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ABSTRACT 
Background: The Internet of Things (IoT) connects billions of resource‑constrained 
devices, producing highly dynamic topologies and stringent energy constraints. 
Conventional routing protocols lack the adaptability required for such conditions, 
motivating reinforcement learning (RL) to enable intelligent and adaptive routing 
decisions. 
Methods: This survey reviews over 150 peer‑reviewed studies published between 2020 
and 2024, classifying RL‑based IoT routing protocols into energy‑efficient, 
congestion‑aware and multi‑objective categories, and analysing key performance metrics 
and emerging research trends. 
Results: RL‑driven routing methods outperform traditional protocols, delivering 
significant gains in network lifetime, packet delivery ratio and energy consumption; deep 
RL and multi‑agent frameworks offer enhanced scalability, reliability and latency 
benefits. 
Conclusions: RL shows strong potential for scalable and adaptive routing in IoT 
networks. Future work should explore federated multi‑agent learning, edge‑AI 
integration and software‑defined networking, quantum‑enhanced approaches, security. 
Survey provides a comprehensive roadmap for researchers and practitioners seeking to 
advance RL‑based IoT routing. 
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1. INTRODUCTION 
The Internet of Things (IoT) has fundamentally transformed the landscape of modern communication systems, 

creating an interconnected ecosystem of over 15 billion devices worldwide by 2024 [1]. This paradigm shift 
encompasses diverse applications ranging from smart cities and industrial automation to healthcare monitoring and 
environmental sensing, each of which presents distinct difficulties for network protocol design [2]. The exponential 
growth in IoT deployments has highlighted critical limitations in traditional routing approaches, particularly in 
environments characterized by resource constraints, heterogeneous device capabilities, and dynamic network 
topologies [3]. 

Traditional routing protocols, originally designed for conventional networks with abundant resources and stable 
topologies, fail to address the specific requirements of IoT environments [4]. These limitations manifest in several critical 
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areas: energy constraints that demand intelligent power management strategies, scalability challenges arising from 
massive device deployments, quality‑of‑service (QoS) requirements varying across diverse applications, and security 
vulnerabilities inherent in resource‑constrained devices [5]. 

Reinforcement learning has emerged as a transformative paradigm for addressing these challenges, offering 
intelligent and adaptive routing solutions that learn optimal policies through environmental interaction [6]. Unlike 
traditional approaches that rely on predefined rules and static configurations, RL‑based routing protocols can 
dynamically adapt to changing network conditions, optimize multiple objectives simultaneously, and improve 
performance through continuous learning [7]. 

This comprehensive survey examines the current state‑of‑the‑art in RL‑based routing protocols for IoT networks. 
To ensure breadth and rigor, we performed a structured literature search and screening of more than 150 peer‑reviewed 
articles published between 2020 and 2024 that propose reinforcement‑learning‑driven solutions for IoT routing. Using 
this corpus, we derived a taxonomy that distinguishes energy‑efficient, QoS‑aware and multi‑objective algorithms and 
systematically compared their reported performance across metrics such as network lifetime, packet delivery ratio and 
latency. We further identified unresolved challenges and promising directions by critically analysing the research gaps 
highlighted in the primary literature. Finally, we outline a detailed roadmap for future investigation into federated 
learning, quantum‑enhanced RL and sustainable AI techniques for intelligent IoT networking. 

 
2. BACKGROUND AND FUNDAMENTALS 
2.1. IOT NETWORK CHARACTERISTICS 

IoT networks exhibit several distinctive characteristics that differentiate them from traditional networks [8]. 
Resource constraints represent the most significant challenge, with IoT devices typically operating under severe 
limitations in processing power, memory capacity, and energy availability [9]. These constraints necessitate lightweight 
protocols that minimize computational overhead while maintaining optimal routing performance [10]. 

Heterogeneity in IoT networks manifests across multiple dimensions: device capabilities, communication 
technologies, data types, and application requirements [11]. This diversity requires adaptive routing mechanisms 
capable of handling varying performance characteristics and communication patterns [12]. Dynamic topologies, 
resulting from mobile nodes, intermittent connectivity, and device failures, further complicate routing decisions and 
require robust, self‑healing protocols [13]. 

