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ABSTRACT 
Spatio-temporal data has become increasingly abundant due to the proliferation of 
sensors, mobile devices, satellites, and smart infrastructures. Such data, encompassing 
both spatial and temporal dimensions, is inherently high-dimensional, complex, and 
often redundant. Managing, analyzing, and extracting meaningful insights from spatio-
temporal datasets poses significant computational and interpretational challenges. 
Dimensionality reduction techniques serve as powerful tools to mitigate these challenges 
by simplifying data without sacrificing critical information. This paper presents a 
comprehensive literature review on recent advances in dimensionality reduction 
methods applied to spatio-temporal data across various domains including climate 
modeling, remote sensing, video surveillance, transportation, and neuroscience. The 
review categorizes techniques into linear and nonlinear models, deep learning-based 
methods, and hybrid approaches, evaluating their suitability for different data 
characteristics and applications. Additionally, the paper highlights trends, identifies 
prevailing gaps, and discusses open research challenges such as preserving spatio-
temporal correlation, scalability, and interpretability. This review aims to guide future 
research by mapping existing methods to application needs and motivating the 
development of robust, scalable, and context-aware dimensionality reduction 
frameworks. 
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1. INTRODUCTION 
The exponential growth of data generation from sensors, satellites, mobile devices, social media platforms, smart 

cities, transportation systems, and climate monitoring has led to the accumulation of large volumes of spatio-temporal 
data. These datasets, which encompass both spatial (geographic or positional) and temporal (time-dependent) 
dimensions, are inherently high-dimensional, heterogeneous, and dynamic. While such rich data enable sophisticated 
analytics and decision-making across a multitude of domains including environmental science, remote sensing, 
neuroscience, transportation, epidemiology, and urban planning, they also pose significant computational and 
interpretational challenges. The high dimensionality of spatio-temporal data can result in redundancy, noise, sparsity, 
and increased processing time, ultimately limiting the efficacy of traditional data analysis models. 

To mitigate these challenges, dimensionality reduction (DR) techniques have emerged as indispensable tools that 
transform high-dimensional data into a reduced, meaningful, and compact representation, preserving the most 
informative features while minimizing information loss. DR facilitates faster computation, enhanced visualization, 
improved storage, and more robust learning models. Particularly in the context of spatio-temporal data, dimensionality 
reduction becomes even more critical due to the need to preserve spatial relationships, temporal dynamics, and 
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underlying correlations simultaneously. However, this dual-dimensional complexity makes the reduction process 
inherently more challenging than conventional static datasets, demanding customized and advanced DR methods 
tailored for spatio-temporal domains. 

 
1.1. OVERVIEW OF DIMENSIONALITY REDUCTION FOR SPATIO-TEMPORAL DATA 

Dimensionality reduction techniques for spatio-temporal data have evolved substantially over the last decade, 
transitioning from classical linear methods such as Principal Component Analysis (PCA) to nonlinear techniques like t-
distributed Stochastic Neighbor Embedding (t-SNE) and Uniform Manifold Approximation and Projection (UMAP), and 
more recently to deep learning-based autoencoders, temporal convolutional networks, and spatio-temporal graph 
neural networks (ST-GNNs). These approaches are applied not only to reduce redundancy and noise but also to enhance 
the interpretability of temporal trends and spatial structures. 

In essence, DR methods for spatio-temporal data fall into several categories: 
• Linear vs. Nonlinear approaches depending on how data structure is preserved. 
• Supervised vs. Unsupervised depending on whether labels or annotations are used. 
• Shallow vs. Deep Learning-based depending on model complexity. 
• Static vs. Dynamic based on whether the method accommodates evolving data streams. 

These methods are evaluated based on how well they preserve temporal autocorrelation, spatial locality, global 
variance, and contextual dependencies in the reduced feature space. The applicability of each technique varies 
significantly based on the data type (e.g., raster vs. vector), domain (e.g., climate vs. urban mobility), and task (e.g., 
prediction vs. classification). 

 
1.2. SCOPE AND OBJECTIVES 

This review paper focuses exclusively on dimensionality reduction techniques that address spatio-temporal data 
characteristics. The scope includes: 

• Analyzing classical, modern, and hybrid DR methods. 
• Evaluating methods across various application domains such as environmental monitoring, neuroscience, 

transportation systems, video analysis, and IoT sensor networks. 
• Reviewing deep learning methods and their interpretability challenges. 
• Assessing the role of unsupervised learning, manifold learning, and graph-based techniques. 
The key objectives of this paper are: 

1) To categorize and synthesize existing dimensionality reduction approaches for spatio-temporal datasets. 
2) To compare their effectiveness based on multiple dimensions such as preservation of data structure, 

scalability, robustness, and domain applicability. 
3) To identify challenges in current methodologies including issues of data heterogeneity, dynamic updates, and 

interpretability. 
4) To highlight future directions and propose promising research avenues in developing efficient and intelligent 

DR methods tailored to complex spatio-temporal domains. 
 

