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ABSTRACT 
In this work, the natural homotopy permutation technique is discussed as follows: In 
order to make this endeavor scientifically valuable, the Atangana-Baleanu operator in the 
Reimann sense was applied with fractional differential equations to solve them using this 
method. Definitions and characteristics related to this study are also given, and the 
algorithm of the methodology is also examined. These equations' approximate solutions 
were eventually discovered, and the method worked well for resolving this kind of 
fractional problem. 
   Fractional order, discrete transfer function model of an elementary inertial plant is 
proposed. The model uses Atangana-Baleanu operator. The discrete transfer function's 
convergence and stability are examined. Simulations extend theoretical results. The 
suggested discrete, approximated model has a minimal numerical complexity and is 
correct. When modeling various physical phenomena, such as heat processes, it might be 
helpful. 
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1. INTRODUCTION 
Fractional calculus and its applications in mathematics, as well as in many other sciences including physics, 

thermodynamics, engineering, economics, etc., have attracted the attention of researchers in recent decades. There are 
numerous uses for fractional calculus in the fields of probability, statistics, electrochemistry, and electrical engineering. 
Furthermore, many cosmic phenomena that conventional differential equations are unable to describe can be described 
by fractional differential equations [1–5]. 

In recent decades, researchers have been interested in studying fractional calculus and its applications in a wide 
range of disciplines, including economics, physics, thermodynamics, geology, and mathematics. There are numerous uses 
for fractional calculus in statistics, probability, electrochemistry, and electrical engineering. Additionally, a variety of 
cosmic events that normal differential equations are unable to describe may be described by fractional differential 
equations [5–10]. 
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In this research, we use the fractional operator Atangana-Baleanu-Reimann to solve fractional differential equations 
using the natural homotopy permutation technique. The paper is organized as follows: Section 2 presents the 
fundamental definitions of calculus and fractional integration; Section 3 analyzes the methods employed; Section 4 
provides numerous examples that demonstrate the efficacy of the suggested method; and Section 5 concludes. 

In the publication [14], Atangana and Baleanu proposed a novel fractional operator with a nonsingular kernel. 
Papers [23,25] investigate the approximations of the Atangana Bealeanu operator (AB operator). 

Papers [19] or [20], for example, have intriguing sets of data demonstrating the application of the AB operator in 
modeling many physical, biological, and social processes. There are blood alcohol models, logistic equation models, and 
population growth models. 

The following publications provide some recent findings demonstrating the application of the AB operator: The use 
of the AB operator in nonlinear fractional differential equations is covered in the work [31], the application of the AB 
operator in advection-dispersion equations is shown in the paper [13], and [15] examines the modeling of COVID-19 
dynamics in India. For instance, [30] and [24,26] examined the simulation of heat transmission using the AB operator. 

All known models that use the AB operator have the form of a state equation, which is a characteristic. There is 
currently no proposed transfer function model that makes use of this operator. 

In this research, two iterations of a novel AB operator-based fractional order transfer function model are proposed. 
The time-continuous model and its step response are shown first. 

Several actual physical occurrences can be modeled using the recently suggested model. 
  

2. PRELIMINARY 
Definition 1 [7,8] Let 𝓋𝓋 ∈ 𝐻𝐻1(𝜀𝜀1, 𝜀𝜀2), 𝜀𝜀1 > 𝜀𝜀2, the Reimann-sense Atangana-Baleanu operator for < 𝛿𝛿 <  is, 

𝐷𝐷𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴
𝑡𝑡
𝛿𝛿𝓋𝓋(𝑡𝑡) = 𝐵𝐵(𝛿𝛿)

1−𝛿𝛿
𝑑𝑑
𝑑𝑑𝑑𝑑 ∫ 𝐸𝐸𝛿𝛿

𝑡𝑡
0 �− 𝛿𝛿(𝑡𝑡−𝑇𝑇)𝛿𝛿

1−𝛿𝛿
�𝓋𝓋(𝑇𝑇)𝑑𝑑𝑑𝑑, 𝑡𝑡 ≥ 0,                                     (1) 

Where B(δ) is the normalizing function such that 
 B (0) = B (1) =1. 
 
Definition 2 [9,10] The set of functions is where the natural transform is defined. 
 

𝐴𝐴 =  �𝓋𝓋(𝓉𝓉)|∃ℳ, 𝜏𝜏1, 𝜏𝜏2 >  0, |𝓋𝓋(𝓉𝓉)| < ℳ𝑒𝑒
𝓉𝓉
𝜏𝜏𝑗𝑗 , 𝑖𝑖𝑖𝑖 𝓉𝓉 ∈ (−1)𝑗𝑗 × [0,∞)�                       (2) 

Using the formula below, 

𝑁𝑁[𝓋𝓋(𝑡𝑡)] = 𝑅𝑅(𝑢𝑢, 𝑠𝑠) = � 𝓋𝓋
∞

0
(𝑢𝑢𝑢𝑢)𝑒𝑒−𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑,𝑢𝑢 ∈ (𝜏𝜏1, 𝜏𝜏2). 

 
Definition 3 [11] The definition of a function's inverse natural transform is 

𝑁𝑁−1[𝑅𝑅(𝑢𝑢, 𝑠𝑠)] = 𝓋𝓋(𝑡𝑡) = 1
2𝑖𝑖𝑖𝑖 ∫ 𝑒𝑒

𝑠𝑠𝑠𝑠
𝑢𝑢

𝑝𝑝+∞
𝑝𝑝−∞ 𝑅𝑅(𝑢𝑢, 𝑠𝑠)𝑑𝑑𝑑𝑑,𝑢𝑢, 𝑠𝑠 > 0                                              (3) 

where p is a real constant and s and u are natural transform variables δ.  
The following connection [12] allows the natural transform to provide the Laplace transform. 

𝑅𝑅(𝑢𝑢, 𝑠𝑠) =
1
𝑢𝑢
� 𝑒𝑒−𝑠𝑠𝑠𝑠/𝑢𝑢
∞

0
𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑 =

1
𝑢𝑢
𝐹𝐹 �

𝑠𝑠
𝑢𝑢
�. 

 
Equation (3) and [12] provide us with this relationship, 

𝑁𝑁 � 𝐷𝐷𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴
𝑡𝑡
𝛿𝛿𝑓𝑓(𝜏𝜏)� = 𝐵𝐵(𝛿𝛿)

1−𝛿𝛿+𝛿𝛿�𝑢𝑢𝑠𝑠�
𝛿𝛿 𝑅𝑅(𝑢𝑢, 𝑠𝑠)                                                                                (4) 
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2.1. BASICS OF FRACTIONAL CALCULUS 

Many books contain basic concepts from fractional calculus, such as [18,21,28] or [29]. Only a few definitions 
required to present the primary findings will be remembered here.  

It is necessary to first provide the fractional-order, integro-differential operator (see, for example, [18, 22, 29]). It is 
as follows: 

Definition 4. The basic operator for fractional order) The following is the definition of the fractional-order integro-
differential operator: 

𝑡𝑡𝑠𝑠𝐷𝐷𝑡𝑡𝑓𝑓
𝛼𝛼 𝑓𝑓(𝑡𝑡) =

⎩
⎨

⎧
𝑑𝑑𝛼𝛼𝑓𝑓(𝑡𝑡)
𝑑𝑑𝑡𝑡𝛼𝛼

𝛼𝛼 > 0,
𝑓𝑓(𝑡𝑡) 𝛼𝛼 = 0,

∫ 𝑓𝑓𝑡𝑡𝑓𝑓
𝑡𝑡𝑠𝑠

(𝜏𝜏)(𝑑𝑑𝑑𝑑)𝛼𝛼 𝛼𝛼 < 0,⎭
⎬

⎫
                                                                            (5) 

 
where  α∈R indicates the operation's non-integer order, and t_s  and t_f indicate the time constraints for operator 

computation. Next, review the Gamma Euler function (see to [22] for example): 
 

Definition 5. (The Gamma function) 
𝛤𝛤(𝑥𝑥) = ∫ 𝑡𝑡𝑥𝑥−1∞

0 𝑒𝑒−𝑡𝑡𝑑𝑑𝑑𝑑                                                                                                  (6) 
A non-integer order generalization of the exponential function e^λt, the Mittag-Leffler function is essential to solving 

the FO state equation. The definition of the one-parameter Mittag-Leffler function is as follows: 
 

Definition 6. (The Mittag-Leffler function with a single parameter) 

𝐸𝐸𝛼𝛼(𝑥𝑥) = ∑ 𝑥𝑥𝑘𝑘

𝛤𝛤(𝑘𝑘𝑘𝑘+1)
∞
𝑘𝑘=0 .                                                                                                    (7) 

The following is the definition of the two-parameter Mittag-Leffler function 
 
Definition 7. (The Mittag-Leffler function's two arguments) 

𝐸𝐸𝛼𝛼,𝛽𝛽(𝑥𝑥) = ∑ 𝑥𝑥𝑘𝑘

𝛤𝛤(𝑘𝑘𝑘𝑘+𝛽𝛽)
∞
𝑘𝑘=0                                                                                                 (8) 

For 𝛽𝛽 = 1 Function (8) with two parameters becomes function (7) with one parameter.  
Different definitions of the fractional-order, integro-differential operator have been proposed by Riemann and 

Liouville (RL definition), Caputo (C definition), and Grünvald and Letnikov (GL definition). The definitions of C and GL 
will be applied in the subsequent analysis. Below, they are provided [17,27]. 

