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ABSTRACT 
Diagnosing bearing issues is crucial because bearings are crucial parts of rotating 
machinery, supporting and guiding shafts, and because faults can result in lost 
productivity, damaged equipment, and safety hazards. One common technique for 
identifying bearing problems is vibration analysis. High-frequency resonances are 
isolated using sophisticated techniques like envelope analysis, fault frequencies are 
determined using frequency-domain techniques like the Fast Fourier Transform (FFT), 
and anomalies in signals are identified using time-domain analysis. Machine learning 
improves fault classification, while time-frequency methods such as wavelet 
transformations are employed to handle non-stationary signals. Every technique has its 
limitations: sophisticated techniques offer precision at the expense of complexity; 
frequency analysis performs well in steady settings but suffers from speed variations; 
time-domain analysis is straightforward but may reveal early issues. Accuracy, 
computational demands, and operational requirements must all be balanced when 
choosing the best strategy for bearing condition monitoring. 

Corresponding Author 
Keval Bhavsar, 
kevalbhavsar42@gmail.com  
DOI  
10.29121/shodhkosh.v4.i2.2023.597
6   

Funding: This research received no 
specific grant from any funding agency in 
the public, commercial, or not-for-profit 
sectors. 

Copyright: © 2023 The Author(s). 
This work is licensed under a Creative 
Commons Attribution 4.0 
International License. 

With the license CC-BY, authors retain 
the copyright, allowing anyone to 
download, reuse, re-print, modify, 
distribute, and/or copy their 
contribution. The work must be 
properly attributed to its author. 

 

 

Keywords: Bearings, Fault Diagnosis, Vibration Analysis, Condition Monitoring, 
Machine Learning 
 
  
 

1. INTRODUCTION 
Petrochemical facilities, airplanes, the chemical industry, and home appliances all require rotating gear, particularly 

induction motors, which are crucial parts of industrial systems. The essential components of these production lines are 
the stator, rotor, shaft, and bearings; the bearings are among the most crucial mechanical components since they support 
and guide the shaft's rotation. Studies have shown that bearing-related problems are one of the main causes of 
mechanical failures in rotating machinery [1–3]. Industrial reliability relies on condition monitoring and problem 
diagnosis because of the possibility of large production losses, equipment damage, and safety risks. Vibration signal 
analysis is one of the greatest diagnostic techniques since it offers a wealth of information for identifying and 
comprehending bearing defects (BDs). 
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Condition monitoring improves operational availability and safety by allowing the real-time evaluation of 
machinery health without compromising output. [4]. A bearing's condition may be evaluated using a variety of methods, 
including as temperature, noise, current, and vibration monitoring. [5–7]. Vibration monitoring is the most successful of 
these since it enables the early identification, localization, and categorization of problems (both dispersed and localized) 
before they deteriorate. [8]. As part of the vibration monitoring process, sensors provide fault signals to a computer-
connected data collecting system. [9]. However, the vibrational signal processing technique utilized to extract diagnostic 
characteristics determines how successful it is.  The problem associated with bearings can be identified with help of 
various techniques such as CA - Cepstrum analysis [13, 14], FFT - Fourier Transform [10–12], WT - wavelet transform 
[20–22], WVD - Wigner–Ville Distribution [15, 16], STFT - Short Time Fourier Transform [15, 16], and EA - Envelope 
Analysis [17–19]. 

Despite being widely used to diagnose periodic faults (like bearing defects), envelope analysis requires prior 
knowledge of resonance frequencies and filtering bands, which limits its sensitivity to early-stage faults. [17–19]. Short-
Time Fourier The transform has a fixed time-frequency resolution due to its static windowing. [14–16], Despite using 
multi-resolution analysis to address this, the Wavelet Transform has limitations, including border distortion, energy 
leakage, and selecting the optimal wavelet (e.g., Haar, Daubechies, Morlet). [20–22]. 

 
2. EXPERIMENTAL SETUP 

The vibration signals used for the study are publicly made available from the Bearing data center of the Case Western 
Reserve University (CWRU), and the experimental setup is shown in Figure 1 [23]. In this vibration monitoring system, 
the electric power is coming from the induction motor, which is of 2.3 kW. To record the vibration signal, an 
Accelerometer is used and it is fixed on the bearing housing. This setup also offers a range of loading from no load 
condition to 3 horsepower, and the loading is managed by the torque transducer along with the dynamometer. The 
collected data is available in four different conditions, where there is no fault data and data with a fault either on the 
inner race, outer race or on the ball. Also the diameters of the fauls are changed as 0.1778, 0.3556 and 0.5334 mm and 
also the depth of the fault is contact the value of 0.2794 mm. Another variety in the data is offered by the speed of the 
motor shaft with rpm from 1730-1797. All this data is taken with a 12 kHz sampling rate, and the time interval is of 10s. 
  