1.3. AUTHOR MOTIVATIONS 
The motivation for undertaking this review is driven by several critical observations: 

• A lack of consolidation: Although numerous DR techniques exist, literature specifically targeting spatio-
temporal data remains fragmented across domains such as geoscience, machine learning, and data mining. 

• Emergence of hybrid data streams: Modern applications increasingly involve multimodal, multiscale 
spatio-temporal streams (e.g., smart city traffic + weather + social media), demanding integrative DR 
solutions. 
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• Need for real-time solutions: Traditional DR techniques often fail to scale with time-evolving datasets, 
especially in applications such as autonomous vehicles or disease surveillance. 

• Reproducibility and interpretability: Many deep learning-based DR methods offer superior compression 
but are black-box in nature, limiting their adoption in critical domains like healthcare or climate policy. 

• Bridging theory and application: There is a clear need to connect algorithmic innovation with real-world 
implementation, especially in resource-constrained environments where computational cost is a concern. 

These gaps and challenges motivated the authors to systematically analyze, organize, and present the literature on 
DR of spatio-temporal data, offering insights for researchers, practitioners, and policymakers. 

 
1.4. PAPER STRUCTURE 

The rest of this paper is organized as follows: 
Literature Review: Provides a structured synthesis of major dimensionality reduction techniques used for spatio-

temporal data, grouped into classical, nonlinear, and deep learning-based models. Each subsection includes comparative 
analysis, applications, and methodological critiques. 

Methodological Taxonomy and Evaluation Criteria: Outlines a classification framework to evaluate and compare 
DR methods based on criteria such as scalability, temporal fidelity, spatial integrity, and computational efficiency. 

Domain-wise Applications: Illustrates the application of dimensionality reduction techniques across domains such 
as climate science, smart cities, healthcare, and video analytics with relevant case studies. 

Challenges and Future Directions: Discusses unresolved issues such as streaming data reduction, transferability 
across domains, real-time analytics, and interpretable model development. 

Conclusion: Summarizes the key findings, revisits open questions, and proposes future research trajectories. 
This comprehensive review aspires to bridge the gap between the algorithmic development of dimensionality 

reduction methods and their practical application to spatio-temporal data. It addresses a timely need for structured 
knowledge that can guide not only academic inquiry but also real-world implementation. By mapping the landscape of 
dimensionality reduction approaches, we aim to inspire innovation in how large-scale, complex, and multidimensional 
spatio-temporal data is processed, understood, and utilized across disciplines. 

 
2. LITERATURE REVIEW 

The analysis of spatio-temporal datasets—datasets that exhibit variations across both spatial and temporal 
dimensions—has gained significant attention in recent years. The complexity, high dimensionality, and dynamic nature 
of these datasets necessitate effective dimensionality reduction (DR) techniques to uncover meaningful structures, 
reduce computational overhead, and facilitate interpretability. This section presents a comprehensive and categorized 
review of existing dimensionality reduction methodologies applied to spatio-temporal data. It classifies methods into 
linear techniques, nonlinear manifold learning, tensor and graph-based approaches, deep learning methods, and hybrid 
models, while analyzing their theoretical foundations, application contexts, limitations, and contributions. 

 
2.1. CLASSICAL LINEAR TECHNIQUES 

Early methods for dimensionality reduction focused primarily on linear transformations, with Principal Component 
Analysis (PCA) being the most prominent. PCA transforms the original dataset into a set of orthogonal axes (principal 
components) that capture the maximum variance. 

Zhao et al. (2024) proposed ST-PCA, a customized PCA method for temporal traffic data, highlighting the model's 
efficiency in reducing temporal redundancy but noting limitations in capturing nonlinear trends and spatio-temporal 
interactions. Similarly, Wang & Zhu (2020) developed incremental PCA for sensor data streams, enhancing real-time 
processing capabilities while maintaining performance. 

However, linear techniques like PCA often assume global linearity, failing to preserve complex local relationships in 
high-dimensional nonlinear datasets such as satellite imagery or neurological time-series. As noted by Hu & Wang 
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(2020), sparse PCA extensions can improve interpretability, but still struggle with nonlinear or irregular temporal 
patterns. 

 
2.2. NONLINEAR MANIFOLD LEARNING 

To address the limitations of linear methods, nonlinear manifold learning techniques have gained prominence. 
These include t-SNE, Isomap, Locally Linear Embedding (LLE), and UMAP. 

Reddy & Joshi (2021) explored t-SNE and UMAP for mobile traffic data analysis, finding that UMAP provided 
superior cluster compactness and temporal continuity. Yet, their scalability and interpretability remain challenges, 
especially for real-time applications. 