 
Definition 8. (The FO operator as defined by Caputo) 

𝐷𝐷0𝐶𝐶 𝑡𝑡
𝛼𝛼𝑓𝑓(𝑡𝑡) = 1

𝛤𝛤(𝑁𝑁−𝛼𝛼)∫
𝑓𝑓(𝑁𝑁)(𝜏𝜏)

(𝑡𝑡−𝜏𝜏)𝛼𝛼+1−𝑁𝑁
∞
0 𝑑𝑑𝑑𝑑                                                                              (9) 

where N-1<α<N indicates Γ and the non-integer order of operation.is the whole Gamma function that (6) expresses. 
The Laplace transform for the Caputo operator can be defined as follows (see [21] for example): 

Definition 9. (The Caputo operator's Laplace transform) 

ℒ � 𝐷𝐷0𝐶𝐶 𝑡𝑡
𝛼𝛼𝑓𝑓(𝑡𝑡)� = 𝑠𝑠𝛼𝛼𝐹𝐹(𝑠𝑠),          𝛼𝛼 < 0, 

ℒ � 𝐷𝐷0𝐶𝐶 𝑡𝑡
𝛼𝛼𝑓𝑓(𝑡𝑡)� = 𝑠𝑠𝛼𝛼𝐹𝐹(𝑠𝑠) − ∑ 𝑠𝑠𝛼𝛼−𝑘𝑘−1𝑛𝑛−1

𝑘𝑘=0 𝐷𝐷0 𝑡𝑡
𝑘𝑘𝑓𝑓(0),                                                              (10) 

𝛼𝛼 > 0,𝑛𝑛 − 1 < 𝛼𝛼 ≤ 𝑛𝑛 ∈ 𝑁𝑁. 
Thus, the following is the expression for the inverse Laplace transform for a non-integer order function ([22]): 
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ℒ−1[𝑠𝑠𝛼𝛼𝐹𝐹(𝑠𝑠)] = 𝐷𝐷0 𝑡𝑡
𝛼𝛼𝑓𝑓(𝑡𝑡) + ∑ 𝑡𝑡𝑘𝑘−1

𝛤𝛤(𝑘𝑘−𝛼𝛼+1)
𝑛𝑛−1
𝑘𝑘=0 𝑓𝑓(𝑘𝑘)(0+)                                                          (11) 

𝑛𝑛 − 1 <  𝛼𝛼 ,    𝑛𝑛 ∈ ℤ 
  
The following is the definition of the GL derivative along time from function [17, 27]: 
Definition 10. (The Grünwald-Letnikov definition) 

𝐷𝐷0𝐺𝐺𝐺𝐺 𝑡𝑡
𝛼𝛼𝑔𝑔(𝑡𝑡) = lim

ℎ→0
ℎ−𝛼𝛼 ∑ (−1)𝑙𝑙

�𝑡𝑡ℎ�
𝑙𝑙=0 �𝛼𝛼𝑙𝑙 � 𝑔𝑔(𝑡𝑡 −  𝑙𝑙ℎ).                                                                  (12) 

In (12) "0.0 < α ≤ 1.0  is the fractional order along the time, h is the sample time, [.] is the nearest integer value, 
�𝛼𝛼𝑙𝑙 �is the binomial coefficient: 

�𝛼𝛼𝑙𝑙 � = �
1, 𝑙𝑙 = 0

𝛼𝛼(𝛼𝛼−1)…(𝛼𝛼−𝑙𝑙+1)
𝑙𝑙!

, 𝑙𝑙 > 0�                                                                                          (13) 

 
3. ANALYSIS OF THE PROPOSED METHOD 

Suppose that fractional partial differential equation with Atangana-Baleanu- Reimann operator, 

𝐷𝐷𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴
𝑡𝑡
𝛿𝛿𝑣𝑣(𝑥𝑥, 𝑡𝑡) + 𝐿𝐿[𝑣𝑣(𝑥𝑥, 𝑡𝑡)] + 𝑀𝑀[𝑣𝑣(𝑥𝑥, 𝑡𝑡)] = 𝑔𝑔(𝑥𝑥, 𝑡𝑡), 

With initial condition v(x,0)=v_0 (x), where ABRD_τ^δ is the Atangana - Baleanu - Reimann operator, L is a linear 
operator, M is a nonlinear operator and g is a source term. 

Applying the natural transform of Atangana-Baleanu- Reimann operator subject to the given initial condition, 

𝐵𝐵(𝛿𝛿)

1 − 𝛿𝛿 + 𝛿𝛿 �𝑢𝑢𝑠𝑠�
𝛿𝛿 𝑣𝑣(𝑢𝑢, 𝑠𝑠) = 𝑁𝑁(𝑔𝑔(𝑥𝑥, 𝑡𝑡) − 𝐿𝐿[𝑣𝑣(𝑥𝑥, 𝑡𝑡)] −𝑀𝑀[𝑣𝑣(𝑥𝑥, 𝑡𝑡)]), 

By substituting initial condition of natural transform of Atangana-Baleanu- Reimann operator 

𝑣𝑣 = −
1−𝛿𝛿+𝛿𝛿�𝑢𝑢𝑠𝑠�

𝛿𝛿

𝐵𝐵(𝛿𝛿) 𝑁𝑁(𝐿𝐿[𝑣𝑣] + 𝑀𝑀[𝑣𝑣] − 𝑔𝑔),                                                                                 (14) 

Applying the inverse of the natural transform to both sides of the Eq. (14), 

𝑣𝑣 = 𝑁𝑁−1 �
1−𝛿𝛿+𝛿𝛿�𝑢𝑢8�

𝛿𝛿

𝐵𝐵(𝛿𝛿) 𝑁𝑁(𝑔𝑔)� − 𝑁𝑁−1 �
1−𝛿𝛿+𝛿𝛿�𝑢𝑢8�

𝛿𝛿

𝐵𝐵(𝛿𝛿) 𝑁𝑁(𝐿𝐿[𝑣𝑣] + 𝑀𝑀[𝑣𝑣])�,                                  (15) 

By applying homotopy permutation method, 
𝑣𝑣(𝑥𝑥, 𝑡𝑡) = ∑ 𝑝𝑝𝑛𝑛∞

𝑛𝑛=0 𝑣𝑣𝑛𝑛(𝑥𝑥, 𝑡𝑡),𝑁𝑁[𝑢𝑢(𝑥𝑥, 𝑡𝑡)] = ∑ 𝑝𝑝𝑛𝑛∞
𝑛𝑛=0 𝐻𝐻𝑛𝑛(𝑣𝑣),                                                  (16) 

Were 

𝐻𝐻𝑛𝑛(𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3, … , 𝑣𝑣𝑛𝑛) = 1
𝑛𝑛!

