

Original Article
ISSN (Online): 2582-7472

 ShodhKosh: Journal of Visual and Performing Arts

June 2024 5(6), 2526–2538

How to cite this article (APA): D S, V., Prabhu, I., Sawant, S., d’souza, M. and Shetkar, S. (2024). FPGA-Based Analysis and
Performance Evaluation of FIR Filters. ShodhKosh: Journal of Visual and Performing Arts, 5(6), 2526–2538. doi:
10.29121/shodhkosh.v5.i6.2024.5653

2526

FPGA-BASED ANALYSIS AND PERFORMANCE EVALUATION OF FIR FILTERS

Dr. Vidhya D S 1 , Ishan Prabhu 2 , Sohan Sawant 2 , Melba d’souza 1 , Sagar Shetkar 2

1 Assistant Professor, Don Bosco College of Engineering, Goa University, Goa, India
2 Student, Don Bosco College of Engineering, Goa University, Goa, India

ABSTRACT
Finite impulse response (FIR) filters are widely used in digital signal processing because
of their many benefits. Because these filters are naturally stable, stability issues during
design and implementation are resolved. FIR filters have historically been made using
ASICs or DSP processors. On the other hand, the incorporation of specialized DSP blocks
and fundamental characteristics like re-configurability, reusability, cost effectiveness,
and scalability have made FPGAs a preferred platform for the implementation and testing
of digital signal processing systems. Optimized convolution algorithms can effectively
realize FIR filters, even though they usually require a high order. The main goal of this
project is to implement the FIR filter design on an FPGA. Traditional FIR filter design
methods often have limitations in terms of delays, memory usage, power consumption,
and overall system performance. To address these problems, this project uses
Distributed Arithmetic with Offset Binary Coding (DA-OBC) technique. By enabling high-
speed operation and lowering hardware resource consumption, this technique improves
performance while minimizing circuit complexity. Verilog HDL was used to design the
FIR filter, which was then implemented using the Xilinx ISE Design Suite 14.7. MATLAB
was used to generate the filter coefficients, allowing for accurate and effective filter
design.

Corresponding Author
Dr. Vidhya D S, ds.vidhya@dbcegoa.ac.in
DOI
10.29121/shodhkosh.v5.i6.2024.565
3

Funding: This research received no
specific grant from any funding agency in
the public, commercial, or not-for-profit
sectors.

Copyright: © 2024 The Author(s).
This work is licensed under a Creative
Commons Attribution 4.0
International License.

With the license CC-BY, authors retain
the copyright, allowing anyone to
download, reuse, re-print, modify,
distribute, and/or copy their
contribution. The work must be
properly attributed to its author.

Keywords: DSP Blocks, FPGA, FIR Filter

1. INTRODUCTION
Filters can be broadly classified into two types: analog and digital. In order to make subsequent processing more

efficient, they are used to alter input signals. Among these, digital filters are more widely used due to their superior
signal-to-noise ratio compared to analog filters. At each intermediate transformation stage, digital filters perform
mathematical computations without making any noise. The two primary categories of digital filters are FIR (Finite
Impulse Response) and IIR (Infinite Impulse Response) filters. The fact that IIR filters can only typically implement low-
pass, band-pass, and high-pass responses is one of their main drawbacks. In contrast, FIR filters offer greater flexibility,
allowing the realization of nearly any desired frequency response with high precision and linear phase characteristics.
Most of the time, the output of FIR filters is calculated using a series of delays, multipliers, and adders.

P3#y1 P3#y2 P3#y3 P3#y4 P3#y5

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh
https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh
https://doi.org/10.29121/granthaalayah.v9.i6.2021.3923
https://dx.doi.org/10.29121/granthaalayah.v10.i3.2022.4503
https://dx.doi.org/10.29121/shodhkosh.v5.i6.2024.5653
mailto:ds.vidhya@dbcegoa.ac.in
https://dx.doi.org/10.29121/shodhkosh.v5.i6.2024.5653
https://dx.doi.org/10.29121/shodhkosh.v5.i6.2024.5653
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.29121/shodhkosh.v5.i6.2024.5653&domain=pdf&date_stamp=2024-06-30
mailto:ds.vidhya@dbcegoa.ac.in
mailto:ishan.prabhu55@gmail.com
mailto:sawantsohan555@gmail.com
mailto:melba.dsouza@dbcegoa.ac.in
mailto:sagar.shetkar.1809@gmail.com