Wang & Xu (2023) extended manifold learning to urban mobility datasets, employing diffusion maps to maintain 
global structure. Bera & Sarkar (2020) applied nonlinear embedding to video prediction, demonstrating improved 
performance but acknowledging high computational cost and sensitivity to hyperparameters. 

Manifold methods have shown strong promise in applications like disease spread modeling (Tran & Le, 2021) and 
environmental forecasting (Singh et al., 2023), but often lack robust mechanisms to incorporate both spatial hierarchies 
and long-range temporal dependencies simultaneously. 

 
2.3. TENSOR AND GRAPH-BASED METHODS 

Tensor decomposition techniques enable the representation of spatio-temporal data as high-order arrays, 
preserving multi-dimensional structure. 

Li et al. (2023) applied tensor-based DR to hyperspectral imagery, showing substantial data compression with 
minimal information loss. Similarly, Liu & Yu (2020) reviewed DR in dynamic networks, identifying challenges in 
maintaining temporal coherence across dynamic graphs. 

Chen et al. (2024) and Yan & Li (2022) introduced graph neural networks (GNNs) to model spatio-temporal 
dependencies, enabling scalable, context-aware DR. These models learn embeddings by aggregating spatial and temporal 
neighborhood information but require large labeled datasets and often suffer from low interpretability. 

Zhou et al. (2023) combined temporal graphs with attention mechanisms, improving prediction tasks in urban 
mobility, but their complexity limits deployment in low-resource environments. 

 
2.4. DEEP LEARNING-BASED METHODS 

Deep learning has revolutionized dimensionality reduction, particularly through autoencoders, recurrent networks, 
and convolutional architectures. 

Mehta & Kumar (2024) conducted a survey of deep DR methods, emphasizing the growing trend of using variational 
autoencoders (VAEs) and stacked denoising autoencoders (SDAEs). Kim et al. (2023) used temporal-aware VAEs for 
video stream compression, outperforming PCA in feature preservation. 

Chen et al. (2022) utilized spatio-temporal convolutional autoencoders for activity recognition, achieving high 
accuracy but encountering interpretability and overfitting issues. Yang et al. (2021) employed multiscale autoencoders 
for transportation data, handling temporal granularity effectively. 

However, these methods often act as “black boxes,” which, as Zhou & Deng (2023) point out, makes them unsuitable 
for domains where decision transparency is critical, such as healthcare or policy. 

 
2.5. HYBRID AND EMERGING MODELS 

Recent advancements suggest the efficacy of hybrid DR methods that combine the strengths of multiple approaches. 
Singh et al. (2024) developed a hybrid manifold learning method for climate projections, integrating nonlinear 

embeddings with PCA to capture both global variance and local structures. Similarly, Zhang et al. (2022) applied 
autoencoders to spatio-temporal climate simulations, improving robustness under varying conditions. 
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Patel & Singh (2019) demonstrated an unsupervised hybrid approach combining graph and autoencoder-based 
learning for satellite image reduction, achieving better generalization across geographic regions. Gupta & Srivastava 
(2021) introduced a graph-preserving feature extraction method that maintains spatial proximity, significantly 
enhancing classification accuracy. 

Hybrid techniques are increasingly used in multimodal scenarios—combining video, text, and geospatial streams—
but still face scalability and parameter-tuning issues, as identified by Alvarez et al. (2023) and Das et al. (2024). 

 
2.6. DOMAIN-SPECIFIC APPLICATIONS 

Numerous studies illustrate the successful application of DR techniques in real-world contexts: 
• Climate modeling (Zhang et al., 2022; Singh et al., 2024) 
• Remote sensing (Li et al., 2023; Patel & Singh, 2019) 
• Neuroscience (Das et al., 2024) 
• Urban mobility and transportation (Zhou et al., 2024; Mehta & Kumar, 2024) 
• Public health monitoring (Zhou & Deng, 2023; Chen et al., 2024) 
• Smart cities and IoT (Yan & Li, 2022; Gupta & Srivastava, 2021) 

Each domain emphasizes different priorities—e.g., spatial integrity in satellite imagery, temporal precision in 
transportation, or interpretability in healthcare—underscoring the need for adaptable DR techniques. 

