

Original Article
ISSN (Online): 2582-7472

 ShodhKosh: Journal of Visual and Performing Arts

January-June 2024 5(1), 3250–3256

How to cite this article (APA): Patel, P. C., Bhatt, P. M., Parmar, U., and Bhavsar, K. (2024). A Forensic Perspective on the Use of
Event Viewer for Detecting Malicious Activities and Ensuring System Integrity. ShodhKosh: Journal of Visual and Performing Arts,
5(1), 3250–3256. doi: 10.29121/shodhkosh.v5.i1.2024.5975

3250

A FORENSIC PERSPECTIVE ON THE USE OF EVENT VIEWER FOR DETECTING
MALICIOUS ACTIVITIES AND ENSURING SYSTEM INTEGRITY

Premal C. Patel 1 , Pina M. Bhatt 2 , Umang Parmar 3 , Keval Bhavsar 3

1 Department of Computer Engineering, College of Technology, Silver Oak University, Ahmedabad, Gujarat - 382481, India
2 Department of Mechanical Engineering, College of Technology, Silver Oak University, Ahmedabad, Gujarat - 382481, India
3 Department of Mechanical Engineering, Aditya Silver Oak Institute of Technology, Silver Oak University, Ahmedabad,
Gujarat - 382481, India

ABSTRACT
Event Viewer is a vital tool embedded within Microsoft Windows that records a wide
range of system, security, and application-related events. For forensic investigators, these
logs are crucial in identifying signs of malicious activities, reconstructing timelines, and
maintaining system integrity. This paper highlights the role of Event Viewer in digital
forensics, discussing how specific logs from various categories—Application, Security,
Setup, System, and Forwarded Events—can be extracted, parsed, and stored in XML
format for in-depth analysis. Furthermore, the paper proposes a structured XML-based
data model for efficient forensic storage and analysis, compares it with other log
management approaches, and demonstrates its effectiveness in digital investigations.

Corresponding Author
Pina M. Bhatt, pmbhatt15@gmail.com
DOI
10.29121/shodhkosh.v5.i1.2024.597
5

Funding: This research received no
specific grant from any funding agency in
the public, commercial, or not-for-profit
sectors.

Copyright: © 2024 The Author(s).
This work is licensed under a Creative
Commons Attribution 4.0
International License.

With the license CC-BY, authors retain
the copyright, allowing anyone to
download, reuse, re-print, modify,
distribute, and/or copy their
contribution. The work must be
properly attributed to its author.

Keywords: Digital Forensics, Event Viewer, Windows Logs, XML Storage, System
Integrity, Malware Detection, Log Analysis, Timeline Reconstruction, Cyber-Security,
Incident Response

1. INTRODUCTION
Event Logs are commonly analyzed during incident investigations—especially in cases involving malware

infections—to trace events that might reveal the nature or source of the incident. However, it’s important to understand
that Windows Event Logs were not specifically designed to detect suspicious or malicious behavior. As a result, they
often lack the depth or granularity required for comprehensive forensic analysis.

P3#y P3#y P3#y3 P3#y4

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh
https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh
https://doi.org/10.29121/granthaalayah.v9.i6.2021.3923
https://dx.doi.org/10.29121/granthaalayah.v10.i3.2022.4503
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.5975
mailto:pmbhatt15@gmail.com
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.5975
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.5975
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:premalcpatel2011@gmail.com
mailto:pmbhatt15@gmail.com
mailto:umangparmar138@gmail.com
mailto:kevalbhavsar42@gmail.com

A Forensic Perspective on the Use of Event Viewer for Detecting Malicious Activities and Ensuring System Integrity

ShodhKosh: Journal of Visual and Performing Arts 3251

Image1 Logs of Event viewer

Event Viewer is a built-in Windows utility that maintains logs of various system-level and user-level events. It serves
as a critical source of evidence in digital forensic investigations. The tool categorizes events into distinct logs:

• Q1 (Application Logs): Logs generated by installed applications and software behavior.
• Q2 (Security Logs): Logs related to login attempts, access controls, and audit policies.
• Q3 (Setup Logs): Logs created during installation or setup of applications and system components.
• Q4 (System Logs): Logs produced by Windows system components and drivers.
• Q5 (Forwarded Events): Logs forwarded from other systems via event subscriptions
For forensic analysis, extracting metadata from each of these categories and converting it into a structured XML

format allows for better querying, storage, and comparison.