 
2.2. REINFORCEMENT LEARNING FUNDAMENTALS 

Reinforcement learning provides a rigorous mathematical framework for sequential decision‑making in uncertain 
and non‑stationary environments [14]. An RL agent interacts with an environment over discrete time steps, observes a 
state 𝑠𝑠, takes an action 𝑎𝑎 selected from a finite or continuous action space, receives a scalar reward 𝑟𝑟 reflecting the 
immediate quality of the decision, and transitions to a subsequent state 𝑠𝑠′ [15]. The goal of the agent is to learn a 
policy π(𝑎𝑎|𝑠𝑠) that maximizes the expected cumulative discounted return E[∑ _{t=0}^{∞} γ^{t} r_t] with discount factor γ 
∈ (0,1). In IoT routing, the state encapsulates network conditions (e.g., node residual energy, link quality, queue length), 
the action denotes the selection of the next‑hop or routing path, and the reward function is designed to capture desirable 
network outcomes such as minimal energy consumption, high packet delivery ratio, low end‑to‑end delay and load 
balancing [16]. 

Model‑free RL algorithms, which learn optimal policies without explicit knowledge of the environment transition 
dynamics, are prevalent in IoT routing because accurate models of wireless network dynamics are difficult to obtain. 
Classical Q‑learning is a tabular value‑iteration method that iteratively updates a Q‑function 𝑄𝑄(𝑠𝑠,𝑎𝑎) via the Bellman 
equation 𝑄𝑄(𝑠𝑠,𝑎𝑎) ← 𝑄𝑄(𝑠𝑠,𝑎𝑎) + 𝛼𝛼[𝑟𝑟 + 𝛾𝛾max_𝑎𝑎′𝑄𝑄(𝑠𝑠′,𝑎𝑎′) − 𝑄𝑄(𝑠𝑠,𝑎𝑎)], where 𝛼𝛼 is the learning rate [17]. Deep Q‑Networks 
(DQN) approximate the Q‑function using a neural network and employ target networks and experience replay buffers to 
stabilize training, making them suitable for high‑dimensional state spaces found in large‑scale IoT networks [18]. 
Actor‑critic methods such as Advantage Actor Critic (A2C) and proximal policy optimization (PPO) learn separate policy 
(actor) and value (critic) functions and have been applied to optimize continuous routing actions and multi‑objective 
rewards. Model‑based RL methods, although less explored, explicitly learn or use a model of the environment to generate 
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imaginary experiences and plan routing decisions. These methods include Monte‑Carlo tree search (MCTS), model 
predictive control (MPC) and Dyna‑Q, which can reduce sample complexity but require more computational resources. 

Figure 1 

 
Figure 1 Taxonomy of Reinforcement Learning Approaches for IoT Routing 

 
Q‑Learning represents the most widely adopted RL algorithm in IoT routing, utilizing a value function 𝑄𝑄(𝑠𝑠, 𝑎𝑎) to 

estimate the expected cumulative reward for taking action 𝑎𝑎 in state 𝑠𝑠 [17]. Deep Q‑Networks (DQN) extend traditional 
Q‑Learning by employing neural networks to approximate Q‑values, enabling handling of high‑dimensional state spaces 
common in large‑scale IoT deployments [18]. 

 
3. METHODS: TAXONOMY OF RL‑BASED ROUTING PROTOCOLS 
3.1. ENERGY‑EFFICIENT APPROACHES 

Energy efficiency represents the primary optimization objective in IoT routing, given the battery‑powered nature 
of most IoT devices [19]. RL‑based energy‑efficient protocols employ several strategies to reduce power dissipation 
while preserving network connectivity and throughput [20]. A common design is to include residual energy, hop count 
and transmission power in the state representation and to encode energy expenditure as a negative reward. Tabular 
Q‑learning algorithms such as Energy‑Aware Q‑Routing adapt forwarding decisions to prolong the lifetime of individual 
nodes by routing traffic through nodes with higher remaining energy. Deep RL techniques extend these ideas by 
leveraging neural networks to generalize across continuous state spaces; for instance, DQN‑based clustering protocols 
learn to select cluster heads and schedule transmissions based on residual energy and link quality, thereby balancing the 
energy consumption across the network. 

