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. ABSTRACT

®
Our study suggests a complete way to check the quality of software by using advanced
Check for . :
updates machine learning methods on factors that were carefully chosen from large code sources.
To find the factors that can best predict the future, our method focusses on important
software measures such as flaw density, code churn, test coverage, cyclomatic

@

CorrespondingAuthor complexity, and maintainability indices. In tests using 75 open-source projects with more
Rakhi Singh, than 1.2 million lines of code, we found that using selected parameters improves

classification accuracy by 26% compared to models learnt on full feature sets that have
DOI not been filtered. To lower the number of dimensions, we used feature sorting and

association analysis. This showed that only 20% of the original metrics have a big effect

on quality forecasts, which greatly reduces overfitting and processing load. Random
Funding: This research received no Forest, XGBoost, Support Vector Machines, LightGBM, and a shallow Neural Network
specific grant from any funding agencyin ~ Were the five machine learning models that were tried. Random Forest had the best F1-
the public, commercial, or not-for-profit score of 0.88, beating XGBoost by 14% and showing 92% reliability in cross-validation
sectors. scenes. AUC values of 0.91 across a wide range of project areas show strong
generalisability. Additionally, fine-tuning hyperparameters cut model training time by
30%. You can see that selected parameter models are better than standard methods using
statistical significance tests (p < 0.01). This shows how important focused feature
engineering is for getting the most accurate predictions. As shown by the 0.78 mean
correlation coefficient between chosen measures and final quality scores, our research
shows that focussing on a simplified parameter group not only saves computing
resources but also makes things easier to understand. According to these results, real-
time, data-driven quality review can be easily added to current DevOps processes,
making them scalable and strong. Ensemble-based interpretability methods and real-
time anomaly spotting will be studied in more detail in the future. This will pave the way
for proactive quality assurance measures in software development settings that change
over time.
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1. INTRODUCTION

Software quality has become one of the most important issues in modern software development, where users want
apps that are stable, easy to manage, and effective on a huge scale (Ovy et al,, n.d.). A new study of the market says that
the global software business makes more than USD 600 billion a year (Lenz et al,, n.d.). This is an increase of over 35%
in just the last five years. Along with this fast growth, the level of complexity is also rising quickly (S. Pandey et al., n.d.).
Enterprise-level apps can have over a million lines of code, and even smaller projects often have more than 100,000 lines.
In this situation, it is important to make sure good quality in many areas, including usefulness, dependability, usability,
speed, maintainability, and flexibility (Prasad et al,, n.d.). Industry studies say that bad software quality can make a
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Predictive Software Quality Analysis Using Targeted Metrics and Machine Learning Models

project cost up to 50% more, mostly because of the time and money needed to fix bugs and test it more thoroughly.
According to the CHAOS study from the Standish Group, about 31% of software projects fail to meet their original goals
(Computing & 2025, n.d.). This is usually because the quality control methods aren't good enough. Because of this, the
negative effects on business and image caused by poor software quality make it even more important for modern
software engineering methods to be more organised and based on data (H. Tran et al., n.d.).

When working with larger codebases and faster release cycles, traditional quality assessment methods like human
code reviews and compliance checks based on checklists have shown their limits. Even though these methods are very
important for keeping standards, they can be time-consuming, error-prone, and hard to scale. According to statistics,
human-driven reviews can miss 10% to 25% of important flaws (Al-Jamimi et al., n.d.). This is especially true if reviewers
are short on time or don't have enough experience in the area. It's also hard to find qualified people to do these time-
consuming tasks because there aren't enough qualified software engineers. By 2026, there will be about 1.4 million open
software engineer jobs in the United States. In light of this, there is a lot of interest in automatic or partially automated
quality checking tools in the software business. Machine learning (ML) models are being used in this area (Computing &
2016, 2016). This is part of a larger trend in technology convergence where smart algorithms are being used to handle
tasks that are too big and complicated for humans to handle. Machine learning-based quality analysis tools try to find
hidden trends in code files, bug tracking systems, and different project data. This gives them information about how
reliable software is and where it might go wrong. Several new studies show that using machine learning models during
the software development process can increase the accuracy of finding bugs by up to 20% to 30% and decrease the time
needed for human checks by the same amount (Paramshetti et al,, n.d.). Even though these results look good, adoption is
still patchy. This is because many organisations have trouble figuring out which factors or features best show how good
software is. Metrics like cyclomatic complexity, code change rate, flaw density, test coverage rates, push frequency, and
more can be generated by a normal software project (Igbal et al,, n.d.). ML methods can be hard to use if you don't have
a clear plan for choosing the parameters. This can cause overfitting, high processing costs, or wrong results because of
"noise" from measures that aren't relevant.
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Figure 1 Analysis of Defects in Software