𝜕𝜕𝑛𝑛

𝜕𝜕𝑝𝑝𝑛𝑛
�𝑁𝑁 �∑ 𝑝𝑝𝑖𝑖𝑛𝑛

𝑖𝑖=0 𝑣𝑣𝑖𝑖(𝑥𝑥, 𝑡𝑡)��
𝑝𝑝=0

𝑛𝑛 = 0,1,2, ….                                 (17) 

Substituting Eq. (16) into Eq. (15) gives us the result that, 

∑ 𝑝𝑝𝑛𝑛∞
𝑛𝑛=0 𝑣𝑣𝑛𝑛(𝑥𝑥, 𝑡𝑡) = 𝐺𝐺(𝑥𝑥, 𝑡𝑡) − 𝑝𝑝�𝑁𝑁−1 �

1−𝛿𝛿+𝛿𝛿�𝑢𝑢8�
𝛿𝛿

𝐵𝐵(𝛿𝛿) 𝑁𝑁(∑ 𝑝𝑝𝑛𝑛∞
𝑛𝑛=0 𝐿𝐿[𝑣𝑣𝑛𝑛] + ∑ 𝑝𝑝𝑛𝑛𝐻𝐻𝑛𝑛(𝑣𝑣)∞

𝑛𝑛=0 )�� (18) 

Were 

𝐺𝐺(𝑥𝑥, 𝑡𝑡) = 𝑣𝑣(𝑥𝑥, 0) + 𝑁𝑁−1 �
1−𝛿𝛿+𝛿𝛿�𝑢𝑢𝑠𝑠�

𝛿𝛿

𝐵𝐵(𝛿𝛿) 𝑁𝑁(𝑔𝑔)�                                                                   (19) 
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By comparing both sides of the equation, the following result is obtained, 

𝑝𝑝0: 𝑣𝑣0(𝑥𝑥, 𝑡𝑡) = 𝐺𝐺(𝑥𝑥, 𝑡𝑡), 

𝑝𝑝1: 𝑣𝑣1(𝑥𝑥, 𝑡𝑡) = −𝑁𝑁−1 �
1−𝛿𝛿+𝛿𝛿�𝑢𝑢𝑠𝑠�

𝛿𝛿

𝐵𝐵(𝛿𝛿) 𝑁𝑁�𝐿𝐿[𝑣𝑣0] + 𝐻𝐻0(𝑣𝑣)��,                                                      (20) 

𝑝𝑝𝑛𝑛: 𝑣𝑣𝑛𝑛(𝑥𝑥, 𝑡𝑡) = −𝑁𝑁−1 �
1−𝛿𝛿+𝛿𝛿�𝑢𝑢𝑠𝑠�

𝛿𝛿

𝐵𝐵(𝛿𝛿) 𝑁𝑁�𝐿𝐿[𝑣𝑣𝑛𝑛−1] + 𝐻𝐻𝑛𝑛−1(𝑣𝑣)��,                                               (21) 

Using the parameter p, we expand the solution in the following form, 
𝑣𝑣(𝑥𝑥, 𝑡𝑡) = ∑ 𝑝𝑝𝑛𝑛∞

𝑛𝑛=0 𝑣𝑣𝑛𝑛(𝑥𝑥, 𝑡𝑡)                                                                                                   (22) 
Setting p=1 results in the solution of Eq. (22) 
𝑣𝑣(𝑥𝑥, 𝑡𝑡) = lim

𝑝𝑝→1
∑ 𝑝𝑝𝑛𝑛∞
𝑛𝑛=0 𝑣𝑣𝑛𝑛(𝑥𝑥, 𝑡𝑡) = ∑ 𝑣𝑣𝑛𝑛∞

𝑛𝑛=0 (𝑥𝑥, 𝑡𝑡)..                                                                (23) 

 
3.1. ELEMENTARY FO TRANSFER FUNCTION 

The elementary, scalar input-output differential equation using elementary fractional operator (5) takes the 
following form: 

𝑇𝑇𝛼𝛼0𝐷𝐷𝑡𝑡𝛼𝛼𝑦𝑦(𝑡𝑡) = −𝑦𝑦(𝑡𝑡) + 𝑢𝑢(𝑡𝑡).                                                                                                  (24) 
where T_α is the time constant, u(t) is the control signal and y(t) is the output. 
Assume homogenous initial condition. Applying (10) in (24) gives the elementary, fractional order transfer function: 

𝐺𝐺𝐶𝐶(𝑠𝑠) = 1
𝑇𝑇𝛼𝛼𝑠𝑠𝛼𝛼+1

.                                                                                                                    (25) 

For this transfer function its impulse and step responses are as beneath (see e.g. [17, p. 11]): 

𝑔𝑔𝐶𝐶(𝑡𝑡) = 𝑡𝑡𝛼𝛼−1

𝑇𝑇𝛼𝛼
𝐸𝐸𝛼𝛼 �−

𝑡𝑡𝛼𝛼

𝑇𝑇𝛼𝛼
� ,

𝑦𝑦𝐶𝐶(𝑡𝑡) = 1(𝑡𝑡) − 𝐸𝐸𝛼𝛼 �−
𝑡𝑡𝛼𝛼

𝑇𝑇𝛼𝛼
� .

                                                                                                  (26) 

In (26) E_α. (.) is the one parameter Mittag-Leffler function (7) 
 

3.2. THE FOBD APPROXIMATION 
The GL definition is the limit case for ℎ→0,Δx→0 of the FOBD, commonly employed in discrete FO calculations (see 

e.g. [28, p. 68]). 
Definition 11. (The Fractional Order Backward Difference along the time FOBDT) 

𝛥𝛥𝛼𝛼𝑔𝑔(𝑡𝑡) = 1
ℎ𝛼𝛼
∑ (−1)𝑙𝑙𝐿𝐿
𝑙𝑙=0 �𝛼𝛼𝑙𝑙 � 𝑔𝑔(𝑡𝑡 − 𝑙𝑙ℎ)                                                              (27) 

In (27) L denotes a memory length necessary to correct approximation of a non integer order operator. 
Unfortunately, good accuracy of approximation requires to use a long memory L which can make implementation 
difficult. 

Denote coefficients (−1)𝑙𝑙 �𝛼𝛼𝑙𝑙 � by 𝑑𝑑𝑙𝑙 : 

𝑑𝑑𝑙𝑙 = (−1)𝑙𝑙 �𝛼𝛼𝑙𝑙 �                                                                                                                    (28) 

The coefficients (28) can be also computed using the following, equivalent, recursive formula (e.g. [17, p. 12]), useful 
in numerical calculations: 

d_0=1 

𝑑𝑑𝑙𝑙 = �1 − 1+𝛼𝛼
𝑙𝑙
� 𝑑𝑑𝑙𝑙−1,    𝑙𝑙 = 1, … , 𝐿𝐿                                                                                 (29) 
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In [16] it is given that: 
∑ 𝑑𝑑𝑙𝑙∞
𝑙𝑙=1 = 1 − 𝛼𝛼
∑ 𝑑𝑑𝑙𝑙∞
𝑙𝑙=0 = 0                                                                                                                     (30) 

Using (28) the operator (27) can be expressed in shorter form: 

𝛥𝛥𝛼𝛼𝑔𝑔(𝑡𝑡) = 1
ℎ𝛼𝛼
∑ 𝑑𝑑𝑙𝑙𝐿𝐿
𝑙𝑙=0 𝑔𝑔(𝑡𝑡 − 𝑙𝑙ℎ)                                                                                             (31) 

and consequently, its discrete transfer function G_FOBD 𝐺𝐺𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑧𝑧−1)  takes the following form: 

𝐺𝐺𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑧𝑧−1) = 1
ℎ𝛼𝛼
∑ 𝑑𝑑𝑙𝑙𝐿𝐿
𝑙𝑙=0 𝑧𝑧−𝑙𝑙                                                                                            (32) 

 
3.3. DISCRETE SYSTEMS: SELECTED RESULTS 

Let recall two theorems from theory of discrete time dynamic systems, necessary to present of main results: there 
are Final Value Theorem (FVT) and necessary condition of the asymptotic stability of a system described by a discrete 
transfer function G^(+(z) ). 