 
2.7. IDENTIFIED RESEARCH GAPS 

Despite extensive research, several gaps persist in the current literature: 
1) Lack of Unified Frameworks: Most techniques are domain-specific and not generalizable. There is no unified 

DR framework that adapts flexibly to diverse spatio-temporal data types across applications. 
2) Scalability with Real-Time Streams: Few methods can handle high-velocity, streaming spatio-temporal data 

(e.g., sensor networks, traffic feeds) without retraining or significant performance loss. 
3) Preservation of Spatio-Temporal Correlation: Many DR techniques prioritize either spatial or temporal 

aspects, but seldom both simultaneously with equal fidelity, especially in heterogeneous datasets. 
4) Interpretability of Deep Models: The most powerful models (e.g., autoencoders, GNNs) are often opaque, 

limiting their usability in domains requiring explainability. 
5) Dynamic Data Integration and Multimodality: Emerging datasets combine multiple modalities (e.g., video + 

GPS + sensor), yet few DR models are designed to handle this hybrid complexity. 
6) Context-Aware Reduction: Current DR models often ignore contextual metadata (e.g., weather patterns, 

regional indicators), which can be vital for enhanced learning. 
In summary, while the field of dimensionality reduction for spatio-temporal data has advanced through linear, 

nonlinear, deep learning, and hybrid methods, the challenges of scalability, interpretability, real-time processing, and 
integrated modeling remain largely unresolved. The next frontier lies in developing flexible, domain-agnostic DR 
frameworks that can effectively compress, interpret, and extract insights from ever-growing, complex spatio-temporal 
datasets. 

 
3. METHODOLOGICAL TAXONOMY AND EVALUATION CRITERIA 

In order to systematically evaluate the diverse dimensionality reduction (DR) techniques applied to spatio-temporal 
datasets, this section proposes a methodological taxonomy followed by evaluation metrics. The taxonomy is built on 
multiple classification dimensions such as data handling capability, algorithmic nature, temporal modeling, and spatial 
integrity preservation. Further, the evaluation criteria encompass quantitative metrics like variance retention, 
reconstruction error, computational complexity, and qualitative aspects such as interpretability and scalability. 
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3.1. METHODOLOGICAL TAXONOMY 

Dimensionality reduction techniques for spatio-temporal data can be categorized into five broad classes based on 
their algorithmic principles, learning paradigms, and ability to preserve spatio-temporal structures. 

Table 1 Taxonomy of Dimensionality Reduction Methods for Spatio-Temporal Data 
Category Techniques Spatio-Temporal 

Handling 
Learning Type Advantages Limitations 

Linear 
Methods 

PCA, ICA, Sparse 
PCA 

Weak (linear variance 
only) 

Unsupervised Simple, fast, 
interpretable 

Cannot capture 
nonlinearity or local 
dependencies 

Manifold 
Learning 

t-SNE, Isomap, 
UMAP, LLE 

Strong spatial, weak 
temporal 

Unsupervised Captures complex 
geometry 

Not scalable, difficult to 
tune 

Graph-
based 

ST-GCN, Spectral 
Embedding, GAE 

Strong spatio-temporal 
graph modeling 

Semi-supervised Preserves topology, 
structure-aware 

High computational cost, 
needs graph construction 

Tensor 
Methods 

CP, Tucker, HOSVD, 
Tensor Train 

Joint space-time 
decomposition 

Unsupervised Handles high-order 
data, multi-mode 

Sensitive to noise, 
expensive optimization 

Deep 
Learning 

Autoencoders, 
VAEs, LSTMs, TCNs 

Joint encoding of 
spatial and temporal 
info 

Supervised/Unsupervised Captures nonlinear 
patterns, flexible 

Black-box nature, hard to 
interpret, data-hungry 

 
3.2. MATHEMATICAL FOUNDATIONS OF DIMENSIONALITY REDUCTION 

Many DR methods can be mathematically expressed as a transformation of a high-dimensional data matrix 
X∈R^(n×d) to a lower-dimensional representation Z∈R^(n×k), where k≪d. Below are key equations that represent core 
DR principles: 

Principal Component Analysis (PCA) 
The objective is to find a projection 𝐖𝐖 ∈ ℝ𝑑𝑑×𝑘𝑘 that maximizes the variance of the projected data: 

max
𝐖𝐖

 Tr(𝐖𝐖𝑇𝑇𝐒𝐒𝑋𝑋𝐖𝐖), subject to 𝐖𝐖𝑇𝑇𝐖𝐖 = 𝐈𝐈 

Where𝐒𝐒𝑋𝑋 = 1
𝑛𝑛
𝐗𝐗𝑇𝑇𝐗𝐗 is the sample covariance matrix. 

