem. The objective function in (5) is not 
pseudoconcave. To see this, consider the simple case of evaluating the  

  

 
 
for a symmetric probability matrix P. While both numerator and denominator are continuously differentiable on the feasible 

region, and ( )22 '
i ix p x P e 

 


−
∑  is a positive convex function of x, (x'Px - x'Pe)2 would have to be non-negative and concave for 

pseudoconcavity (see Avriel [1968]). This latter condition does not hold in general for symmetric P. Hence, in general, the CMC, and 
ICMC, DMC and IDMC will involve the optimization of a function with local optima. Although much work is presently being done in 
the area of global optimization (see, for example, Dixon and Szego [1975, 1978]), we follow the standard procedure of using various 
starting points, computing the optima, and then choosing the best result based upon the different starting points. 

Note that since correlation is unique in x and y only up to location and scale change, we could express (5) as 
maximize x'Py  
Subject to:   
 

 
 
The formulation of (6), because of its nonlinear constraints, is not a desirable formulation since complexity in the objective 

function is much easier to deal with than complexity in the constraints. The constraints x≠c1e and y≠c2e in (5) are not computationally 
implementable in continuous variables. However, without loss of generality, we eliminate those constraints by fixing x1 and y1 at zero 
and xI and yJ at one.  

Specifically, the computation of the CMC (DMC) involves optimizing a nonconcave (nonconvex) function in I+J-4 independent 
variables subject to monotonicity constraints. (The ICMC and IDMC involve I-2 independent variables.) Since P is envisioned to be 
not much larger than 10x10, a modified Newton method was considered desirable because it should converge in a small number of 
iterations. QRMNEW (see [1979]), an optimization method not requiring analytical derivatives, was employed because of its ease of 
adaptation and computational use. QRMNEW is a hybrid local variations-modified Newton method, using orthogonal (QR) matrix 
factorization to derive a representation for the locally feasible region. It has been shown by May that starting from any initial point, 
QRMNEW converges to a point satisfying both first and second-order necessary optimality conditions, so that any solution generated 
is at least a local optimum. Superlinear and order 2 convergence rates can be established under somewhat stronger conditions. 
Denote by {(x, y) k} the iterative sequence of points generated by the algorithm. In general, because of the lack of pseudo-concavity 
(pseudoconvexity) for the CMC and ICMC (DMC and IDMC), an iterate (x, y) k will usually be in a region not locally 
concave (convex). The algorithm does have a sophisticated method for dealing with the indefinite projected matrix of second 
derivatives implied by the lack of local concavity (convexity). MONCOR is an interactive package designed to analyze probability 
matrices, P, of dimension less than or equal to 20×20. The user may input a single starting point for an optimization run, or allow the 
program to generate its own multiple starting points. In both cases the constraint set corresponding to the correlation measure 
requested is generated internally, and QRMNEW is used to compute an optimum. Additionally, two different strategies are employed 
in seeking an optimal solution. Numerical experience indicates that optimum values sometimes lie at monotone extreme points, i.e. 
points where all the x and y entries are either zero or one. This appears to be especially the case when computing the DMC or IDMC 
for a matrix with highly positive CMC. and vice versa. In fact, for certain cases the optima for all four monotone correlation measures 
might be achieved only at such points. Additionally. because nonoptimal monotone extreme points can be local optima (satisfying 
the Karush-Kuhn-Tucker second-order necessary optimality conditions (see Fiacco and McCormick [1968]). QRMNEW starting from 
a random point might well be trapped by these local optima. Note that for an I×J matrix, there are only (I-1) (J-1) monotone extreme 
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points to consider for the CMC and DMC (n - 1) for ICMC and IDMC, assuming (I = J = n) Hence, in order to avoid at a local optimum 
when the global optimum is a monotone extreme point, MONCOR evaluates the correlation of all monotone extreme points. Moreover, 
MONCOR generates ten random monotone points, with coordinates selected on (0, 1), using the DEC random number generator (see 
[1958]), and calls QRMNEW to compute an optimum starting from each of them. The user may select to see only the final output, or 
an iteration-by-iteration output of the monotone correlations and monotone variables. 

 
5. APPLICATION 

By means of the algorithm and the MONCOR program, we now compute the CMC, etc. for several insightful examples. Let (X, Y) 
be a discrete bivariate random vector taking values in a 6×6 lattice: {a1,…….a6} × {b1……...b6} Furthermore, suppose prob(X = ai) =1/6, 
for all i, and prob (Y= bj)=1/6, for all j; i.e. X and Y have uniform marginals. If X and Y are monotone increasing dependent then P = 
(1/6) I, where P=prob (X = i, Y = j) , and I is the 6×6 identity matrix are monotone dependent, then P= (1/6), where I* ={δ (i + j - 7)} 
and ( )xδ is 1 if x= 0 and is 0, otherwise. Now consider a one-parameter family of distributions indexed byθ  i.e. for a givenθ , prob 

(X= i,Y=j) is the (i, j)th element of Pθ , where 

 

 
 

where - 1 < θ < 1.  Note that X and Y still have uniform marginal distributions for allθ =1(-1), Pθ  corresponds to the most 
monotone increasing (decreasing) dependent case; and intermediate values ofθ  describe varying degrees of mixtures of the two 
dependent extremes.  