Theorem 1. (Final Value Theorem for discrete time) Let g(k) is a discrete function of time, defined in k time instants 
and G(z) is its z-transform. Assume that G^(+(z) ) : 

1) has no poles outside the unit circle, 
2) has maximally one pole on the unit circle: z=1,then: 

 
lim
𝑘𝑘→∞

𝑔𝑔(𝑘𝑘) = lim
𝑧𝑧→1

(𝑧𝑧 − 1)𝐺𝐺(𝑧𝑧)                                                                                              (33) 

 
Theorem 2. (Necessary condition of the asymptotic stability of the discrete polynomial) 
Consider the characteristic polynomial of a discrete system: w(z)=a_N z^N+⋯+a_1 z+a_0. 
The necessary condition of its asymptotic stability is as follows: 
𝑤𝑤(1) > 0 ∧ (−1)𝑁𝑁𝑤𝑤(−1) > 0 ∧ |𝑎𝑎0| < 𝑎𝑎𝑁𝑁                                                                         (34) 
 

3.4. THE ATANGANA-BALEANU FRACTIONAL OPERATOR 
The fractional order derivative Atangana-Baleanu operator is obtained via replacing the exponential kernel in the 

Caputo-Fabrizio (CF) operator by the Mittag-Leffler kernel. It is defined using the C or RL definition of fractional order 
derivative. Using these definitions we obtain the Atangana-Baleanu-Caputo (ABC) or Atangana-Baleanu-Riemann 
(ABR)operator respectively [14]: 

Definition 12. (The Atangana-Baleanu-Caputo (ABC) operator) 

𝐷𝐷𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴
𝑡𝑡
𝛼𝛼�𝑓𝑓(𝑡𝑡)� = 𝑀𝑀(𝛼𝛼)∫ 𝑓𝑓′𝑡𝑡

𝑎𝑎 (𝑥𝑥)𝐸𝐸𝛼𝛼 �−𝛼𝛼
(𝑡𝑡−𝑥𝑥)𝛼𝛼

1−𝛼𝛼
� 𝑑𝑑𝑑𝑑,                                                              (35) 

where E_α.is the oneparameterMittag-Lefflerfunction,M_α is the normalization function equal: 
𝑀𝑀(𝛼𝛼) = 1 − 𝛼𝛼 + 𝛼𝛼

𝛤𝛤(𝛼𝛼)                                                                                                              (36) 

In (36) Γ (.) is the Gamma function. 
 
Definition 13. (The Atangana-Baleanu-Riemann (ABR) operator) 

𝐷𝐷𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴
𝑡𝑡
𝛼𝛼�𝑓𝑓(𝑡𝑡)� = 𝑀𝑀(𝛼𝛼) 𝑑𝑑

𝑑𝑑𝑑𝑑 ∫ 𝑓𝑓𝑡𝑡𝑎𝑎 (𝑥𝑥)𝐸𝐸𝛼𝛼 �−𝛼𝛼
(𝑡𝑡−𝑥𝑥)𝛼𝛼

1−𝛼𝛼
� 𝑑𝑑𝑑𝑑.                                                         (37) 

where E_α(.) is the one parameter Mittag-Leffler function, 𝑀𝑀(𝛼𝛼) is the normal ization function expressed by (36), 
Γ(.) is the Gamma function. 

The Laplace transforms for the ABC and ABR derivatives are as follows: 
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Definition 14. (The Laplace transform of the ABC operator) 

ℒ� 𝐷𝐷𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴
𝑡𝑡
𝛼𝛼�𝑓𝑓(𝑡𝑡)��(𝑠𝑠) = 𝑀𝑀(𝛼𝛼)

1−𝛼𝛼
𝑠𝑠𝛼𝛼{𝑓𝑓(𝑡𝑡)}(𝑠𝑠)−𝑠𝑠𝛼𝛼−1𝑓𝑓(0)

𝑠𝑠𝛼𝛼+ 𝛼𝛼
1−𝛼𝛼

.                                                                       (38) 

Definition 15. (The Laplace transform of the ABR operator) 

ℒ� 𝐷𝐷𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴
𝑡𝑡
𝛼𝛼�𝑓𝑓(𝑡𝑡)��(𝑠𝑠) = 𝑀𝑀(𝛼𝛼)

1−𝛼𝛼
𝑠𝑠𝛼𝛼{𝑓𝑓(𝑡𝑡)}(𝑠𝑠)
𝑠𝑠𝛼𝛼+ 𝛼𝛼

1−𝛼𝛼
.                                                                                   (39) 

For the homogenous initial condition: f(0)=0 both Laplace transforms are equal: 
ℒ� 𝐷𝐷𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴

𝑡𝑡
𝛼𝛼�𝑓𝑓(𝑡𝑡)��(𝑠𝑠) = 𝐿𝐿�𝐴𝐴𝐴𝐴𝐶𝐶𝑎𝑎𝐷𝐷𝑡𝑡𝛼𝛼�𝑓𝑓(𝑡𝑡)��(𝑠𝑠).                                                                      (40) 

In further considerations it will be used the common notation AB to denote this operator in both versions, becuase 
the initial conditions are equal zero during analysis of a transfer function. To simplify, introduce the following short 
notation: 

ℒ� 𝐷𝐷𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴
𝑡𝑡
𝛼𝛼�𝑓𝑓(𝑡𝑡)��(𝑠𝑠) = 𝑏𝑏𝛼𝛼𝑠𝑠𝛼𝛼

𝑠𝑠𝛼𝛼+𝑎𝑎𝛼𝛼
                                                                                             (41) 

where: 
𝑎𝑎𝛼𝛼 = 𝛼𝛼

1−𝛼𝛼
,                                                                                                                                (42) 

𝑏𝑏𝛼𝛼 = 𝑀𝑀(𝛼𝛼)
1−𝛼𝛼

.                                                                                                                              (43) 

The form a_α and b_α require to assume that "0.0"≤α<"1.0" . 
 

4. IMPLEMENTATIONS 
Example 1: Let us consider the following nonlinear equation with the Atangana-Baleanu- Reimann sense. 

𝐷𝐷𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴
𝑡𝑡
𝛿𝛿𝜑𝜑(𝜇𝜇, 𝜏𝜏) + 2𝜑𝜑𝜇𝜇 + 𝜑𝜑𝜇𝜇𝜇𝜇 = 0, ,0 < 𝛿𝛿 ≤ 1 

Subject to the initial condition φ(μ,0)="sin" (μ).By using the natural transform to both sides of Atangana-Baleanu- 
Reimann sense, 

𝑁𝑁� 𝐷𝐷𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴
𝑡𝑡
𝛿𝛿𝜑𝜑(𝜇𝜇, 𝜏𝜏) + 2𝜑𝜑𝜇𝜇(𝜇𝜇, 𝜏𝜏) + 𝜑𝜑𝜇𝜇𝜇𝜇(𝜇𝜇, 𝜏𝜏) = 0�                                                                  (43) 

By using the inverse natural transform to both sides of (43) and the initial condition, 

𝜑𝜑(𝜇𝜇, 𝜏𝜏) = −𝑁𝑁−1 ��1 − 𝛿𝛿 + 𝛿𝛿 �𝑢𝑢
𝛿𝛿
�
𝛿𝛿
�𝑁𝑁�2𝜑𝜑𝜇𝜇 + 𝜑𝜑𝜇𝜇𝜇𝜇��                                                     (44) 

By applying homotopy permutation method on Eq. (44), 

∑ 𝑃𝑃𝑛𝑛∞
𝑛𝑛=0 𝜑𝜑𝑛𝑛 = −𝑝𝑝𝑁𝑁−1 ��1 − 𝛿𝛿 + 𝛿𝛿 �𝑢𝑢

𝑠𝑠
�
𝛿𝛿
�𝑁𝑁�2∑ 𝑃𝑃𝑛𝑛∞

𝑛𝑛=0 𝜑𝜑𝑛𝑛𝑛𝑛 + ∑ 𝑝𝑝𝑛𝑛∞
𝑛𝑛=0 𝜑𝜑𝑛𝑛𝑛𝑛𝑛𝑛��                 (45) 

By comparing both sides of the Eq. (45), the following result is obtained, 
𝑃𝑃0:𝜑𝜑0 = sin(𝜇𝜇),

𝑃𝑃1:𝜑𝜑1 = −𝑁𝑁−1 ��1 − 𝛿𝛿 + 𝛿𝛿 �𝑢𝑢
𝑠𝑠
�
𝛿𝛿
�𝑁𝑁�2𝑃𝑃0𝜑𝜑0𝜇𝜇 + 𝑃𝑃0𝜑𝜑0𝜇𝜇𝜇𝜇��

𝑃𝑃2:𝜑𝜑2 = −𝑁𝑁−1 ��1 − 𝛿𝛿 + 𝛿𝛿 �𝑢𝑢
𝑠𝑠
�
𝛿𝛿
�𝑁𝑁�2𝑃𝑃1𝜑𝜑1𝜇𝜇 + 𝑃𝑃1𝜑𝜑1𝜇𝜇𝜇𝜇��

                                        (47) 

 
By the above algorithms, 
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𝜑𝜑0 = sin(𝜇𝜇)