2. XML METADATA STORAGE STRUCTURE (Q1–Q5)
<EventLog>

<ApplicationLogs id="Q1">
<Event>

<EventID>1000</EventID>
<Source>Application Error</Source>

<TimeCreated>2023-07-24T08:30:00</TimeCreated>
<User>SYSTEM</User>
<Level>Error</Level>

<Message>Faulting application path...</Message>
</Event>

</ApplicationLogs>
<SecurityLogs id="Q2">

<Event>
<EventID>4625</EventID>

<Source>Microsoft Windows security auditing</Source>
<TimeCreated>2023-07-24T08:45:00</TimeCreated>

<User>unknown</User>
<Level>Warning</Level>

<Message>Failed logon attempt...</Message>

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh

Premal C. Patel, Pina M. Bhatt, Umang Parmar, and Keval Bhavsar

ShodhKosh: Journal of Visual and Performing Arts 3252

</Event>
</SecurityLogs>

<!-- SetupLogs Q3, SystemLogs Q4, ForwardedEvents Q5 follow similar structure -->
</EventLog>

3. LITERATURE REVIEW

The use of system and application logs in forensic investigations has been explored by several researchers and
practitioners. Logs provide a timeline of events and can act as a trustworthy data source for identifying security breaches.

Garfinkel [1] proposed digital forensic XML structures for long-term log storage and metadata analysis. His work
emphasized the need for schema-driven log management that could be directly integrated with forensic tools.

There are Some features of Event Tracing for Windows (ETB) configuration can be observed using other tools for
Performance Monitor, the logman command, or by reviewing the relevant registry entries in the system. These methods
define the basic concepts of ETW configured by active providers. They do not provide complete visibility into the internal
workings of the ETW framework.

To get more celerity like detailed structural information about ETW providers and its behavior we need to explore
beyond the user mode. This level of access is requires working in kernel mode by using specialized tools like a kernel
debugger.

By analyzing the ETW structures at the kernel level, it is possible to trace the architecture and interactions of ETW
providers more accurately. Figure [X] illustrates how this tracing process can be performed to reveal the relationships
and flow of events within the ETW framework.

Image 2 Structure of ETW providers

Casey [2] discussed a forensic methodology where log analysis plays a central role in identifying intrusion patterns.

The structured data from Event Viewer was found to be instrumental in linking user actions with system states.
Mitropoulos et al. [3] introduced real-time frameworks for log correlation and pattern recognition, which showed

enhanced response times in forensic case studies. Their works highlight the importance of integrated structured logs
with SIEM systems.

For the Microsoft Event Viewer documentation [4], all the logs are encoded in the EVTX binary format and that can
be carries metadata which is very crucial for auditing and post-incident review.

SANS Institute [5] guides for the importance of Windows Security logs for object (Q2) in identifying credential-based
attacks, brute-force attempts, and privilege escalations.

Log correlation and XML-based structuring were further examined by Carrier [6], who emphasized that logs must
be preserved in a tamper-evident and verifiable format. XML schemas support this need.

Altheide and Carvey [7] offered detailed walkthroughs of interpreting logs within forensic suites such as FTK and
Autopsy, supporting the need for consistent log formatting.

Reith et al. [8] and NIST [9] proposed frameworks and best practices for incorporating logs into forensic timelines.

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh

A Forensic Perspective on the Use of Event Viewer for Detecting Malicious Activities and Ensuring System Integrity

ShodhKosh: Journal of Visual and Performing Arts 3253

Recent vendor whitepapers from CrowdStrike [10] and IBM X-Force [11] provided use cases where event logs aided
in detecting advanced persistent threats (APTs).