FPGA-Based Analysis and Performance Evaluation of FIR Filters

ShodhKosh: Journal of Visual and Performing Arts 2527

Figure 1

Figure 1 Architecture of FPGA

Field Programmable Gate Arrays (FPGAs) are semiconductor devices consisting of a matrix of configurable logic

blocks (CLBs) interconnected by programmable routing. FPGAs are a significant advancement in the semiconductor
industry because they provide post-manufacturing programmability, in contrast to conventional VLSI circuits, which are
completely customizable during the manufacturing process. Before the advent of FPGAs, digital logic design was limited
to a few options: discrete logic devices (such as SSI and VLSI), Cell-Based ASICs, programmable devices like PALs or PLDs,
and Mask-Programmed Gate Arrays (MPGAs) Figure 1, while programmable devices permitted the integration of logic
equivalent to dozens or even hundreds of discrete components, discrete devices could only implement a small amount
of logic. Users could program these devices using specialized hardware on-site. With the added benefit of user reprogram
ability, FPGAs combine the advantages of PLDs and MPGAs by enabling the implementation of thousands of logic gates
on a single chip. FPGAs, in contrast to ASICs, which are designed and manufactured specifically for a given function, can
be reprogrammed multiple times to meet changing application and functionality requirements. This flexibility, along
with reduced time-to-market, lower development costs, and high performance, has made FPGAs an increasingly popular
choice for digital signal processing (DSP), prototype development, custom computing, and logic emulation.

Digital FIR filters are widely used in various digital signal processing (DSP) applications due to their inherent
stability and linear phase characteristics. Consequently, optimizing speed and power consumption is essential for
achieving high-performance filter designs. However, most existing filter designs tend to focus on either high-speed
operation or low power consumption, rarely achieving both. To address this, it is possible to design an FIR filter that
minimizes both execution time and power usage by employing a more efficient algorithm [1].

To develop an effective VLSI architecture that makes use of offset binary coding and distributed arithmetic and to
design and implement a novel finite impulse response (FIR) digital filter using FPGA technology. The objective is
enhanced speed, area efficiency, and power consumption performance.

2. BACKGROUND

Traditionally, DSP applications were implemented using ASICs and dedicated DSP processors. However, with the
emergence of FPGAs, there has been a significant shift in design trends due to their superior performance, flexibility, and
re-configurability. Designing efficient architectures for DSP functions—particularly Finite Impulse Response (FIR)
filters—has gained considerable attention. FIR filters are widely used in various domains, including telecommunications,
wireless communication, video and audio processing, and biomedical signal processing. The core component of FIR
filters is the multiply and Accumulate (MAC) unit, typically implemented using multiplier-based architectures. However,
these architectures have been found to be resource-intensive and costly in terms of area and power. In FPGA-based FIR
designs, a constant trade-off exists between power consumption and processing speed. Therefore, there is a growing
demand for FIR filter designs that are both low-power and high-speed. Recent algorithmic advancements have

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh

Dr. Vidhya D S, Ishan Prabhu, Sohan Sawant, Melba d’souza, and Sagar Shetkar

ShodhKosh: Journal of Visual and Performing Arts 2528

demonstrated significant improvements in performance metrics such as power efficiency, speed, and overall resource
utilization.