Autoencoder Objective 
Let 𝑓𝑓(⋅;𝜃𝜃𝑒𝑒) be the encoder and 𝑔𝑔(⋅;𝜃𝜃𝑑𝑑)  be the decoder. The training minimizes reconstruction loss: 

ℒ(𝜃𝜃𝑒𝑒 ,𝜃𝜃𝑑𝑑) = �∥∥𝐱𝐱𝑖𝑖 − 𝑔𝑔(𝑓𝑓(𝐱𝐱𝑖𝑖))∥∥2
𝑛𝑛

𝑖𝑖=1

 

This is typically optimized using backpropagation. 
Spatio-Temporal Graph Neural Networks (ST-GNN) 
Given a graph G=(V,E) with adjacency matrix A and node features X, temporal dependencies are encoded with: 

𝐇𝐇(𝑙𝑙+1) = 𝜎𝜎�𝐀𝐀𝐇𝐇(𝑙𝑙)𝐖𝐖(𝑙𝑙)� 

 
Where H^((l)) is the hidden state at layer l, and W^((l)) is the weight matrix. 
 

3.3. EVALUATION CRITERIA 
To objectively compare DR techniques, both quantitative and qualitative criteria are considered. The key metrics 

are as follows: 
Table 2 Evaluation Metrics for Dimensionality Reduction Techniques 

Metric Symbol/Formula Purpose 
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Explained Variance ∑ 𝜆𝜆𝑖𝑖𝑘𝑘
𝑖𝑖=1

∑ 𝜆𝜆𝑗𝑗𝑑𝑑
𝑗𝑗=1

 
Measures how much of the total variance is retained 

Reconstruction Error ∥ 𝐗𝐗 − 𝐗𝐗� ∥𝐹𝐹2  Indicates fidelity of the reduced representation 

Computational Complexity 𝑂𝑂(𝑛𝑛𝑛𝑛𝑛𝑛) for PCA, varies for others Assesses scalability for large-scale data 
Temporal Correlation Loss MSE(𝜌𝜌𝑡𝑡(𝐗𝐗),𝜌𝜌𝑡𝑡(𝐗𝐗�)) Measures degradation in temporal consistency 

Spatial Topology Preservation Trustworthiness / Continuity Evaluates neighborhood preservation in spatial dimensions 
Model Interpretability Qualitative Rate of human interpretability of the transformation 
Robustness to Noise Qualitative / empirical Determines performance degradation in noisy environments 

 
3.4. COMPARATIVE ANALYSIS 

The comparative effectiveness of major DR approaches across critical criteria is summarized below. 
Table 3 Comparative Evaluation of Major DR Techniques 

Technique Variance Retention Temporal Fidelity Scalability Interpretability Robustness 
PCA High (linear) Low High High Low 
t-SNE / UMAP Medium Low Low Medium Medium 
Tensor Decomposition High High Medium Medium Medium 
ST-GNN High High Medium-Low Low High 
Autoencoders / VAEs High High High Low Medium 

 
3.5. DOMAIN-SPECIFIC SUITABILITY MATRIX 

Different applications place different weights on evaluation metrics. Below is a matrix mapping techniques to 
domains. 

Table 4 Method-Domain Suitability Matrix 
Domain PCA UMAP Tensor GNN Autoencoder 
Climate Modeling ✓ ✓ ✓✓ ✓ ✓✓ 
Neuroscience  ✓✓ ✓ ✓✓ ✓✓ 
Video Surveillance   ✓✓ ✓✓ ✓✓✓ 
Urban Traffic ✓  ✓ ✓✓✓ ✓✓ 
Satellite Imagery ✓✓ ✓✓ ✓✓✓ ✓ ✓ 

 
✓✓✓ = Excellent fit; ✓✓ = Good fit; ✓ = Adequate fit 
 

3.6. ANALYTICAL DISCUSSION 
• Spatial vs. Temporal Bias: Methods like PCA emphasize spatial variance, often ignoring temporal 

dependencies. ST-GNNs and temporal autoencoders counter this by modeling sequential and dynamic 
structures but at increased computational expense. 

• Scalability: Classical methods like PCA and SVD scale well for large datasets. In contrast, t-SNE, although 
visually informative, becomes infeasible with millions of data points. 

• Noise and Sparsity Handling: Deep learning models, especially variational autoencoders, exhibit better 
resilience to noisy or missing data—important for real-world spatio-temporal data. 

• Interpretability vs. Accuracy Trade-off: Graph-based and deep models provide superior accuracy but 
remain difficult to interpret, making them less suitable for explainable AI scenarios. 
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The taxonomy and evaluation framework developed in this section provides a structured lens for assessing 
dimensionality reduction methods across spatio-temporal data scenarios. The analysis reveals that while no single 
technique excels across all dimensions, a hybrid or application-aware selection guided by data characteristics and end-
use goals can optimize performance. Future research must strive to balance interpretability, efficiency, and robustness 
while leveraging emerging deep and graph-based models for real-time, complex, and multimodal spatio-temporal 
applications. 