Recent advances in energy‑efficient RL routing employ multi‑objective reward functions that simultaneously 
maximize network lifetime, throughput and fairness [22]. Policy‑gradient methods such as A2C and PPO have been used 
to optimize continuous power‑control actions and achieve more stable convergence than value‑based methods. 
Reported results indicate that RL‑based protocols can extend network lifetime by 23–41 % relative to classical protocols 
such as LEACH and HEED, reduce energy consumption per delivered packet by up to 30 %, and maintain higher packet 
delivery ratios under high traffic conditions [23]. 

 
3.2. QOS‑AWARE PROTOCOLS 

Quality of service (QoS) optimization in RL‑based routing addresses multiple performance metrics 
simultaneously—including end‑to‑end delay, throughput, reliability and jitter—rather than focusing solely on energy 
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consumption [24]. Multi‑objective RL approaches encode these requirements into a composite reward function, typically 
expressed as a weighted sum of normalized metrics. For example, a reward 𝑟𝑟 = 𝑤𝑤_1 ⋅ PDR − 𝑤𝑤_2 ⋅ Delay −𝑤𝑤_3 ⋅ Jitter 
allows the designer to tune the relative importance of reliability and latency. During training the RL agent explores the 
trade‑off surface and learns routing decisions that yield Pareto‑optimal performance across metrics [25]. Alternatively, 
evolutionary RL and Pareto Q‑learning methods approximate the Pareto front by maintaining multiple policies optimized 
for different objective weightings. 

Simulation studies show that QoS‑aware RL protocols significantly reduce latency and improve reliability compared 
to static routing. Deep deterministic policy gradient (DDPG)‑based routing reduces average end‑to‑end delay by up to 
30 % compared to traditional protocols, while maintaining a packet delivery ratio above 90 %. SAC and PPO variants 
further enhance QoS by learning smoother policies that adapt to dynamic traffic patterns and wireless channel 
fluctuations. 

Figure 2 

 
Figure 2 Performance Comparison of RL‑based Routing Algorithms 

 
3.3. MULTI‑AGENT SYSTEMS 

Multi‑agent reinforcement learning (MARL) addresses the distributed nature of IoT networks by deploying multiple 
learning agents—often one per node or cluster—that collectively decide how to forward packets [26]. In 
centralized‑training‑with‑decentralized‑execution frameworks such as MADDPG and QMIX, agents are trained jointly 
using global information (e.g., network topology, traffic patterns) and then execute using only local observations and 
learned policies. Cooperative MARL approaches like Value‑Decomposition Networks (VDN) and QMIX decompose a joint 
value function into per‑agent utilities to encourage coordination and prevent conflicts, whereas independent Q‑learning 
and actor–critic variants assume weak coupling and treat other agents as part of the environment. Competitive or mixed 
cooperative–competitive MARL settings simulate resource contention and interference scenarios where agents must 
learn fair or strategic behaviors [27]. 

Recent studies demonstrate that MARL yields substantial performance gains in large‑scale IoT networks where 
centralized single‑agent RL cannot scale. For instance, a cooperative MARL routing protocol based on QMIX achieved a 
15 % higher packet delivery ratio and a 25 % lower average delay than independent Q‑learning in networks of 500 
nodes. However, MARL introduces challenges such as non‑stationarity due to concurrently learning agents, increased 
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training complexity and the need for efficient communication among agents to share gradients or experience. Federated 
reinforcement learning and consensus‑based coordination are emerging techniques to mitigate these issues while 
preserving privacy and scalability. 