Linear-phase FIR filters optimized for high performance on FPGA platforms are the subject of the paper "FPGA
Implementation of High-Performance FIR Filters." An optimal structure for effective FPGA implementation is found by
comparing various well-known multiplier architectures. An interleaved memory structure is used to accommodate
incoming sample values and support high data throughput. A generic VHDL-based filter model has been developed for
increased flexibility. This model enables automatic synthesis—from filter specifications to FPGA deployment. It is
controlled by three user-defined parameters: the number of filter taps, the signal word length, and the coefficient word
length. It uses 2's complement arithmetic to operate [1]. High-speed Finite Impulse Response (FIR) filters can be
implemented using only registered adders and hardwired shifters in a new method. To reduce the number of necessary
adders, the method extensively employs a modified mutual sub-expression elimination algorithm. The implementations
that are produced by the optimization are contrasted with those that are generated by Xilinx Coregen TM employing
Distributed Arithmetic. The optimization is targeted specifically for Xilinx Virtex-II FPGAs [2]. An 8-bit, 8-tap FIR filter
for noise reduction and bandpass filtering to stabilize signal frequency is designed and implemented in this paper [3].
An input signal is sampled by an ADC with a peak-to-peak amplitude of 1 mV, a sampling rate (fs) of 2000 Hz, and a
frequency of 500 Hz. After that, a Field Programmable Gate Array (FPGA) uses FIR filtering to process the digitized signal
[4]. In comparison to the internal analog noise, the proposed implementation reduces noise by 13% and exhibits a
processing delay of only 13.42 ns, significantly less than that of conventional dynamic algorithms. A Digital-to-Analog
Converter (DAC) is then used to reconstruct and verify the original analog signal from the filtered digital output.

To meet the demands of real-time signal processing, a 16-tap linear-phase low-pass FIR filter was designed using
the Kaiser Window method with a cutoff frequency of 100 kHz, implemented in direct form. The signal was analyzed in
both the time and frequency domains before and after filtering. On the EP2C35F672C8 FPGA, the design produced a high-
speed FIR low-pass filter with a maximum frequency response of 61.1 MHz [5]. The overall design demonstrated
significant improvements in both efficiency and filtering performance [6]. Digital Signal Processing (DSP) is a highly
demanding domain in modern technology, with increasing requirements for enhanced performance and efficient
resource utilization. FPGAs are now the preferred platform for implementing and evaluating DSP applications due to
recent advancements in FPGA technology, particularly the integration of dedicated DSP functional blocks and inherent
features like re-configurability, reusability, scalability, and cost-effectiveness. A low-power FIR filter was developed and
implemented in this setting to meet the requirements of DSP systems that save energy [5]. An effective FIR filter design
based on an FPGA is presented alongside a description of the characteristics and fundamental principles of FIR digital
filters in this proposal [6]. The coefficients of the filter were made with the FDA Tool in MATLAB, and a VHDL-based
16th-order constant-coefficient FIR filter was made. Quartus II was used to simulate the design, and the results met the
desired performance requirements. A novel window function is proposed for the design of FIR filters. This window is
tunable, allowing its characteristics to be adjusted by modifying a variable parameter. The Hamming and Kaiser
windows are contrasted with the proposed window [7]. According to simulation results, the proposed window
outperforms the Hamming window (5.74 dB) and the Kaiser window (18.87 dB) in terms of side-lobe roll-off ratio.

3. METHDOLOGY

Distributed Arithmetic (DA) is a computational technique that replaces traditional multiplications with lookup
table-based operations, making it particularly well-suited for implementing multiply intensive algorithms such as FIR
filters. In DA, sum-of-products computations are reformulated into a series of repeated lookup table accesses, with the
resulting values accumulated to produce the final output. This approach is especially effective when one of the
multiplication operands is constant, as in FIR filtering. Distributed Arithmetic stores precomputed partial products in
ROM or RAM in FPGA architectures based on Lookup Tables (LUTs), such as the Xilinx XC4000 series. The address lines,
derived from the bits of the variable operand, are used to retrieve these stored values efficiently. Although DA operates
in a bit-serial manner—potentially making it appear slower—its performance is significantly optimized when the vector
length closely matches the word size. This makes Distributed Arithmetic an attractive option for high-speed, area-
efficient FIR filter implementations in FPGA environments. Proposed lookup-table based Distributed Arithmetic (DA)
implementation are shown below Figure 1

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh

FPGA-Based Analysis and Performance Evaluation of FIR Filters

ShodhKosh: Journal of Visual and Performing Arts 2529

Figure 2

Figure 2 Proposed lookup-table based DA

1) Register Input

The input samples X[k], each with a data width of N, are stored in the input register Figure1. Since the input samples
are initially in parallel form, they must be converted to serial form to generate the appropriate addresses for the Look-
Up Table (LUT). This conversion is achieved by shifting the parallel input samples to the right with each clock cycle,
thereby producing the serial bit stream required to form the LUT address.