𝜑𝜑1 = −cos(𝜇𝜇) �1 − 𝛿𝛿 + 𝛿𝛿
𝜏𝜏𝛿𝛿

𝛤𝛤(𝛿𝛿 + 1)�

𝜑𝜑2 = sin(𝜇𝜇)�(1 − 2𝛿𝛿 + 𝛿𝛿2) + (2𝛿𝛿 − 2𝛿𝛿2)
𝜏𝜏𝛿𝛿

𝛤𝛤(𝛿𝛿 + 1) + 𝛿𝛿2
𝜏𝜏2𝛿𝛿

𝛤𝛤(2𝛿𝛿 + 1)�

 

 
and so on. Therefore, the series solution φ(μ,τ) of the Atangana-Baleanu- Reimann sense is given by, 

𝜑𝜑(𝜇𝜇, 𝜏𝜏) = sin(𝜇𝜇) − cos(𝜇𝜇) �1 − 𝛿𝛿 + 𝛿𝛿 𝜏𝜏𝛿𝛿

𝛤𝛤(𝛿𝛿+1)
� + sin(𝜇𝜇)

(1 − 2𝛿𝛿 + 𝛿𝛿2)

+�(2𝛿𝛿 − 2𝛿𝛿2) 𝜏𝜏𝛿𝛿

𝛤𝛤(𝛿𝛿+1) + 𝛿𝛿2 𝜏𝜏2𝛿𝛿

𝛤𝛤(2𝛿𝛿+1)�
−⋯.                                                                   

(48) 
If we put δ→1 in Eq. (48), we get the approximate and exact solution, 

𝜑𝜑(𝜇𝜇, 𝜏𝜏) = sin(𝜇𝜇) − 𝜏𝜏cos(𝜇𝜇) +
𝜏𝜏2

2!
sin(𝜇𝜇) −⋯ = sin(𝜇𝜇 − 𝜏𝜏) 

Example 2 Let us consider the following nonlinear equation with the Atangana-Baleanu- Reimann sense. 

𝐷𝐷𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴
𝜏𝜏
𝛿𝛿𝜑𝜑(𝜇𝜇, 𝜏𝜏) − 6𝜑𝜑𝜑𝜑𝜇𝜇 + 𝜑𝜑𝜇𝜇𝜇𝜇𝜇𝜇 = 0,0 < 𝛿𝛿 ≤ 1, 

Subject to the initial condition φ(μ,0)=6x.By using the natural transform to both sides of above equation, 
𝑁𝑁� 𝐷𝐷𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴

𝑡𝑡
𝛿𝛿𝜑𝜑(𝜇𝜇, 𝜏𝜏) − 6𝜑𝜑(𝜇𝜇, 𝜏𝜏)𝜑𝜑𝜇𝜇(𝜇𝜇, 𝜏𝜏) + 𝜑𝜑𝜇𝜇𝜇𝜇𝜇𝜇(𝜇𝜇, 𝜏𝜏) = 0�                                                      (49) 

By using the inverse natural transform to both sides of Eq. (49) and the initial condition, 

𝜑𝜑(𝜇𝜇, 𝜏𝜏) = −𝑁𝑁−1 ��1 − 𝛿𝛿 + 𝛿𝛿 �𝑢𝑢
𝑠𝑠
�
𝛿𝛿
�𝑁𝑁�−6𝜑𝜑𝜑𝜑𝜇𝜇 + 𝜑𝜑𝜇𝜇𝜇𝜇𝜇𝜇��                                                (50) 

By applying homotopy permutation method on Eq. (50), 

∑ 𝑃𝑃𝑛𝑛∞
𝑛𝑛=0 𝜑𝜑𝑛𝑛 = −𝑝𝑝𝑁𝑁−1 ��1 − 𝛿𝛿 + 𝛿𝛿 �𝑢𝑢

𝑠𝑠
�
𝛿𝛿
�𝑁𝑁�−6∑ 𝑃𝑃𝑛𝑛∞

𝑛𝑛=0 𝐴𝐴𝑛𝑛 + ∑ 𝑃𝑃𝑛𝑛∞
𝑛𝑛=0 𝜑𝜑𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛��,              (51) 

By comparing both sides of the Eq. (51), the following result is obtained, 
𝑃𝑃0:𝜑𝜑0 = 6𝑥𝑥

𝑝𝑝1:𝜑𝜑1 = −𝑁𝑁−1 ��1 − 𝛿𝛿 + 𝛿𝛿 �𝑢𝑢
𝑠𝑠
�
𝛿𝛿
�𝑁𝑁�−6𝑝𝑝0𝐴𝐴0 + 𝑝𝑝0𝜑𝜑0𝜇𝜇𝜇𝜇𝜇𝜇��

𝑝𝑝2:𝜑𝜑2 = −𝑁𝑁−1 ��1 − 𝛿𝛿 + 𝛿𝛿 �𝑢𝑢
𝑠𝑠
�
𝛿𝛿
�𝑁𝑁�−6𝑃𝑃1𝐴𝐴1 + 𝑝𝑝1𝜑𝜑1𝜇𝜇𝜇𝜇𝜇𝜇��

                                              (52) 

By the above algorithms, 
𝜑𝜑0 = 6𝑥𝑥

𝜑𝜑1 = 63𝑥𝑥 �1 − 𝛿𝛿 + 𝛿𝛿 𝜏𝜏𝛿𝛿

𝛤𝛤(𝛿𝛿+1)
�

𝜑𝜑2 = 64𝑥𝑥 �2(1 − 2𝛿𝛿 + 𝛿𝛿2) + 2(2𝛿𝛿 − 2𝛿𝛿2) 𝜏𝜏𝛿𝛿

𝛤𝛤(𝛿𝛿+1) + 2𝛿𝛿2 𝜏𝜏2𝛿𝛿

𝛤𝛤(2𝛿𝛿+1)
� ,

                                (53) 

And so on. Therefore, the series solution φ(μ,τ) of nonlinear equation with the Atangana-Baleanu- Reimann sense 
is given by, 

𝜑𝜑(𝜇𝜇, 𝜏𝜏) = 6𝑥𝑥 + 63𝑥𝑥 �1 − 𝛿𝛿 + 𝛿𝛿 𝜏𝜏𝛿𝛿

𝛤𝛤(𝛿𝛿+1)
� + 64𝑥𝑥 �

2(1 − 2𝛿𝛿 + 𝛿𝛿2)

+2(2𝛿𝛿 − 2𝛿𝛿2) 𝜏𝜏𝛿𝛿

𝛤𝛤(𝛿𝛿+1) + 2𝛿𝛿2 𝜏𝜏2𝛿𝛿

𝛤𝛤(2𝛿𝛿+1)
�      (54) 

If we put δ→1 in Eq. (54), we get the approximate and exact solution. 

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh


Namrata Pandey, and Neelam Pandey 
 

ShodhKosh: Journal of Visual and Performing Arts 1755 
 

𝜑𝜑(𝜇𝜇, 𝜏𝜏) = 6𝑥𝑥(1 + 62𝜏𝜏 + 64𝜏𝜏2 + ⋯ ) = 6𝑥𝑥
1−62𝜏𝜏

                                                                     (55) 

Example 3 Consider the nonlinear system of time-fractional differential equation in the Atangana-Baleanu Reimann 
operator: 

𝐷𝐷𝜏𝜏𝛿𝛿𝐴𝐴𝐴𝐴𝐴𝐴 𝜑𝜑(𝜇𝜇, 𝜉𝜉, 𝜏𝜏) − 𝜓𝜓𝜇𝜇𝜗𝜗𝜉𝜉 − 1 = 0,0 < 𝛿𝛿 ≤ 1,
𝐷𝐷𝜏𝜏 𝜆𝜆𝐴𝐴𝐴𝐴𝐴𝐴 𝜓𝜓(𝜇𝜇, 𝜉𝜉, 𝜏𝜏) − 𝜑𝜑𝜉𝜉𝜗𝜗𝜇𝜇 − 5 = 0,0 < 𝜆𝜆 ≤ 1,
𝐷𝐷𝜏𝜏

 𝜌𝜌𝐴𝐴𝐴𝐴𝐴𝐴 𝜗𝜗(𝜇𝜇, 𝜉𝜉, 𝜏𝜏) − 𝜓𝜓𝜉𝜉𝜑𝜑𝜇𝜇 − 5 = 0,0 < 𝜌𝜌 ≤ 1,
 

 

Taking the natural transform on both sides of the initial conditions of Example 3, 

                                       

𝑁𝑁� 𝐷𝐷𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴
𝑡𝑡
𝛿𝛿𝜑𝜑(𝜇𝜇, 𝜉𝜉, 𝜏𝜏)� = �1 − 𝛿𝛿 + 𝛿𝛿 �𝑢𝑢