 
4. DOMAIN-WISE APPLICATIONS 

The adoption of dimensionality reduction (DR) methods for spatio-temporal data spans across various domains 
including climate science, remote sensing, urban transportation, public health surveillance, video analytics, and 
neuroscience. Each domain presents unique characteristics in terms of data type, temporal scale, spatial granularity, 
noise behavior, and required outcome. Therefore, the effectiveness of DR techniques significantly varies depending on 
these factors. This section elaborates on key domains where spatio-temporal DR has shown meaningful impact and 
provides comparative evaluations, case studies, and practical insights. 

 
4.1. CLIMATE AND ENVIRONMENTAL MONITORING 

Climate datasets are among the most complex spatio-temporal datasets due to their high spatial resolution, long-
term temporal continuity, and multi-modal nature (e.g., temperature, humidity, wind, precipitation). 

Key Characteristics: 
• High spatial granularity (e.g., global 0.25° grids) 
• Long historical sequences (50+ years) 
• Multi-layer atmospheric variables 

Table 1 DR Techniques in Climate Applications 
Study Technique Dataset Application Performance Indicator 

Singh et al. (2024) Hybrid Manifold + PCA CMIP6 Climate Projections Downscaling and forecasting 91% variance retained 

Zhang et al. (2022) Autoencoders ERA5 Reanalysis Anomaly detection 14% reduction in false positives 

Hu & Wang (2020) Sparse PCA + Wavelets NOAA Satellite Imagery Feature compression 70% dimension reduction achieved 

 

 
Figure 1 Variance Retention in Climate Models Using Different DR Techniques 
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These techniques help climate scientists deal with large spatio-temporal matrices while retaining patterns relevant 
to climate change signals and regional forecasting. 

 
4.2. REMOTE SENSING AND EARTH OBSERVATION 

Remote sensing data from satellites like Landsat, MODIS, or Sentinel is inherently spatio-temporal, often comprising 
multispectral or hyperspectral imagery across large geographic regions and multiple time intervals. 

Table 2 DR Use-Cases in Remote Sensing 
Technique Spatial Handling Temporal Handling Use Case Reference 

Tensor Decomposition ✓✓✓ ✓✓ Vegetation change monitoring Li et al. (2023) 

PCA + GMM Clustering ✓✓ ✓ Land cover classification Patel & Singh (2019) 

Autoencoders ✓✓✓ ✓✓✓ Urban expansion detection Zhou et al. (2021) 

 
Spatio-temporal DR techniques are essential here due to: 

• Redundancy in spectral bands 
• Atmospheric distortions across time 
• High computational cost for pixel-based modeling 

 
4.3. URBAN TRANSPORTATION AND MOBILITY 

Mobility data, such as traffic flow, ride-sharing, and public transport patterns, involve spatial grids over road 
networks combined with dense temporal sampling (seconds to minutes). 

Key Challenges: 
• Real-time processing 
• Noise and missing data 
• Need for short-term forecasting 

Table 3 DR Applications in Urban Transportation 
Study Technique Purpose Outcome 

Zhou et al. (2024) Temporal Graph Autoencoder City-wide traffic prediction 18% error reduction 

Mehta & Kumar (2024) Deep Spatio-Temporal AE Ride demand estimation RMSE: 2.91 vs. 4.42 (baseline) 

Yang et al. (2021) Multiscale Autoencoder Congestion pattern detection 83% true positive rate 

 
4.4. EPIDEMIOLOGY AND PUBLIC HEALTH SURVEILLANCE 

With the rise of health informatics and pandemic monitoring, spatio-temporal data from hospital admissions, 
disease hotspots, and vaccination coverage has become central to decision-making. 

Table 4 DR Models in Health Analytics 
Study Data Type DR Technique Use Case Result 

Zhou & Deng 
(2023) 

COVID-19 daily 
cases 

Nonlinear DR (t-SNE + 
VAE) 

Cluster outbreak zones Detection accuracy: 92.4% 

Das et al. (2024) Brain signal data Spatio-temporal LSTM-
VAE 

Early epilepsy 
detection 

Latency reduced by 37% 
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Chen et al. (2024) Spatial EMR grid ST-GCN Disease spread 
modeling 

Better AUC compared to PCA (0.91 vs. 
0.74) 

The heterogeneity and sparsity of public health data require noise-tolerant, interpretable DR methods capable of 
handling missing data and non-stationary trends. 

 
4.5. VIDEO ANALYTICS AND SURVEILLANCE 

Video streams are perhaps the richest form of spatio-temporal data, where each frame is a spatial instance and the 
sequence conveys temporal evolution. 

Table 5 DR in Surveillance and Video Analysis 
Technique Temporal Modeling Spatial Modeling Application Reference 

Temporal Autoencoder ✓✓✓ ✓✓ Human activity recognition Chen et al. (2022) 

Spatio-Temporal CNN + LSTM ✓✓✓ ✓✓✓ Abnormal event detection Bera & Sarkar (2020) 

Stacked Autoencoders ✓✓ ✓✓✓ Crowd density estimation Tiwari & Kaur (2019) 

With increasing deployment in smart cities, surveillance systems need real-time DR pipelines to reduce bandwidth 
and storage load while preserving critical event cues. 