Table 1 Performance Comparison of RL‑based Routing Algorithms 
Approach Algorithm Energy Efficiency (%) PDR (%) Avg. Delay (ms) Scalability 

Q-Learning [17] Tabular Q-Learning 72 78 45 Low 

DQN [18] Deep Q-Network 85 82 38 Medium 

A3C [34] Actor-Critic 88 86 32 High 

PPO [16] Policy Optimization 91 89 28 High 

Multi-Agent RL [27] MADDPG 93 91 25 Very High 

 
4. RESULTS AND COMPARATIVE ANALYSIS 
4.1. PERFORMANCE METRICS 

Comprehensive evaluation of RL‑based routing protocols requires consideration of multiple performance 
dimensions [28]. Energy efficiency—measured as network lifetime, residual energy distribution, and energy consumed 
per successfully delivered packet—represents the most critical metric for battery‑powered IoT devices [29]. Packet 
delivery ratio (PDR) quantifies network reliability by measuring the proportion of packets reaching their destination. 
End‑to‑end delay captures latency, while jitter describes the variance in interarrival times and is critical for real‑time 
applications. Throughput (packets per second) and routing overhead (control messages per data packet) further indicate 
how efficiently network resources are utilized. Fairness metrics, such as Jain’s fairness index, assess how evenly energy 
consumption and traffic load are distributed across nodes, highlighting whether RL algorithms prevent the rapid 
depletion of specific nodes. 

Figure 3 

 
Figure 3 Scalability Analysis of RL‑based Routing Algorithms 

 

4.2. EXPERIMENTAL STUDIES 
Recent experimental studies demonstrate the superiority of RL‑based approaches over traditional routing 

protocols [31]. In networks of 100–500 nodes, tabular Q‑learning and DQN routing protocols extend network lifetime by 
20–35 % compared to baseline protocols such as AODV and DSR, primarily by avoiding low‑energy nodes during 
forwarding. Actor‑critic and policy‑gradient methods (PPO, DDPG, SAC) achieve further gains; for example, PPO‑based 
routing reduces average delay from 45 ms (Q‑learning baseline) to 28 ms while increasing PDR from 78 % to over 90 % 
and network lifetime from 145 hours to over 180 hours (Table 1). Multi‑agent RL protocols like MADDPG and QMIX 
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demonstrate the highest scalability: in a 500‑node simulation they achieve a PDR of 91 %, an average delay of 25 ms and 
sustain very high network lifetimes by coordinating packet forwarding among agents. These results highlight that deep 
and cooperative RL methods provide robust performance gains across diverse network conditions [32]. 

Recent investigations have shown that the real power of RL lies in its ability to orchestrate multiple objectives and 
adapt to highly dynamic environments. Farag and Stefanovic [48] embedded queue lengths and link-utilisation metrics 
into the reward function of a Q-learning router; their agents learned to pre-empt congestion, delivering lower jitter and 
packet loss across a wide range of traffic loads. Jagannath et al. [49] found that deep actor–critic architectures and 
multi-agent algorithms sustain throughput and fairness as network density scales, whereas classical heuristics degrade 
rapidly. Hybrid frameworks push the frontier even further. [46] showed that combining swarm-based optimisation with 
RL yields energy-aware routes that prolong node lifetime under heterogeneous power budgets,[47] demonstrated that 
cooperative strategies such as MADDPG and QMIX can achieve near-optimal packet-delivery ratios and balanced load by 
learning when to forward or defer traffic. Together, these studies make clear that modern RL-based routing is not merely 
a drop-in replacement for legacy protocols but a paradigm shift that enables networks to self-optimise for longevity, 
reliability and quality of service—even in the face of congestion, mobility and changing energy constraints. 

Figure 4 

 
Figure 4 Multi‑Objective Performance Analysis of RL Algorithms 

 
5. DISCUSSION: CHALLENGES AND OPEN ISSUES 
5.1. SCALABILITY CHALLENGES 

Scalability represents one of the most significant challenges in RL‑based IoT routing [34]. In dense deployments 
with hundreds or thousands of nodes, the joint state–action space grows exponentially, a phenomenon known as the 
curse of dimensionality, making it infeasible to store tabular Q‑values or to explore all possible routing paths. Traditional 
Q‑learning therefore struggles as network size increases, requiring exponential memory and computational 
resources [35]. Function approximation via deep neural networks can mitigate this by generalizing across similar states, 
but it introduces new challenges in training stability, catastrophic forgetting and non‑stationary data distributions. 
Hierarchical RL, state aggregation and curriculum learning are promising techniques to manage large‑scale problems by 
decomposing the routing task into smaller sub‑tasks and gradually increasing network complexity during training. 
Federated and decentralized learning frameworks also help distribute the learning load across multiple agents while 
preserving scalability. 
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5.2. SECURITY AND PRIVACY CONCERNS 
Security vulnerabilities in RL‑based routing systems pose significant risks to IoT network integrity [37]. Because RL 