𝑠𝑠
�
𝛿𝛿
�𝑁𝑁�−𝜓𝜓𝜇𝜇𝜗𝜗𝜉𝜉 − 1�,

𝑁𝑁� 𝐷𝐷𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴
𝜏𝜏
𝜆𝜆𝜓𝜓(𝜇𝜇, 𝜉𝜉, 𝜏𝜏)� = �1 − 𝛿𝛿 + 𝛿𝛿 �𝑢𝑢

𝑠𝑠
�
𝜆𝜆
�𝑁𝑁�−𝜑𝜑𝜉𝜉𝜗𝜗𝜇𝜇 − 5�,

𝑁𝑁� 𝐷𝐷𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴
𝜏𝜏
𝜌𝜌𝜗𝜗(𝜇𝜇, 𝜉𝜉, 𝜏𝜏)� = �1 − 𝜆𝜆 + 𝜆𝜆 �𝑢𝑢

𝑠𝑠
�
𝜌𝜌
�𝑁𝑁�−𝜓𝜓𝜉𝜉𝜑𝜑𝜇𝜇 − 5�,

              (56) 

 
Operating with the NT on both sides of (56) gives, 

𝜑𝜑(𝜇𝜇, 𝜉𝜉, 𝜏𝜏) = −𝑁𝑁−1 ��1 − 𝛿𝛿 + 𝛿𝛿 �𝑢𝑢
𝑠𝑠
�
𝛿𝛿
�𝑁𝑁�−𝜓𝜓𝜇𝜇𝜗𝜗𝜉𝜉 − 1��,  

𝜓𝜓(𝜇𝜇, 𝜉𝜉, 𝜏𝜏) = −𝑁𝑁−1 ��1 − 𝛿𝛿 + 𝛿𝛿 �𝑢𝑢
𝑠𝑠
�
𝜆𝜆
�𝑁𝑁�−𝜑𝜑𝜉𝜉𝜗𝜗𝜇𝜇 − 5��,                                                    (57) 

𝜗𝜗(𝜇𝜇, 𝜉𝜉, 𝜏𝜏) = −𝑁𝑁−1 ��1 − 𝜆𝜆 + 𝜆𝜆 �𝑢𝑢
𝑠𝑠
�
𝜌𝜌
�𝑁𝑁�−𝜑𝜑𝜉𝜉𝜗𝜗𝜇𝜇 − 5��.   

By applying homotopy permutation method on Eq. (57), 

𝜑𝜑(𝜇𝜇, 𝜉𝜉, 𝜏𝜏) = −𝑝𝑝�𝑁𝑁−1 ��1 − 𝛿𝛿 + 𝛿𝛿 �𝑢𝑢
𝑠𝑠
�
𝛿𝛿
�𝑁𝑁�−𝜓𝜓𝜇𝜇𝜗𝜗𝜉𝜉 − 1���,  

𝜓𝜓(𝜇𝜇, 𝜉𝜉, 𝜏𝜏) = −𝑝𝑝�𝑁𝑁−1 ��1 − 𝛿𝛿 + 𝛿𝛿 �𝑢𝑢
𝑠𝑠
�
𝜆𝜆
�𝑁𝑁�−𝜑𝜑𝜉𝜉𝜗𝜗𝜇𝜇 − 5���,  

𝜗𝜗(𝜇𝜇, 𝜉𝜉, 𝜏𝜏) = −𝑝𝑝�𝑁𝑁−1 ��1 − 𝜆𝜆 + 𝜆𝜆 �𝑢𝑢
𝑠𝑠
�
𝜌𝜌
�𝑁𝑁�−𝜑𝜑𝜉𝜉𝜗𝜗𝜇𝜇 − 5���                                             (58) 

 
On comparing both sides of the (58), 
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𝑃𝑃0:𝜑𝜑0 = 𝜇𝜇 + 2𝜉𝜉,𝑝𝑝0:𝜓𝜓0 = 𝜇𝜇 − 2𝜉𝜉,𝑝𝑝0:𝜗𝜗0 = −𝜇𝜇 + 2𝜉𝜉

𝑝𝑝1:𝜑𝜑1 = −𝑁𝑁−1 ��1 − 𝛿𝛿 + 𝛿𝛿 �
𝑢𝑢
𝑠𝑠
�
𝛿𝛿
�𝑁𝑁�−𝜓𝜓0𝜇𝜇𝜗𝜗0𝜉𝜉 − 1�� ,

𝑝𝑝1:𝜓𝜓1 = −𝑁𝑁−1 ��1 − 𝛿𝛿 + 𝛿𝛿 �
𝑢𝑢
𝑠𝑠
�
𝜆𝜆
�𝑁𝑁�−𝜑𝜑0𝜉𝜉𝜗𝜗0𝜇𝜇 − 5�� ,

𝑃𝑃1:𝜗𝜗1 = −𝑁𝑁−1 ��1 − 𝛿𝛿 + 𝛿𝛿 �
𝑢𝑢
𝛿𝛿
�
𝜆𝜆
�𝑁𝑁�−𝜑𝜑0𝜉𝜉𝜗𝜗0𝜇𝜇 − 5�� ,

𝑝𝑝2:𝜑𝜑2 = −𝑁𝑁−1 ��1 − 𝛿𝛿 + 𝛿𝛿 �
𝑢𝑢
𝑠𝑠
�
𝛿𝛿
�𝑁𝑁�−𝜓𝜓1𝜇𝜇𝜗𝜗1𝜉𝜉 − 1�� ,

 

                                                   
𝑝𝑝2:𝜓𝜓2 = −𝑁𝑁−1 ��1 − 𝛿𝛿 + 𝛿𝛿 �𝑢𝑢

𝑠𝑠
�
𝜆𝜆
�𝑁𝑁�−𝜑𝜑1𝜉𝜉𝜗𝜗1𝜇𝜇 − 5�� ,

𝑓𝑓2:𝜗𝜗2 = −𝑁𝑁−1 ��1 − 𝛿𝛿 + 𝛿𝛿 �𝑢𝑢
𝑠𝑠
�
𝜆𝜆
�𝑁𝑁�−𝜑𝜑1𝜉𝜉𝜗𝜗1𝜇𝜇 − 5�� .

                                                     (59) 

 
By the above algorithms, 
𝜑𝜑0 = 𝜇𝜇 + 2𝜉𝜉,𝜓𝜓0 = 𝜇𝜇 − 2𝜉𝜉,𝜗𝜗0 = −𝜇𝜇 + 2𝜉𝜉,

𝜑𝜑1 = 3 �1 − 𝛿𝛿 + 𝛿𝛿 𝜏𝜏𝛿𝛿

𝛤𝛤(𝛿𝛿+1)
� ,

𝜓𝜓1 = 3 �1 − 𝜆𝜆 + 𝜆𝜆 𝜏𝜏𝜆𝜆

𝛤𝛤(𝜆𝜆+1)
� ,

𝜗𝜗1 = 3 �1 − 𝜌𝜌 + 𝜌𝜌 𝜏𝜏𝜌𝜌

𝛤𝛤(𝜌𝜌+1)
� ,

𝜑𝜑2 = 0,𝜓𝜓2 = 0,𝜗𝜗2 = 0.

                                                                       (60) 

 
Therefore, the approximate solution of (60) is given by, 

𝜑𝜑 = 𝜇𝜇 + 2𝜉𝜉 + 3 �1 − 𝛿𝛿 + 𝛿𝛿 𝜏𝜏𝛿𝛿

𝛤𝛤(𝛿𝛿+1)
�,  

𝜓𝜓 = 𝜇𝜇 − 2𝜉𝜉 + 3 �1 − 𝜆𝜆 + 𝜆𝜆 𝜏𝜏𝜆𝜆

𝛤𝛤(𝜆𝜆+1)
�,  

𝜗𝜗 = −𝜇𝜇 + 2𝜉𝜉 + 3 �1 − 𝜌𝜌 + 𝜌𝜌 𝜏𝜏𝜌𝜌

𝛤𝛤(𝜌𝜌+1)
�                                                                                   (61) 

If we put δ→1 and λ→1 in (61), we reproduce the solution of the problem as follows, 
𝜑𝜑 = 𝜇𝜇 + 2𝜉𝜉 + 3𝜏𝜏,
𝜓𝜓 = 𝜇𝜇 − 2𝜉𝜉 + 3𝜏𝜏,
𝜗𝜗 = −𝜇𝜇 + 2𝜉𝜉 + 3𝜏𝜏