Table 1 Discussion of Various Structure for Event Based Logs
Author Year Contribution Relevance

Garfinkel, S. 2010 XML schema for forensic data Log structuring for long-term analysis

Casey, E. 2011 Methodologies for forensic investigations Log timeline construction

Mitropoulos, S. 2019 Real-time log correlation Improved detection and SIEM integration

Microsoft Docs 2020 EVTX structure documentation Metadata relevance for event parsing

SANS Institute 2022 Incident response playbooks Log-based detection of brute-force attacks

Carrier, B. 2005 File systems and forensic principles Secure and verifiable log storage

Altheide & Carvey 2011 Practical forensic log analysis Usage of open-source tools

Reith et al. 2002 Forensic process models Integration of logs in process models

NIST SP 800-86 2006 Guide to forensic techniques Best practices for evidence collection

CrowdStrike 2023 Threat hunting with event logs Case studies for event-based detection

IBM X-Force 2023 Case study-based forensic response Correlation of logs with threat intelligence

4. ARCHITECTURE AND DATA FLOW

The following diagram shows the process flow of event log acquisition, XML conversion, and forensic analysis:

Image 3 Architecture for event viewer logs forensic Process

The Data Initially in row format collected using some scripts and those data can be parser to store in Specific XML
format which can be used for the digital forensic purpose easy to analyze the record or logs of the event viewer.

5. IMPLEMENTATION

The implementation of XML-based event log analysis can be carried out using Windows PowerShell, EvtxECmd, or
Python-based scripts. Below, we demonstrate a complete workflow using PowerShell and Python for extracting and
processing Event Viewer data.

5.1. ENVIRONMENT SETUP

• Windows 10/11 (Administrator Access)

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh

Premal C. Patel, Pina M. Bhatt, Umang Parmar, and Keval Bhavsar

ShodhKosh: Journal of Visual and Performing Arts 3254

• PowerShell (Version 5 or above)
• Python 3.x (optional for extended parsing)
• Tools: Event Viewer, LogParser, EvtxECmd

5.2. STEP-BY-STEP LOG EXTRACTION AND XML CONVERSION (USING POWERSHELL)

Step 1: Extracting Logs by Category
Application Logs (Q1)
Get-WinEvent -LogName Application | Export-Clixml -Path Q1_Application.xml
Security Logs (Q2)
Get-WinEvent -LogName Security | Export-Clixml -Path Q2_Security.xml
Setup Logs (Q3)
Get-WinEvent -LogName Setup | Export-Clixml -Path Q3_Setup.xml
System Logs (Q4)
Get-WinEvent -LogName System | Export-Clixml -Path Q4_System.xml
Forwarded Logs (Q5)
Get-WinEvent -LogName ForwardedEvents | Export-Clixml -Path Q5_Forwarded.xml
Step 2: Viewing XML Content
You can open the resulting XML files in Notepad++, XML Viewer, or Visual Studio Code. A snippet will look like:

<Event>
<EventID>4624</EventID>

<Level>Information</Level>
<TimeCreated>2023-07-25T14:23:05</TimeCreated>

<Source>Microsoft-Windows-Security-Auditing</Source>
<Message>An account was successfully logged on</Message>

</Event>

5.3. STEP-BY-STEP PARSING USING PYTHON

To analyze the XML files and filter specific patterns:
import xml.etree.ElementTree as ET
tree = ET.parse("Q2_Security.xml")

root = tree.getroot()
for event in root.findall(".//Event"):
event_id = event.find("EventID").text

level = event.find("Level").text
time_created = event.find("TimeCreated").text

message = event.find("Message").text
if event_id == "4625":

print(f"Failed Login - Time: {time_created}, Level: {level}, Message: {message}")

5.4. ADVANCED PARSING USING EVTXECMD

EvtxECmd is a powerful tool by Eric Zimmerman:

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh

A Forensic Perspective on the Use of Event Viewer for Detecting Malicious Activities and Ensuring System Integrity

ShodhKosh: Journal of Visual and Performing Arts 3255

EvtxECmd.exe -d C:\Logs -o C:\ParsedLogs -f *.evtx --csv
The above command parses all EVTX files in a directory and exports CSV-format logs for timeline analysis.

5.5. TIMELINE RECONSTRUCTION
Once all logs are parsed, they can be sorted by TimeCreated and visualized:

• Use Excel or Pandas (Python) to create a timeline of events.
• Map failed logins (4625), successful logins (4624), shutdowns (1074), and application errors (1000).

import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv("SecurityLog.csv")
df["TimeCreated"] = pd.to_datetime(df["TimeCreated"])

filtered = df[df["EventID"].isin([4625, 4624, 1074])]
filtered.groupby("EventID")["TimeCreated"].count().plot(kind='bar')

plt.title("Event Counts by Type")
plt.show()

5.6. STORAGE AND INTEGRITY

XML allows use of schema validation (XSD) to ensure integrity:
• Use XML Digital Signature for authenticity.
Store logs in WORM (Write Once Read Many) devices for forensic admissibility.