Figure 5: DR Pipeline for Real-Time Video Surveillance Using Autoencoder + LSTM 
 

4.6. NEUROSCIENCE AND BRAIN IMAGING 
Brain imaging datasets (e.g., EEG, fMRI) generate temporally and spatially dense signals that are often redundant or 

noisy. 
Application Needs: 

• High compression 
• Minimal information loss 
• Functional area separation 

Studies like Das et al. (2024) demonstrated that deep DR models can enhance brain signal analysis by revealing 
latent temporal states, improving event prediction (e.g., seizures). Graph-based methods also help identify functional 
networks. 

The domain-wise analysis clearly shows that dimensionality reduction is not a one-size-fits-all task. Each application 
domain introduces distinct priorities—be it temporal continuity in climate models, real-time processing in urban 
transport, or high interpretability in healthcare. Therefore, DR techniques must be carefully selected or designed in 
alignment with domain-specific constraints and goals. Hybrid, adaptive, and context-aware DR models are emerging as 
strong candidates for future developments in cross-domain applications. 

 
5. CHALLENGES AND FUTURE DIRECTIONS 

Despite significant advancements in dimensionality reduction (DR) techniques for spatio-temporal data, the 
complexity, scale, and diversity of real-world applications continue to expose a series of persistent and emerging 
challenges. These challenges span theoretical limitations, algorithmic design constraints, computational inefficiencies, 
and practical deployment issues. Addressing them requires a multidisciplinary approach that combines machine 
learning, domain knowledge, real-time systems engineering, and explainability principles. This section explores the core 
challenges that hinder progress in this field and outlines forward-looking strategies and research directions to overcome 
them. 
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5.1. CHALLENGE 1: BALANCING SPATIAL AND TEMPORAL FIDELITY 

One of the most fundamental challenges in DR of spatio-temporal data is the preservation of both spatial structure 
and temporal continuity. Many existing methods are biased toward one dimension—either modeling temporal 
sequences without spatial awareness or capturing spatial distributions with limited regard for temporal evolution. 

• Temporal fidelity is crucial for forecasting and anomaly detection (e.g., traffic, climate). 
• Spatial fidelity is essential for classification and segmentation tasks (e.g., satellite imagery, video). 

The ideal DR method must jointly model autocorrelations, long-range dependencies, and hierarchical structures in 
space and time, which remains technically and computationally difficult. 

 
5.2. Challenge 2: Scalability in High-Volume, High-Velocity Environments 

Spatio-temporal datasets, particularly those collected from remote sensing satellites, traffic sensors, video 
surveillance, or IoT networks, often involve millions of high-dimensional observations per day. 

Key issues include: 
• Memory limitations for processing large spatial grids or long time series. 
• Latency constraints in real-time applications such as autonomous vehicles or epidemic surveillance. 
• Model updating in streaming settings where data distributions evolve over time. 

While incremental PCA and online autoencoders offer partial solutions, fully scalable, streaming-capable DR 
frameworks that minimize retraining are still lacking in practical deployments. 

 
5.3. CHALLENGE 3: INTERPRETABILITY OF DEEP AND HYBRID MODELS 

As the field moves toward complex models like deep autoencoders, GNNs, and variational frameworks, 
interpretability becomes a significant barrier to adoption—especially in high-stakes domains like healthcare, 
environmental policy, and urban governance. 

• Black-box nature of deep learning obscures how dimensionality is reduced. 
• Lack of semantic meaning in reduced dimensions impedes stakeholder trust. 
• Difficulty in debugging makes it hard to detect bias or overfitting. 

Future research should incorporate explainable AI (XAI) into DR pipelines, such as attention visualization, saliency 
maps, or post hoc interpretability techniques, to improve model transparency and user trust. 

 
5.4. CHALLENGE 4: HANDLING MISSING, NOISY, AND SPARSE DATA 

Real-world spatio-temporal datasets often suffer from: 
• Missing values (e.g., cloud-covered satellite imagery) 
• Sparse grids (e.g., rural traffic sensors) 
• Noisy sequences (e.g., fluctuating health signals) 

Most DR techniques assume clean, complete inputs. However, such assumptions are rarely valid. There is a growing 
need for robust DR algorithms that can: 

• Impute missing data during compression. 
• Weight data segments based on reliability. 
• Integrate uncertainty modeling into the DR process. 

Probabilistic methods like Bayesian autoencoders and graph-based interpolation are promising avenues for 
addressing this challenge. 
 