                                                                                                                 (62) 

This solution is equivalent to the exact solution in closed form, 
𝜑𝜑 = 𝜇𝜇 + 2𝜉𝜉 + 3𝜏𝜏,
𝜓𝜓 = 𝜇𝜇 − 2𝜉𝜉 + 3𝜏𝜏,
𝜗𝜗 = −𝜇𝜇 + 2𝜉𝜉 + 3𝜏𝜏

                                                                                                                (63) 

 
5. MAIN RESULTS 
5.1. THE TIME-CONTINUOUS TRANSFER FUNCTION 

The application of the AB operator (35) or (37) in the elementary FO differential equation (24) yields: 
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𝑇𝑇𝛼𝛼� 𝐷𝐷𝑎𝑎𝐴𝐴𝐴𝐴 𝑡𝑡
𝛼𝛼𝑦𝑦(𝑡𝑡)� + 𝑦𝑦(𝑡𝑡) = 𝑢𝑢(𝑡𝑡) 

Assume homogenous initial condition. Using of (39) in above equation we obtain: 
𝑇𝑇𝛼𝛼𝑏𝑏𝛼𝛼𝑠𝑠𝛼𝛼

𝑠𝑠𝛼𝛼+𝑎𝑎𝛼𝛼
𝑌𝑌(𝑠𝑠) + 𝑌𝑌(𝑠𝑠) = 𝑈𝑈(𝑠𝑠).                                                                                                   (64) 

Consequently, the transfer function 𝐺𝐺(𝑠𝑠) = 𝑌𝑌(𝑠𝑠)
𝑈𝑈(𝑠𝑠) takes the following form: 

𝐺𝐺𝐴𝐴𝐴𝐴(𝑠𝑠) = 𝑠𝑠𝛼𝛼+𝑎𝑎𝛼𝛼
𝑇𝑇𝐴𝐴𝐴𝐴𝑠𝑠𝛼𝛼+𝑎𝑎𝛼𝛼

.                                                                                                                 (65) 

where a_α and b_α are expressed by (42) and (43) respectively, and: 
𝑇𝑇𝐴𝐴𝐴𝐴 = 1 + 𝑇𝑇𝛼𝛼𝑏𝑏𝛼𝛼 .                                                                                                                     (66) 
The step response of the transfer function is described by the following proposition: 
 
Proposition 1. (The step response of the transfer function using AB operator) Consider the FO transfer function 

G_AB (s) described by (65). 
Its step response takes the following form: 

𝑦𝑦𝐴𝐴𝐴𝐴(𝑡𝑡) = 1(𝑡𝑡) + � 1
𝑇𝑇𝐴𝐴𝐴𝐴

− 1� 𝐸𝐸𝛼𝛼 �−
𝑎𝑎𝛼𝛼𝑡𝑡𝛼𝛼

𝑇𝑇𝐴𝐴𝐴𝐴
�                                                                         (67) 

where T_AB is expressed by (66). 
 
Proof. The transfer function (65) can be expressed as the sum of two following transfer functions: 

𝐺𝐺𝐴𝐴𝐴𝐴1(𝑠𝑠) 𝑠𝑠𝛼𝛼

𝑇𝑇𝐴𝐴𝐴𝐴𝑠𝑠𝛼𝛼+1
,

𝐺𝐺𝐴𝐴𝐴𝐴2(𝑠𝑠) 𝑎𝑎𝛼𝛼
𝑇𝑇𝐴𝐴𝐴𝐴𝑠𝑠𝛼𝛼+1

.
                                                                                                                (68) 

The step response we are looking for is the sum of step responses of both components (68). Denote these responses 
as y_AB1 (t) and y_AB2 (t), respectively. They are equal: 

𝑦𝑦𝐴𝐴𝐴𝐴1,2(𝑡𝑡) = 𝐿𝐿−1 �1
𝑠𝑠
𝐺𝐺𝐴𝐴𝐴𝐴1,2(𝑠𝑠)�                                                                                               (69) 

The step response y_AB1 (t) is obtained using Equation (1.34), page 11 in book [17]. It takes the following form: 

𝑦𝑦𝐴𝐴𝐴𝐴1(𝑡𝑡) = 1
𝑇𝑇𝐴𝐴𝐴𝐴

𝐸𝐸𝛼𝛼 �
−𝑎𝑎𝛼𝛼𝑡𝑡𝛼𝛼

𝑇𝑇𝐴𝐴𝐴𝐴
�.                                                                                                   (70) 

Next, the step response y_AB2 (t) we obtain using (26): 

𝑦𝑦𝐴𝐴𝐴𝐴2(𝑡𝑡) = 1(𝑡𝑡) − 𝐸𝐸𝛼𝛼 �
−𝑎𝑎𝛼𝛼𝑡𝑡𝛼𝛼

𝑇𝑇𝐴𝐴𝐴𝐴
�.                                                                                               (71) 

After adding (70) to (71) we obtain (67) and the proof is completed. 
Next the steady-state response of the considered transfer function (65) is described by the following remark. 
Remark 1. (The steady-state response of the time-continuous transfer function) 
Consider the transfer function using AB operator (65). Its steady-state response is equal: 

𝑦𝑦𝑠𝑠𝑠𝑠 = 1. 

Proof. The Laplace transform of the step response of the transfer function (66) is as follows: 

𝑌𝑌(𝑠𝑠) = 1
𝑠𝑠
𝐺𝐺𝐴𝐴𝐴𝐴(𝑠𝑠).                                                                                                                (72) 

The steady-state value of (72) is obtained using Final Value Theorem (FVT): 

𝑦𝑦𝑠𝑠𝑠𝑠 = lim
𝑠𝑠→0 

𝑠𝑠𝑠𝑠(𝑠𝑠) = lim
𝑠𝑠→0

𝐺𝐺𝐴𝐴𝐴𝐴(𝑠𝑠) = lim
𝑠𝑠→0

𝑠𝑠𝛼𝛼+𝑎𝑎𝛼𝛼
𝑇𝑇𝛼𝛼𝑏𝑏𝛼𝛼𝑠𝑠𝛼𝛼+𝑎𝑎𝛼𝛼

                                                                    (73) 
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An interesting issue is to compare the proposed transfer function (65) with the well-known transfer function using 
Caputo operator (25). To do this the following "quasi-norms" H describing the distance between step responses of both 
transfer functions are proposed: 

𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 = max
0≥𝑡𝑡≥𝑇𝑇𝑓𝑓

|𝑦𝑦𝐶𝐶(𝑡𝑡) − 𝑦𝑦𝐴𝐴𝐴𝐴(𝑡𝑡)|                                                                                              (74) 

𝐻𝐻2 = ∫ �𝑦𝑦𝐶𝐶(𝑡𝑡) − 𝑦𝑦𝐴𝐴𝐴𝐴(𝑡𝑡)�2𝑇𝑇𝑓𝑓
0 𝑑𝑑𝑑𝑑                                                                                             (75) 

where T_f is the final time of the response calculation’s fundamental parameter describing dynamics of each system 
is damping rate ξ that can be easily defined for scalar systems considered here. It is equal for each considered transfer 
function: 

𝜉𝜉𝐶𝐶 = 1
𝑇𝑇𝛼𝛼

                                                                                                                                     (76) 

𝜉𝜉𝐴𝐴𝐴𝐴 = 𝑎𝑎𝛼𝛼
𝑇𝑇𝐴𝐴𝐴𝐴

                                                                                                                           (77) 

 
5.2. THE APPROXIMATED, DISCRETE TRANSFER FUNCTION 

The discrete-time transfer function using FOBD operator with fixed memory length L is obtained by employing of 
(32) in (65): 

𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴(𝑧𝑧−1) = 𝑁𝑁𝐿𝐿�𝑧𝑧−1�
𝐷𝐷𝐿𝐿(𝑧𝑧−1),                                                                                                           (78) 

where: 
𝑁𝑁𝐿𝐿(𝑧𝑧−1) = ℎ−𝛼𝛼 ∑ 𝑑𝑑𝑙𝑙𝐿𝐿

𝑙𝑙=0 𝑧𝑧−𝑙𝑙 + 𝑎𝑎𝛼𝛼
𝐷𝐷𝐿𝐿(𝑧𝑧−1) = ℎ−𝛼𝛼𝑇𝑇𝐴𝐴𝐴𝐴 ∑ 𝑑𝑑𝑙𝑙𝐿𝐿

𝑙𝑙=0 𝑧𝑧−𝑙𝑙 + 𝑎𝑎𝛼𝛼
                                                                                    (79) 