2) 16-Word RAM
To implement a 4-input LUT unit, we utilized a predefined LUT table that contains all possible sum combinations of

the filter coefficients. Verilog HDL was used for the implementation. The lookup table's contents were created and saved
for use during the filtering procedure prior to execution.

Table 1 LUT table in DA Algorithm

3) Accumulator

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh

Dr. Vidhya D S, Ishan Prabhu, Sohan Sawant, Melba d’souza, and Sagar Shetkar

ShodhKosh: Journal of Visual and Performing Arts 2530

This stage includes an accumulator, implemented using a 33-bit register. Since the addition of two 32-bit values
may produce a carry, an extra bit is allocated to accommodate the overflow. By adding the shift register's output and the
LUTs' output, partial products are created in the accumulator. These partial products are accumulated over successive
clock cycles, and the final result from the accumulator represents the output of the FIR filter.

4) Shifter Unit
A 33-bit Parallel-In Serial-Out (PISO) shift register is employed in this design. The input to the shift register is the

output of the accumulator. During the filtering process, the least significant bit (LSB) of the shift register is fed back to
the accumulator, allowing for sequential accumulation of partial products.

5) Control Unit
The control unit is responsible for managing the behaviour of individual circuit components as well as the overall

system operation. The control unit of Distributed Arithmetic (DA) typically consists of a counter, whose upper limit is
determined by the input precision and has a direct impact on the throughput of the circuit. One key advantage of DA-
based systems is that their throughput remains independent of the filter order, which distinguishes them from other
implementation methods.

6) Distributed Arithmetic using Offset Binary Coding
A novel technique utilizing Offset Binary Coding (OBC) is proposed to reduce the memory requirements of the Look-

Up Table 2 (LUT) by half. In this architecture, a combination of LUTs and multiplexers (MUXs) is employed for
computation.
Figure 3

Figure 3 Proposed based offset binary implementation

Typically, the memory demand for a Distributed Arithmetic (DA)-based FIR filter implementation grows

exponentially with the filter order N, requiring 2N words. By applying OBC, this requirement is effectively reduced to
2N−1 words. In OBC, input data is represented as –1 for logic ‘0’ and +1 for logic ‘1’. A new LUT is constructed based on
this encoding, forming the foundation for a more memory-efficient DA architecture using Offset Binary Coding.

Table 2 LUT table in Offset Binary Coding Algorithm

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh

FPGA-Based Analysis and Performance Evaluation of FIR Filters

ShodhKosh: Journal of Visual and Performing Arts 2531

Using MATLAB’s FDA tool kit, the filter parameters meeting the above requirements were calculated out.
Table 3 Design Specification on MATLAB

New LUT table will be formed with new architecture for
 Distributed Arithmetic using Offset Binary Coding.
Table 4 Data Sets/Coefficients

Let the input sample xi in offset binary coding be represented as:

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh

Dr. Vidhya D S, Ishan Prabhu, Sohan Sawant, Melba d’souza, and Sagar Shetkar

ShodhKosh: Journal of Visual and Performing Arts 2532

4. RESULT AND DISCUSSION
The Xilinx ISE Design Suite was used for the synthesis and implementation of the designed FIR filter. The design

process made use of coefficients for fixed high-pass filters. To evaluate performance and conduct detailed analysis, the
filter was initially designed using MATLAB’s Filter Design Tool. The resulting coefficients were then scaled to 16-bit
precision and converted into hexadecimal format for hardware implementation. As illustrated in the figure, three distinct
frequency ranges were considered, each with different sampling and cut-off frequencies. Accordingly, three separate
data sets were used for the design and analysis of the FIR filter.

Figure 4

Figure 4 Magnitude response of FIR filter on MATLAB for varying frequencies

1) Simulation of Distributed Arithmetic Algorithm
The Distributed Arithmetic (DA) algorithm was synthesized using Xilinx Vivado, and the RTL schematic of the DA

top module was generated. Behavioral simulation of the DA algorithm was performed, and the corresponding simulation
results were analysed Figure 4.