Now consider (X, Y) defined on a 3×3 lattice with, 
 

 
 
so that, for example, prob (X = a1 Y = b2) =1/4. Note that P is a symmetric probability matrix, so that and Y are exchangeable 

random variables. It follows in this case, by direct computation or by use of MONCOR, that the ICMC is 0 and the monotone variables 
for X and Y are (0, 0.5, 1). However, the CMC is 1/3 and the monotone variables for X and Y, respectively, are either (0, 1, 1)' and (0, 
0, 1)' or (0, 0, 1)' and (0, 1, 1)'. Thus, (8) provides an example of exchangeable random variables where ICMC≠ CMC. 

We now consider applying these monotone measures to an actual data example, taken from Bishop, Fienberg and Holland [1975, 
p. 100], which in turn was adapted from Glass and Hall [1969. p. 183]. These data are given in table 1. 

Table 1 British Mobility Data (3500 Father-Son Data Values) 
Sr. No.  Father's occupational status Father's occupational status 

S1 S2 S3 S4 S5 
1 S1 50 45 8 18 8 
2 S2 28 174 84 154 55 
3 S3 11 78 110 223 96 
4 S4 14 150 185 714 447 
5 S5 03 42 72 320 411 

 
Note: Status S1 is professional, and high administrative; status S2 is managerial, executive and higher grade supervisory; status 

S3 a lower grade supervisory, status S4 is skilled manual, and status S5 is semi-skilled and unskilled manual 
Table 2 ICMC, IDMC and Monotone Variables for British Mobility Data 

Measure Value of measure Monotone variable values 
ICMC 0.496 0 0.627 0.842 0.923 1.0 
IDMC 0.242 0 0 0 0 1.0 
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Because the same categories are used to measure father's and son's occupational status, it is appropriate to use isoscaling. The 
ICMC, IDMC and the associated monotone variables were computed by the MONCOR program based on the empirical probability 
matrix specified by table 1. The values of the ICMC and IDMC as well as the monotone variables are presented in table 2. 

The analogous version of (3) for isoscaling, namely IDMC ≤ 𝜌𝜌 [f(X), f(Y)] ≤ICMC, shows that regardless of the assignment of 
numerical values to the five ordinal categories, the resultant correlation is between 0.242 and 0.496. 

 
6. CONCLUSION 

One important use of monotone variable theory is the ability to develop meaningful scales for ordinal variables. For example, 
suppose the five-point scale response to some question is elicited pre- and post- some experimental intervention. Through the use 
of the ICMC, we can provide a numerical scale for this five-point response, this numerical scale has the property that among all 
possible such ordinal scalings, the post-response for this scaling is most linearly predictable from the pre-response. In table 2 the 
row corresponding to ICMC provides this scaling for the occupational status variable based on the British mobility data. Specifically, 
the numerical values for S1, S2, S3, S4, and S5 are 0, 0.627, 0.842, 0.923, and 1.0, respectively. 

Often, the number of distinct values for the numerically scaled variables is substantially less than the number of values for the 
original ordinal variables This reduction occurs when the optimizing f, g in (2) are not one-to-one functions. To illustrate this 
phenomenon, we consider the following example a 10x10 matrix is generated where each entry is a randomly generated number on 
(0, 1), each generated independently of the other entries. In order to generate a "slightly" positive dependent distribution, the 
constant 2 was added to each diagonal term and the entire matrix scaled so as to add to one. The resultant matrix is given in table 3. 

Table 3 
Sr. No. X Y 

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 
1 a1 0.0331 0.0111 0.0092 0.0049 0.0016 0.0028 0.0009 0.0108 0.0096 0.0007 
2 a2 0.0101 0.0361 0.0057 0.0081 0.0133 0.0062 0.0121 0.0066 0.0003 0.0022 
3 a3 0.0102 0.0059 0.0347 0.0027 0.0055 0.0020 0.0124 0.0046 0.0069 0.0056 
4 a4 0.0144 0.0018 0.0065 0.0342 0.0006 0.0071 0.0055 0.0066 0.0084 0.0113 
5 a5 0.0006 0.0016 0.0087 0.0132 0.0435 0.0061 0.0100 0.0046 0.0044 0.0053 
6 a6 0.0022 0.0035 0.0151 0.0015 0.0056 0.0427 0.0062 0.0035 0.0089 0.0125 
7 a7 0.0002 0.0084 0.0026 0.0020 0.0005 0.0086 0.0387 0.0007 0.0034 0.0111 
8 a8 0.0084 0.0100 0.0079 0.0036 0.0100 0.0128 0.0044 0.0303 0.0121 0.0063 
9 a9 0.0028 0.0079 0.0141 0.0008 0.0133 0.0077 0.0064 0.0139 0.0402 0.0068 

10 a10 0.0009 0.0149 0.0042 0.0108 0.0022 0.0144 0.0130 0.0151 0.0146 0.0438 

 
The CMC for the matrix in table 3 is 0.443, and the monotone variables for a1……,a10 and b1,…..,b10 are, respectively (0.000, 

0.461, 0.461, 0.461, 0.872, 0.872, 0.872, 0.872, 0.873, 1.000)' and (0.000, 0.537, 0.541, 0.541, 0.842, 0.842. 0.842, 0.842, 0.842, 1.000). 
Note that while the original variables each had ten separate values, there are only five distinct monotonely scaled values for X and 
five for Y. While this scale reduction phenomenon is based upon empirical observation, it is clear that it has great potential value in 
deriving simplified scales for large data sets. 

A description of the MONCOR program, and examples of its input and output procedures, is given in Kimeldorf, May and 
Sampson [10]. The FORTRAN program itself, and a user's manual, are available for distribution. For specific details contact Professor 
Jerrold May, Graduate School of Business, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A.  
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