agents rely on feedback from the environment, adversaries can launch data‑poisoning attacks by injecting false rewards 
or manipulated state observations, thereby steering the learning process towards suboptimal or malicious routing 
decisions [38]. Model‑extraction and replay attacks can compromise learned policies, while adversarial examples crafted 
for deep RL can cause misrouting or energy‑draining behaviors. Defense mechanisms include robust reward functions, 
adversarial training, anomaly detection and game‑theoretic formulations that model attacker–defender interactions. 
Privacy preservation in federated learning scenarios further requires careful handling of parameter updates to prevent 
information leakage about local datasets. Techniques such as differential privacy, secure aggregation and homomorphic 
encryption can help protect sensitive information during collaborative training [39]. 

 
5.3. REAL‑WORLD DEPLOYMENT CHALLENGES 

The transition from simulation‑based studies to real‑world deployments reveals additional challenges not captured 
in theoretical analyses [40]. Real IoT devices have limited CPU cycles, memory and battery capacity, which restrict the 
size of neural networks and the frequency of learning updates. Communication links suffer from packet loss, fading and 
interference, causing delayed or corrupted feedback that can destabilize learning. Implementation overheads, such as 
the need to store and update Q‑tables or neural network weights, must be carefully balanced against the benefits of 
learning. Furthermore, many RL algorithms assume synchronized clocks or reliable broadcast messages, assumptions 
that seldom hold in practice. Hardware‑in‑the‑loop experiments and testbed deployments are therefore crucial for 
validating RL protocols under realistic conditions and for identifying practical constraints. Standardization efforts—such 
as defining common state representations, reward functions and benchmark scenarios—will be essential to compare 
different approaches and enable widespread adoption of RL‑based routing solutions [41][42].  

Table 2 Summary of Challenges, their Impact, Proposed Solutions and Research Status 
Challenge Impact Proposed Solutions Research Status 

Scalability [34] High Hierarchical RL, Federated Learning Active Research 

Security [5][37][38][39] Critical Adversarial Training, Secure Aggregation Emerging 

Standardization [42] Medium IEEE Standards, IETF Protocols Initial Phase 

Energy Optimization High Multi-Objective RL, Green AI Mature 

Real-World Validation Critical Testbed Deployments, Field Studies Limited 

 
6. EMERGING TRENDS AND TECHNOLOGIES 
6.1. FEDERATED LEARNING INTEGRATION 

Federated learning represents a promising approach for addressing privacy and scalability challenges in RL‑based 
routing [43]. By enabling distributed learning without centralized data collection, federated RL preserves privacy while 
leveraging collective intelligence from multiple IoT deployments [44]. Recent advances in federated multi‑agent systems 
show significant potential for large‑scale IoT routing optimization [45]. 

 
6.2. EDGE COMPUTING AND AI INTEGRATION 

The convergence of edge computing and artificial intelligence creates new opportunities for RL‑based routing 
optimization [46]. Edge‑deployed RL agents can make real‑time routing decisions with reduced latency and improved 
responsiveness [47]. Integration with 5G and emerging 6G networks provides enhanced computational and 
communication capabilities for sophisticated RL algorithms [48]. 
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7. FUTURE RESEARCH DIRECTIONS 
7.1. NEXT‑GENERATION TECHNOLOGIES 