Figure 5

Figure 5 Schematic of DA Algorithm

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh

FPGA-Based Analysis and Performance Evaluation of FIR Filters

ShodhKosh: Journal of Visual and Performing Arts 2533

As expected, signal components with frequencies lower than the specified cut-off frequency were effectively
attenuated and did not pass through the filter, confirming the correct functionality of the FIR filter design.

2) Simulation of DA-OBC Algorithm
Xilinx Vivado was used to synthesize the Distributed Arithmetic with Offset Binary Coding (DA-OBC) algorithm and

successfully generate the RTL schematic for the DA top module. Behavioural simulation of the DA-OBC algorithm was
conducted, and the resulting waveforms were analysed Figure 5. The generated bit stream file was loaded and
programmed onto the device using the appropriate configuration settings. A confirmation dialog box was displayed
upon successful programming the code.

Figure 6

Figure 6 Schematic of DA-OBC Algorithm

Chip Scope Pro was used to analyse the output waveform following the upload of the algorithm to the FPGA. This

made it possible to observe the filter's performance in real time Figure 6
Figure 7

Figure 7 Bus Plot and Waveform obtained on Chip Scope

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh

Dr. Vidhya D S, Ishan Prabhu, Sohan Sawant, Melba d’souza, and Sagar Shetkar

ShodhKosh: Journal of Visual and Performing Arts 2534

Chip Scope Pro was utilized for the design analysis. After launching the software, the JTAG chain was scanned, and
the target device XC3S400 was selected. The CDC (Chip Scope Definition Core) file corresponding to the implemented
algorithm was imported.

Table 5 Logic Utilization-DA

After pressing the Run button to start the analysis, the bus plot was used to show the output signals, and the data
vs. time graph was chosen to see how the output waveform was sampled. The Summary option was selected from the
Design Overview, and the corresponding Logic Utilization report was generated.

The Logic Utilization for three different data sets was recorded for both the Distributed Arithmetic (DA) and DA with
Offset Binary Coding (DA-OBC) algorithms. The average logic utilization for each algorithm was then calculated for
comparison. Additionally, the Timing Constraints section was accessed from the Design Overview, and the
corresponding Timing Summary was obtained to evaluate the performance of the implemented designs.

Table 6 Logic Utilization-DA-OBC

Timing Summary of 3 data sets for DA Algorithm are observed and their averages are calculated.
Table 7 Timing Summary-DA-OBC

Power analysis of 3 data sets for DA and DA-OBC Algorithm are calculated, and their averages are found.
Table 8 Power Analysis-DA-OBC and DA

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh

FPGA-Based Analysis and Performance Evaluation of FIR Filters

ShodhKosh: Journal of Visual and Performing Arts 2535

The average values of the data from the two algorithms were compared and analysed. Due to the increased number
of components in the DA-OBC architecture, the number of slices utilized per LUT is higher compared to the standard DA
architecture. As a result, the DA algorithm exhibits lower overall logic utilization than the DA-OBC algorithm.

Table 9 Logic Utilization

Figure 8

Figure 8 Logic Utilization

The data from both algorithms were analyzed and their average values compared. The DA-OBC architecture contains

a greater number of functional blocks than the standard DA architecture.
Table 10 Timing Summary-DA

Consequently, the number of slices utilized by each LUT component is higher in the DA-OBC design. Therefore, the

DA algorithm demonstrates lower overall logic utilization compared to the DA-OBC algorithm.

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh

Dr. Vidhya D S, Ishan Prabhu, Sohan Sawant, Melba d’souza, and Sagar Shetkar

ShodhKosh: Journal of Visual and Performing Arts 2536

Figure 9

Figure 9 Timing Summary

The DA-OBC algorithm's minimum period and setup time are significantly lower than those of the standard DA

algorithm, as shown by the timing summary graphs. This indicates that DA-OBC can operate at higher frequencies,
making it a more time-efficient and high-performance design compared to the conventional DA approach.

Table 11 Power Analysis

Figure 10

Figure 10 Power Analysis

The power consumption of the DA algorithm is 31.694 W, whereas the DA-OBC algorithm consumes significantly

less power at 11.21 W. Furthermore, the dynamic power of DA-OBC is only 11.09 W, which is substantially lower than
the 31.341 W consumed by the standard DA design Fig 9. Based on these findings, DA-OBC is a more energy-efficient
option because it makes use of Offset Binary Coding to implement FIR filter design.