 
Figure 1 Experimental Setup of CWRU 

 
The study focused on the 6205-2RS JEM SKF deep-groove ball bearing. In a comparative study of fault detection in 

bearings. The selected condition is one with the highest rpm and no load, and another with the lowest speed and full 
load. Selected conditions are furthermore checked in three different combinations as faults on the inner race, on the 
outer race, and in a fault condition. Here, in every sample, a total 4096 data points is taken into consideration. In this 
type of study, the characteristic frequency of the bearing becomes the key as it changes with dimensions and speed. In 
bearing fault detection, the BPFI and BPFO, which are inner race and outer race frequency, respectively, are crucial in 
the identification of the localized faults. Apart from the mentioned two frequencies, also diameters, angle of contact, and 
frequency of rotation also affect in identification of the location of the fault [24]. 
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3. RECENT ADVANCES 

The study by Lee et al. [25] demonstrated the effectiveness of 1D CNNs in fault diagnosis with an accuracy rate of 
98.3%. Raw vibration signals were directly processed by the model using three convolutional layers with max pooling 
and fully connected layers. This approach eliminated the need for manual feature extraction while maintaining superior 
diagnostic performance. This method has been successful in detecting both local and global patterns connected to 
different fault types because CNN can automatically extract discriminative features from time-series vibration data. The 
relatively simple architecture suggests that even shallow CNNs can be highly effective for fault diagnosis when used on 
properly pre-processed vibration signals. 

With an accuracy of 99.4%, the more sophisticated 2D CNN architecture developed by Wen et al. [26] outperformed 
all the other approaches. Their deeper network consisted of five convolutional layers that included dropout 
regularization and batch normalization. The ability of this model to learn features hierarchically—with initial layers 
spotting basic patterns and deeper layers identifying more complex fault characteristics—is what gives it its exceptional 
performance. The end-to-end learning approach removed the need for manual feature engineering, allowing the network 
to discover the optimal representations directly from the input data. The incorporation of data augmentation techniques 
also contributed to the model's strong performance by increasing its ability to generalize under a range of operational 
conditions. 

Lu et al. [27] introduced a creative image-based technique that used STFT to convert vibration signals into 2D time-
frequency representations with 98.3% accuracy. Feature extraction using SURF and then reduction of dimensions using 
t-SNE is a novel approach implemented, and further, PNN is used for classifying bearing faults. In this methodology, the 
vibration signals are presented visually, which helps in capturing the fault characteristics and also provides the facility 
to resist the noise. This unique approach of applying the SURF algorithm shows support in increasing the accuracy of the 
solution. In addition to this, the applied t-SNE technique helps in reducing the complexity of the system.  

Ranawat and Kankar [28] explored the conventional techniques of Machine learning, namely SVM and ANN in the 
field of bearing fault detection particularly for the centrifugal pump. In the comparative study, the conclusion states that 
the combined methodology of SVM and RBF kernel has achieved 97.7% accuracy, and on the other hand, ANN has 
achieved the accuracy of 98.3%. Both approaches use the statistical parameters like mean, root mean square, kurtosis 
and other similar time domain features. The advantages of higher accuracy in ANN are because of its ability it to handle 
complex data sets and also handle nonlinear relations. In extension to this, deep learning is also checked and compared 
with the conventional approaches, and the results show that deep learning has some limitations in dealing with manual 
feature selection. Also, the other limitation of all approaches js surfaced in terms of the bearing fault pattern recognition.  
Hence, the scope of the work is wide in the field of bearing fault diagnosis.   

 
4. CONCLUSION 

This study demonstrates the benefits and drawbacks of deep learning and machine learning techniques for 
diagnosing bearing problems in rotating machinery. Deep learning models, especially CNNs, achieve higher accuracy by 
automatically learning patterns from raw or transformed data, whereas traditional ML models, such as SVM and ANN, 
perform well with manually extracted features. Without requiring a great deal of feature engineering, 2D CNNs and 
image-based techniques show remarkable fault classification capabilities. However, application requirements, 
computational resources, and data availability should all be taken into account when choosing a model. In order to 
improve reliability, reduce downtime, and increase the safety of industrial systems, deep learning presents a promising 
path for intelligent, real-time condition monitoring.  
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