6. COMPARATIVE ANALYSIS WITH EXISTING STRUCTURES
To assess the efficiency, compatibility, and forensic soundness of the proposed XML-based log structure, we have

compared it with three commonly used log storage formats:
Which are JSON, relational databases (SQL), and raw EVTX files with proposed structure

6.1. FEATURE-BASED COMPARISON
Table 2 Feature-Based Comparison

Feature XML-Based Logs JSON Logs SQL Database Raw EVTX Files

Human Readability High Medium Low Very Low

Schema Validation Yes (via XSD) No Yes No

Forensic Compatibility High (used in tools) Medium High Low

Tamper Detection Medium (signable) Medium High Low

Query Support XPath Custom/manual SQL None

Compression Efficiency Medium High High Low

Tool Integration High (Autopsy, X-
Ways)

Medium (SIEM
tools)

High (Splunk, ELK
Stack)

Very Low

Event Correlation Strong Average Strong Weak

Timeline Analysis
Ready

Yes Yes Yes No

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh

Premal C. Patel, Pina M. Bhatt, Umang Parmar, and Keval Bhavsar

ShodhKosh: Journal of Visual and Performing Arts 3256

6.2. OBSERVATIONS
• XML provides a balanced format supporting structure, validation, and ease of integration into forensic

workflows.
• JSON is lightweight and easier to parse but lacks schema enforcement.
• SQL excels in query speed but needs complex setup and is less portable.
• Raw EVTX files are ideal for original log storage but are not suitable for immediate forensic processing.

7. CONCLUSION

Event Viewer is a cornerstone tool for Windows-based digital forensic investigations. By categorizing logs (Q1–Q5)
and storing them in XML format, investigators can enhance visibility, correlation, and evidentiary value. Compared to
unstructured or flat formats, XML provides flexibility, machine-readability, and compatibility with modern forensic tools.
This paper demonstrated a practical and structured approach to using Event Viewer data for ensuring system integrity
and detecting malicious behavior.

CONFLICT OF INTERESTS

None.

ACKNOWLEDGMENTS
None.

REFERENCES
Garfinkel, S. (2010). Digital forensics XML and structured storage. Digital Investigation.
Casey, E. (2011). Digital evidence and computer crime. Academic Press.
Mitropoulos, S., Karakoidas, V., Spinellis, D., & Louridas, P. (2019). Real-time event log analysis. IEEE Access.
Microsoft Docs. (2020). Event Viewer documentation. https://learn.microsoft.com
SANS Institute. (2022). Event log analysis. https://www.sans.org/white-papers/event-log-analysis/
Carrier, B. (2005). File system forensic analysis. Addison-Wesley.
Altheide, C., & Carvey, H. (2011). Digital forensics with open source tools. Syngress.
Reith, M., Carr, C., & Gunsch, G. (2002). An examination of digital forensic models. International Journal of Digital

Evidence, 1(3).
National Institute of Standards and Technology. (2006). Guide to integrating forensic techniques into incident response

(SP 800-86). https://csrc.nist.gov/publications/detail/sp/800-86/final
CrowdStrike. (2023). Endpoint detection and log management. https://www.crowdstrike.com
IBM X-Force. Event log analysis case studies. https://www.ibm.com/security/xforce
Mandia, K., Prosise, C., & Pepe, M. (2003). Incident response & computer forensics. McGraw-Hill.
Microsoft. (2023). LogParser tool documentation. https://learn.microsoft.com/en-us/sql/tools/logparser
Zimmerman, E.. EvtxECmd documentation. https://ericzimmerman.github.io
National Cyber Security Centre (UK). (2023). Windows event logging guidance. https://www.ncsc.gov.uk
Stallings, W. (2019). Computer security: Principles and practice. Pearson.
Kaspersky Labs. (2023). Best practices for log analysis. https://www.kaspersky.com
Sophos. (2022). Investigating Windows logs during threat hunts. https://www.sophos.com
AlienVault Labs. (2023). Log correlation techniques. https://cybersecurity.att.com
Patel, P. C. (2013). Aggregation of digital forensics evidences. Int J Comput Trends Technol (IJCTT), 4(4), 881-884.