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh

FPGA-Based Analysis and Performance Evaluation of FIR Filters

ShodhKosh: Journal of Visual and Performing Arts 2537

 Table 12 Memory Usage

 Figure 11

Figure 11 Memory Usage

Since the DA-OBC algorithm utilizes only half the LUT size compared to the standard DA algorithm, the overall
memory consumption observed in the memory usage chart is significantly lower for DA-OBC. This confirms that DA-OBC
is a more memory-efficient design than the conventional DA approach.

5. CONCLUSION

Numerous design implementations of FIR filters have been developed using various algorithms—some demanding
high computational power, while others involve more basic operations. There is frequently a trade-off between
important design parameters like power, timing, and area in all of these implementations. Typically, an improvement in
one or two of these parameters comes at the expense of the others.

 Distributed Arithmetic (DA) and Distributed Arithmetic with Offset Binary Coding (DA-OBC) emerged as the most
suitable algorithms for FPGA-based implementations among the ones that were evaluated. DA relies on the use of
precomputed Look-Up Tables (LUTs) for multiplication operations, replacing traditional logic-based computation. Offset
Binary Coding, on the other hand, is a biased method of representing numbers that makes optimal use of memory by
using unsigned numbers to represent signed values. Due to their high availability of LUTs, FPGAs are ideal for such LUT-
intensive algorithms. A clear trade-off exists between logic utilization, timing, and power consumption in the DA and DA-
OBC implementations. While DA significantly enhances system speed and conserves hardware resources, the inclusion
of Offset Binary Coding further improves timing and power efficiency.

 In conclusion, DA performs better than DA-OBC in terms of logic utilization, while DA-OBC performs better in terms
of timing and power consumption. As a result, the overall findings show that DA-OBC is the best option for implementing
a FIR filter on FPGA platforms due to its superior power and time efficiency.

CONFLICT OF INTERESTS

None.

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh

Dr. Vidhya D S, Ishan Prabhu, Sohan Sawant, Melba d’souza, and Sagar Shetkar

ShodhKosh: Journal of Visual and Performing Arts 2538

ACKNOWLEDGMENTS
None.

REFERENCES
P. Kollig, B. Al-Hashimi, and K. Abbott, “Fpga implementation of high performance fir filters,” in 1997 IEEE International

Symposium on Circuits and Systems (ISCAS),vol. 4, 1997, pp. 2240–2243 vol.4.
S. Mirzaei, A. Hosangadi, and R. Kastner, “Fpga implementation of high speed fir filters using add and shift method,” in

2006 International Conference on Computer Design, 2006, pp. 308–313.
T.-T. Do, H. Kropp, C. Reuter, and P. Pirsch, “A flexible implementation of high-performance FIR filters on Xilinx FPGAs,”

in Field-Programmable Logic and Applications (FPL), Lecture Notes in Computer Science, vol. 1482, Springer,
1998, pp. 441–445.

R. R. Sudharsan, “Synthesis of fir filter using adc-dac: A fpga implementation,” in 2019 IEEE International Conference on
Clean Energy and Energy Efficient Electronics Circuit for Sustainable Development (INCCES), 2019, pp. 1–3.

G. Jinding, H. Yubao, and S. Long, “Design and fpga implementation of linear fir low-pass filter based on kaiser window
function,” in 2011 Fourth International Conference on Intelligent Computation Technology and Automation, vol.
2, 2011, pp. 496–498.

S. Bhattacharjee, S. Sil, and A. Chakrabarti, “Evaluation of power efficient fir filter for fpga based dsp applications,”
Procedia Technology, 2013 vol. 10, pp.856–865

X. Jiang and Y. Bao, “Fir filter design based on fpga,” in 2010 International Conference on Computer Application and
System Modeling (ICCASM 2010), vol. 13, 2010, pp. V13–621–V13–624.

M. Shil, H. Rakshit, and H. Ullah, “An adjustable window function to design an fir filter,” in 2017 IEEE International
Conference on Imaging, Vision & Pattern Recognition (icIVPR), 2017, pp. 1–5.