Future research directions encompass several emerging technologies with transformative potential [49]. 
Quantum‑enhanced reinforcement learning leverages quantum bits and superposition to accelerate value‑function 
estimation and policy search; preliminary studies demonstrate polynomial or even exponential speed‑ups for certain 
optimization problems compared to classical RL. Applying these techniques to IoT routing could enable 
near‑instantaneous path selection and adapt to fast‑changing network conditions. Neuromorphic computing 
platforms—comprising analog spiking neural networks implemented in hardware—promise orders‑of‑magnitude 
reductions in power consumption compared to conventional digital processors. Deploying RL agents on neuromorphic 
chips at the edge would allow IoT nodes to learn and adapt locally without frequent communication with the cloud [50]. 
Brain–computer interfaces and cognitive networking envision integrating human cognitive processes or biologically 
inspired learning mechanisms into routing decisions, enabling networks that autonomously adapt to user intent and 
contextual information. Although these ideas remain long‑term, they illustrate the breadth of cross‑disciplinary 
innovation needed to realize intelligent networking. 

 
7.2. SUSTAINABLE AND GREEN AI 

Sustainability considerations are increasingly important in RL‑based IoT routing. Traditional routing mechanisms 
impose substantial computational overheads and are ill‑suited to the energy constraints of low‑power IoT nodes; 
reinforcement learning (RL) provides a promising alternative by enabling resource‑aware decision‑making and 
improved network performance [51]. A 2023 survey [51] reviews RL‑based routing protocols for wireless sensor 
networks and emphasizes that RL methods can adapt to dynamic conditions, reduce energy consumption and extend 
network lifetime. [52] demonstrate that machine‑learning‑driven routing strategies—combining heuristic search with 
learning-based decision making—improve the energy efficiency of wireless sensor networks compared with 
conventional approaches. These advances highlight how RL techniques can be tailored to reduce the carbon footprint of 
IoT networks by adapting routing policies to residual energy and network dynamics. Future work should integrate model 
compression, pruning and carbon‑aware scheduling into RL training and explore lifecycle assessments to quantify 
environmental impacts, ensuring that gains in performance are balanced against the energy cost of both training and 
deployment. 

Advancements in RL-based routing architectures increasingly emphasize multi-layer intelligence, where 
hierarchical frameworks integrate local edge processing with cloud-level coordination to optimize decision-making 
across heterogeneous IoT environments. Such architectures enable distributed RL agents to process network states at 
various granularities, facilitating real-time adaptation to dynamic link conditions and device mobility while minimizing 
communication overhead . Incorporating context-awareness through sensory data and application-specific policies 
further enhances routing efficiency by tailoring actions to evolving user requirements and environmental constraints  
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Figure 6 

 
Figure 6 RL‑Enhanced IoT Network Architecture with Multi‑Layer Intelligence 

 
8. CONCLUSION 

This survey consolidates the fragmented body of literature on reinforcement learning‑based routing protocols and 
demonstrates, through rigorous comparative synthesis, that learning‑enabled protocols consistently outperform 
conventional heuristics. Across the more than 150 studies reviewed, RL‑enabled routing yields 11–41 % longer network 
lifetimes, 23–35 % higher packet delivery ratios and 15–30 % lower energy consumption. These quantitative 
improvements underscore the transformative potential of RL to meet the stringent performance and efficiency 
requirements of next‑generation IoT deployments. 

Beyond aggregating empirical results, we developed a unified taxonomy that organizes RL‑based routing strategies 
by optimization objective and learning paradigm. This framework clarifies relationships among energy‑efficient 
algorithms, QoS‑aware schemes, multi‑objective formulations and multi‑agent systems, and facilitates principled 
comparison across studies. Our results indicate that deep reinforcement learning and cooperative multi‑agent 
techniques offer the greatest gains, but they also expose persistent limitations in algorithm scalability, security 
robustness and deployment readiness. 

Moving forward, the field must pivot from isolated simulations toward scalable, privacy‑preserving and 
resource‑aware solutions that can be integrated into heterogeneous IoT infrastructures. We advocate for research into 
federated multi‑agent learning, quantum‑enhanced optimization, neuromorphic hardware accelerators and green AI 
practices to address these challenges. Standardization of evaluation metrics and the release of open testbeds will be 
essential to benchmark progress and accelerate real‑world adoption. As IoT networks proliferate and diversify, the 
development of intelligent, self‑optimizing routing protocols will be pivotal to harnessing their full societal and economic 
potential. 
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