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.5975
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.5975
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.5975
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.5975
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.5975
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.5975
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.5975
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.5975
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.5975
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.5975
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.5975
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.5975
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.5975
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.5975
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.5975
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.5975
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.5975
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.5975
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.5975
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.5975
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.5975
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.5975

	A Forensic Perspective on the Use of Event Viewer for Detecting Malicious Activities and Ensuring System Integrity
	Premal C. Patel 1, Pina M. Bhatt 2, Umang Parmar 3, Keval Bhavsar 3
	1 Department of Computer Engineering, College of Technology, Silver Oak University, Ahmedabad, Gujarat - 382481, India
	2 Department of Mechanical Engineering, College of Technology, Silver Oak University, Ahmedabad, Gujarat - 382481, India
	3 Department of Mechanical Engineering, Aditya Silver Oak Institute of Technology, Silver Oak University, Ahmedabad, Gujarat - 382481, India

	1. INTRODUCTION
	2. XML Metadata Storage Structure (Q1–Q5)
	3. LITERATURE REVIEW
	4. ARCHITECTURE AND DATA FLOW
	5. IMPLEMENTATION
	5.1. Environment Setup
	5.2. Step-by-Step Log Extraction and XML Conversion (Using PowerShell)
	5.3. Step-by-Step Parsing using Python
	5.4. Advanced Parsing using EvtxECmd
	5.5. Timeline Reconstruction
	5.6. Storage and Integrity

	6. COMPARATIVE ANALYSIS WITH EXISTING STRUCTURES
	6.1. Feature-Based Comparison
	Table 2 Feature-Based Comparison
	6.2. Observations

	7. CONCLUSION
	CONFLICT OF INTERESTS
	ACKNOWLEDGMENTS
	REFERENCES
	Garfinkel, S. (2010). Digital forensics XML and structured storage. Digital Investigation.
	Casey, E. (2011). Digital evidence and computer crime. Academic Press.
	Mitropoulos, S., Karakoidas, V., Spinellis, D., & Louridas, P. (2019). Real-time event log analysis. IEEE Access.
	Microsoft Docs. (2020). Event Viewer documentation. https://learn.microsoft.com
	SANS Institute. (2022). Event log analysis. https://www.sans.org/white-papers/event-log-analysis/
	Carrier, B. (2005). File system forensic analysis. Addison-Wesley.
	Altheide, C., & Carvey, H. (2011). Digital forensics with open source tools. Syngress.
	Reith, M., Carr, C., & Gunsch, G. (2002). An examination of digital forensic models. International Journal of Digital Evidence, 1(3).
	National Institute of Standards and Technology. (2006). Guide to integrating forensic techniques into incident response (SP 800-86). https://csrc.nist.gov/publications/detail/sp/800-86/final
	CrowdStrike. (2023). Endpoint detection and log management. https://www.crowdstrike.com
	IBM X-Force. Event log analysis case studies. https://www.ibm.com/security/xforce
	Mandia, K., Prosise, C., & Pepe, M. (2003). Incident response & computer forensics. McGraw-Hill.
	Microsoft. (2023). LogParser tool documentation. https://learn.microsoft.com/en-us/sql/tools/logparser
	Zimmerman, E.. EvtxECmd documentation. https://ericzimmerman.github.io
	National Cyber Security Centre (UK). (2023). Windows event logging guidance. https://www.ncsc.gov.uk
	Stallings, W. (2019). Computer security: Principles and practice. Pearson.
	Kaspersky Labs. (2023). Best practices for log analysis. https://www.kaspersky.com
	Sophos. (2022). Investigating Windows logs during threat hunts. https://www.sophos.com
	AlienVault Labs. (2023). Log correlation techniques. https://cybersecurity.att.com
	Patel, P. C. (2013). Aggregation of digital forensics evidences. Int J Comput Trends Technol (IJCTT), 4(4), 881-884.