For each memory length it is expressed as: 

𝐺𝐺𝐴𝐴𝐴𝐴∞(𝑧𝑧−1) = 𝑁𝑁∞�𝑧𝑧−1�
𝐷𝐷∞(𝑧𝑧−1),                                                                                                        (80) 

where: 
𝑁𝑁∞(𝑧𝑧−1) = ℎ−𝛼𝛼 ∑ 𝑑𝑑𝑙𝑙∞

𝑙𝑙=0 𝑧𝑧−𝑙𝑙 + 𝑎𝑎𝛼𝛼 ,
𝐷𝐷∞(𝑧𝑧−1) = ℎ−𝛼𝛼𝑇𝑇𝐴𝐴𝐴𝐴 ∑ 𝑑𝑑𝑙𝑙∞

𝑙𝑙=0 𝑧𝑧−𝑙𝑙 + 𝑎𝑎𝛼𝛼 .
                                                                                   (81) 

The Z transform of the step response of both considered transfer functions takes the following form: 

𝑌𝑌𝐿𝐿,∞(𝑧𝑧−1) =
𝐺𝐺𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
+�𝑧𝑧−1�

1−𝑧𝑧−1
                                                                                                              (82) 

and consequently, the step response of the discrete, approximated transfer function is as follows: 
𝑦𝑦𝐿𝐿,∞(𝑘𝑘) = 𝑍𝑍−1{𝑌𝑌𝐿𝐿,∞(𝑧𝑧−1)},                                                                                                                      (83) 
where k=1,2,… denotes discrete time instants. The formula (83) can be solved numerically using e.g. MATLAB, which 

was used for numerical validation of results discussed in the next section. 
 
5.3. THE CONVERGENCE OF THE DISCRETE APPROXIMATION 

The Rate of Convergence (ROC) of the proposed, discrete, approximated model can be defined as follows: 
Definition 16. (The Rate of Convergence) 
ROC of the discrete transfer function (78) constructed with the fixed memory length L is equal to its steady state 

value in the discrete transfer function: 
𝑅𝑅𝑅𝑅𝐶𝐶𝐿𝐿 = 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠                                                                                                                           (84) 

where 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑆𝑆𝐿𝐿+ℎ𝛼𝛼𝑎𝑎𝛼𝛼
𝑇𝑇𝐴𝐴𝐴𝐴𝑆𝑆𝐿𝐿+ℎ𝛼𝛼𝑎𝑎𝛼𝛼

. 
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It is obvious that lim⁡〖 _(L→∞) 〗 ROC_L=1. The ROC is a function of parameters of FOBD: sample time h and 
memory length L. It is also a function of parameters of the model: fractional order α and time constant T_α. 

The value of the sample time h assuring the minimum value Δ_L of ROC is described by the following proposition: 
Proposition 3. (The value of sample time h assuring the minimum value of ROC ) 
Consider the discrete FO transfer function (78). The minimum value of the sample time h assuring the minimum, 

predefined value of Δ_L is described as follows: 

ℎ ≥ �
𝑆𝑆𝐿𝐿(1 − 𝛥𝛥𝐿𝐿𝑇𝑇𝐴𝐴𝐴𝐴)
𝑎𝑎𝛼𝛼(𝛥𝛥𝐿𝐿 − 1) �

1
𝛼𝛼

 

Proof. The minimum predefined value of ROC using y_ssL is expressed as follows: 

𝛥𝛥𝐿𝐿 ≥
𝑆𝑆𝐿𝐿+ℎ𝛼𝛼𝑎𝑎𝛼𝛼

𝑇𝑇𝐴𝐴𝐴𝐴𝑆𝑆𝐿𝐿+ℎ𝛼𝛼𝑎𝑎𝛼𝛼
⇔

⇔ ℎ𝛼𝛼𝑎𝑎𝛼𝛼(𝛥𝛥𝐿𝐿 − 1) ≥ 𝑆𝑆𝐿𝐿(1 − 𝛥𝛥𝐿𝐿𝑇𝑇𝐴𝐴𝐴𝐴) ⇔
⇔ ℎ𝛼𝛼 ≥ �𝑆𝑆𝐿𝐿(1−𝛥𝛥𝐿𝐿𝑇𝑇𝐴𝐴𝐴𝐴)

𝑎𝑎𝛼𝛼(𝛥𝛥𝐿𝐿−1)
� ⇔

⇔ ℎ ≥ �𝑆𝑆𝐿𝐿(1−𝛥𝛥𝐿𝐿𝑇𝑇𝐴𝐴𝐴𝐴)
𝑎𝑎𝛼𝛼(𝛥𝛥𝐿𝐿−1)

�
1
𝛼𝛼 .

                                                                                (85) 

 
6. SIMULATIONS 
6.1. THE TIME CONTINUOUS TRANSFER FUNCTION 

Firstly, the step responses using analytical formula (67) were examined. Time trends obtained using MATLAB for 
different values of fractional order α and time constants T_α are shown in Figures 1. These analytical responses will be 
used as a reference to estimate the quality of the discrete approximation. 

 

 
 
Figure 1 The comparing of step responses y_C (t) vs y_AB (t) for T_α=1s,T_f="100" s and α="0.25" , 0.50, 0.75, 0.95 

(top-bottom) 
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Table 1: Quasi norms (74) and (75) for T_α=1s,T_f="100" s and various fractional orders α 
𝛼𝛼 𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚  𝐻𝐻2 

0.25 0.4780 1.1417 
0.50 0.3900 0.1888 
0.75 0.2248 0.0167 
0.95 0.0490 7.9049𝑒𝑒 − 04 

 

 
These quasi-norms reflect how system behaviour can differ under varying fractional orders α, with (74) growing 

exponentially and (75) decreasing rapidly for small α. 
 

6.2. THE APPROXIMATED TRANSFER FUNCTION USING FOBD 
In this section the discrete transfer function using FOBD approximation was examined. Its accuracy was estimated 

using known Integral Absolute Error (IAE) cost function: 
𝐼𝐼𝐼𝐼𝐼𝐼 = ℎ∑ |𝑦𝑦𝐴𝐴𝐴𝐴(𝑘𝑘ℎ) − 𝑦𝑦𝐿𝐿(𝑘𝑘ℎ)|𝐾𝐾

𝑘𝑘=1 ,                                                                                        (86) 
 
where y_AB (kh) is the analytical response (67) and y_L (kh) is the step response of approximation (83). For fixed α 

and T this cost function is a function of memory length L and sample time h. Its 3D plot for L="100"-"500"  and h="0.1"-
"10" s is shown in Fig. 2. 

 

 
Figure 2 The IAE cost function as a function of memory length L and sample time h for α="0.25" , "0.50","0.75"  
 
Comparison of y_AB (t) and y_L (kh) for different values of fractional order α is shown in Fig. 2 and respective ISE 

values are given in Table 2. 
Table 2: The cost function (89) for T_α=1s,h=1s,L="100"  and various fractional orders α 

𝛼𝛼 0.25 0.50 0.75 
𝐼𝐼𝐼𝐼𝐼𝐼 0.1372 0.3312 0.4554 

 
7. CONCLUSION AND DISCUSSION 

In this article, the natural homotopy permutation method was presented and the following results were obtained: 
• The method is effective and efficient in solving fractional differential equations with the Atangana-Blaenau 

Reimann operator. 
• The approximate solutions obtained by this method approximates the exact solution when δ,λ=1. 
• The method can solve linear and nonlinear equations. 
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The most significant observation regarding the time continuous transfer function (65) is that, for fractional order α 
near 1.0, its step response tends to resemble the step response of the "classic" FO transfer function utilizing the C 
operator (25). Table 1 and Fig. 1 demonstrate this. Based on this finding, it may be inferred that the suggested transfer 
function is only useful for fractional orders α that are substantially smaller than 1.0. The "classic" transfer function (25) 
is easier to build and guarantees fairly similar performance in terms of the step response for fractional order α near to 
1.0. 

The suggested model has a significant advantage, as demonstrated by the discrete transfer function analysis using 
the FOBD approximation (78, 80). Specifically, short memory length L is linked to the good accuracy it achieves for 
lengthy sample times h. In the 3D plots 1 and 2, it is visible. When it comes to digital implementation on a limited 
platform, such as a PLC or microcontroller, this trait can be quite helpful. 

In order to achieve the same accuracy and convergence, the sample time h must be shortened while the memory 
length L must be increased. 
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