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh
https://dx.doi.org/10.29121/shodhkosh.v5.i6.2024.5653
https://dx.doi.org/10.29121/shodhkosh.v5.i6.2024.5653
https://dx.doi.org/10.29121/shodhkosh.v5.i6.2024.5653
https://dx.doi.org/10.29121/shodhkosh.v5.i6.2024.5653
https://dx.doi.org/10.29121/shodhkosh.v5.i6.2024.5653
https://dx.doi.org/10.29121/shodhkosh.v5.i6.2024.5653
https://dx.doi.org/10.29121/shodhkosh.v5.i6.2024.5653
https://dx.doi.org/10.29121/shodhkosh.v5.i6.2024.5653
https://dx.doi.org/10.29121/shodhkosh.v5.i6.2024.5653
https://dx.doi.org/10.29121/shodhkosh.v5.i6.2024.5653
https://dx.doi.org/10.29121/shodhkosh.v5.i6.2024.5653
https://dx.doi.org/10.29121/shodhkosh.v5.i6.2024.5653
https://dx.doi.org/10.29121/shodhkosh.v5.i6.2024.5653
https://dx.doi.org/10.29121/shodhkosh.v5.i6.2024.5653
https://dx.doi.org/10.29121/shodhkosh.v5.i6.2024.5653
https://dx.doi.org/10.29121/shodhkosh.v5.i6.2024.5653
https://dx.doi.org/10.29121/shodhkosh.v5.i6.2024.5653
https://dx.doi.org/10.29121/shodhkosh.v5.i6.2024.5653

	FPGA-Based Analysis and Performance Evaluation of FIR Filters
	Dr. Vidhya D S 1, Ishan Prabhu 2, Sohan Sawant 2, Melba d’souza 1, Sagar Shetkar 2
	1 Assistant Professor, Don Bosco College of Engineering, Goa University, Goa, India
	2 Student, Don Bosco College of Engineering, Goa University, Goa, India

	1. INTRODUCTION
	2. BACKGROUND
	3. METHDOLOGY
	4. RESULT AND DISCUSSION
	5. CONCLUSION
	CONFLICT OF INTERESTS
	ACKNOWLEDGMENTS
	REFERENCES
	P. Kollig, B. Al-Hashimi, and K. Abbott, “Fpga implementation of high performance fir filters,” in 1997 IEEE International Symposium on Circuits and Systems (ISCAS),vol. 4, 1997, pp. 2240–2243 vol.4.
	S. Mirzaei, A. Hosangadi, and R. Kastner, “Fpga implementation of high speed fir filters using add and shift method,” in 2006 International Conference on Computer Design, 2006, pp. 308–313.
	T.-T. Do, H. Kropp, C. Reuter, and P. Pirsch, “A flexible implementation of high-performance FIR filters on Xilinx FPGAs,” in Field-Programmable Logic and Applications (FPL), Lecture Notes in Computer Science, vol. 1482, Springer, 1998, pp. 441–445.
	R. R. Sudharsan, “Synthesis of fir filter using adc-dac: A fpga implementation,” in 2019 IEEE International Conference on Clean Energy and Energy Efficient Electronics Circuit for Sustainable Development (INCCES), 2019, pp. 1–3.
	G. Jinding, H. Yubao, and S. Long, “Design and fpga implementation of linear fir low-pass filter based on kaiser window function,” in 2011 Fourth International Conference on Intelligent Computation Technology and Automation, vol. 2, 2011, pp. 496–498.
	S. Bhattacharjee, S. Sil, and A. Chakrabarti, “Evaluation of power efficient fir filter for fpga based dsp applications,” Procedia Technology, 2013 vol. 10, pp.856–865
	X. Jiang and Y. Bao, “Fir filter design based on fpga,” in 2010 International Conference on Computer Application and System Modeling (ICCASM 2010), vol. 13, 2010, pp. V13–621–V13–624.
	M. Shil, H. Rakshit, and H. Ullah, “An adjustable window function to design an fir filter,” in 2017 IEEE International Conference on Imaging, Vision & Pattern Recognition (icIVPR), 2017, pp. 1–5.