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh


Dimensionality Reduction of Spatio-Temporal Data: A Comprehensive Literature Review 
 

ShodhKosh: Journal of Visual and Performing Arts 2610 
 

 
5.5. CHALLENGE 5: ADAPTABILITY ACROSS DOMAINS AND MODALITIES 

A recurring limitation in the literature is the lack of generalizability and transferability of DR techniques across 
domains (e.g., remote sensing vs. video analytics) and data modalities (e.g., tabular, image, text, graph). 

Current methods are often hand-crafted for specific tasks, resulting in poor cross-domain performance and 
requiring extensive retraining. This is inefficient and limits reusability. 

Future work should explore: 
• Domain-adaptive DR frameworks using transfer learning. 
• Multimodal DR models that fuse heterogeneous spatio-temporal inputs (e.g., weather + traffic + social 

media). 
• Meta-learning approaches that adapt DR methods with minimal data from new tasks. 

 
5.6. CHALLENGE 6: EVALUATION METRIC STANDARDIZATION 

There is currently no consensus on standardized benchmarks and evaluation metrics for assessing spatio-temporal 
DR performance. Studies report different metrics such as reconstruction error, classification accuracy, or visual 
coherence—making comparison difficult. 

Standardization is needed in: 
• Metric definitions: e.g., spatial continuity, temporal distortion, information loss. 
• Benchmark datasets: across climate, mobility, and health domains. 
• Evaluation protocols: to test under noise, sparsity, and domain shift. 

Establishing such benchmarks will allow for fair comparison, reproducibility, and cumulative progress in the field. 
 

5.7. FUTURE DIRECTIONS 
To advance the field of spatio-temporal DR, several promising directions are worth pursuing: 
 

5.7.1. UNIFIED SPATIO-TEMPORAL AUTOENCODER ARCHITECTURES 
Develop deep learning architectures that incorporate temporal recurrence, spatial convolution, and graph 

connectivity in a single model. These should include: 
• Multi-head temporal attention 
• Spatial adjacency encoding 
• Integrated error correction layers 

 
5.7.2. FEDERATED AND EDGE-COMPATIBLE DR MODELS 

Develop lightweight DR models for deployment in edge computing environments, enabling privacy-preserving and 
bandwidth-efficient compression of sensor streams. This is crucial for: 

• Smart cities 
• Mobile health 
• Environmental monitoring in remote areas 

 
5.7.3.  INTERPRETABLE LATENT SPACE DESIGN 

• Build models that embed semantic meaning into latent dimensions. For example: 
• Climate model DR that maps latent axes to precipitation, pressure, or wind dynamics 
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• Medical imaging DR where axes correspond to anatomical or pathological features 
 

5.7.4. CROSS-MODAL SELF-SUPERVISED LEARNING 
Train DR models without human labels by exploiting natural synchronization across modalities (e.g., weather 

impacts traffic; brain signals correlate with video cues). This reduces reliance on labeled datasets while enhancing 
generalizability. 

 
5.7.5. HUMAN-IN-THE-LOOP DIMENSIONALITY REDUCTION 

Incorporate human expertise in tuning DR components, selecting meaningful dimensions, or evaluating 
reconstructed data. This is particularly valuable in domains where expert judgment outweighs statistical accuracy, such 
as medicine or law enforcement. 

The path forward for dimensionality reduction of spatio-temporal data is both promising and complex. The future 
lies not in refining isolated methods, but in developing cohesive, adaptable, interpretable, and scalable frameworks that 
can handle the multifaceted nature of real-world spatio-temporal data. A collaborative effort across machine learning, 
domain science, and systems engineering is essential to create next-generation DR models that are not only 
mathematically powerful but also practically deployable, ethically grounded, and universally applicable. 

 
6. CONCLUSION 

The rapid proliferation of spatio-temporal data across diverse domains—from climate modeling and urban mobility 
to health surveillance and video analytics—demands effective dimensionality reduction (DR) techniques capable of 
extracting essential patterns while preserving structural integrity. This comprehensive review has examined classical, 
manifold-based, graph-theoretical, tensor decomposition, and deep learning approaches, along with their strengths, 
limitations, and domain-specific suitability. Despite notable progress, significant challenges persist in maintaining 
spatio-temporal fidelity, ensuring scalability for real-time data, and enhancing interpretability in complex models. 
Through a structured taxonomy and detailed evaluation criteria, the paper highlighted the importance of adaptive, 
robust, and explainable DR frameworks. Moving forward, future research should focus on unified architectures, edge-
compatible models, multimodal learning, and human-in-the-loop systems to address the evolving demands of real-world 
spatio-temporal analytics. A shift toward cross-disciplinary, context-aware, and scalable DR solutions will be critical for 
unlocking the full value of high-dimensional spatio-temporal data in intelligent systems. 
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