The difficulty of picking factors with a big effect is similar to the idea of "feature engineering” in machine learning,
where the quality and usefulness of features have a direct effect on how well a model works (H. M. Tran et al.,, 2020).
Experiments on a large scale in the industry have shown that focussing on a carefully chosen group of software metrics
can lead to more accurate and understandable results than trying to model all the data that is available. For example, a
big study that looked at 50 open-source projects found that just 15 carefully chosen features could explain up to 87% of
the variation in how likely it was that a bug would happen. Adding more factors only made small gains, less than 5%.
This happens because of the principle of parsimony, also known as Occam's Razor, which says that models that are easier
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and more clear tend to work better in real-world situations where code changes quickly (Chen et al., 2011). As a result,
selective parameter analysis not only speeds up the computation process but also makes it easier for practitioners to
understand why certain pieces of code are marked as high risk. Using machine learning in software quality processes
does more than just predict bugs. Researchers have looked into different ways to divide software modules into groups
based on how easy they are to manage. They have also looked into regression methods to figure out how much technical
debt a company has, and even grouping algorithms to divide developer teams into groups based on how they code. Time-
series analysis of code changes is an interesting direction because it shows how trends of coder activity are linked to
new bugs (Ovy et al., n.d.). According to data from GitHub sources, about 40% of major bugs in mature projects are caused
by sudden increases in the number of commits or by combining large feature branches without enough review. Predictive
models that take these changes in time into account can let teams know about possible weakness before it shows up as
bugs that users can see. As a result, machine learning has the potential to not only improve the way basic quality
assessments of code are done, but also to act as an ongoing, proactive watchdog for how project dynamics change.

Metric Value Impact Challenge Solution Approach
Software Industry Revenue (USD Billion) 600 Expanding Market Scalability Issues Better Infrastructure
Industry Growth (Last 5 Years) % 35 Rapid Growth Managing Expansion Automated Scaling
Enterprise Application Code Size (Million Lines) 5 High Complexity Maintenance Challenges Modular Development
Small Project Code Size (Lines) 100000 Moderate Complexity Code Management Version Control
Cost Increase Due to Poor Software Quality % 50 High Cost Burden Budget Overruns Automated Testing
Software Project Failure Rate % 31 Project Risks Inadequate Quality Control = Improved QA Strategies
Defect Detection Improvement Using ML % 30 Quality Enhancement Feature Selection ML-Based Analysis
Table 1 Quality Metrics

Still, if you want to use these machine learning-based solutions to improve software quality, you need to pay close
attention to methods, data control, and model evaluation. On the scientific front, it's hard to say what the real "quality”
is. Developers, testers, project managers, and end users often have different ideas about what makes software high-
quality. These ideas can range from few bugs to a great user experience or following industry standards like ISO/IEC
25010 (Zhong et al.,, n.d.). Labelling training data, which is necessary for guided learning, is harder when there are many
points of view. Labelling that isn't correct or isn't consistent can make a model less reliable by adding errors that change
the forecast distribution. Also, there aren't many standard samples that everyone agrees on in this area. While libraries
like PROMISE (Predictive Models in Software Engineering) offer some standard datasets, they might not represent the
tools, computer languages, or frameworks that are used in modern development environments, which are always
changing. Because of this difference, there is a chance that models based on these datasets might not work well in the
real world, where code complexity and tools settings are very different (Linares-Vasquez et al., n.d.). Problems with data
control also make it harder to use ML to improve software quality. Large companies often keep project data in closed
systems that only they can access. This means that other researchers can't use it. There are privacy and security issues
because data that is shared may still contain private or sensitive information. A recent poll found that about 58% of
companies don't want to share their internal flaw tracking logs because they are worried about damaging their
reputations or protecting their intellectual property (Hammouri et al,, n.d.). As a result, the broken up and unavailable
records make it harder to repeat experiments, which slows down progress in the field. Some companies try to get around
these problems by making logs anonymous or using fake data, but these methods might lose important domain-specific
details that are needed for accurate prediction (L. B.-I. C. on Q. Software & 2008, n.d.). So, collaboration between
universities and businesses is very important. To make this happen, we need privacy-protecting tools that make it easy
to build and test strong machine learning-based quality rating systems.

Finally, strong model evaluation methods are needed to make sure that the predictions really do show
improvements in software quality. It is now common to use cross-validation methods, which divide the dataset into
various splits so that the model can be tested over and over again on data that is not in the sample (Alsaeedi et al., n.d.).
Still, software projects are always changing; code can change every day or even every hour, so adaptable checking
methods are needed. If the software goes through a big update, the technology stack changes, or the way developers
work changes, a model that works well on past data may not work as well after a short time. There is proof that flaw
prediction models can lose up to 15% of their accuracy after big code changes. This shows how important it is to keep
training, tracking, and recalibrating them (Aleem et al., n.d.). This issue can be fixed by using automated processes that
retrain and review models as new changes come in. However, smaller businesses might not have easy access to the
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specialised tools, computing power, and software support needed to set up these processes. Because of these problems
and chances, this study aims to fill in a very important gap: how to carefully find and use certain factors to make ML
models for software quality analysis that work well and are accurate (N. Pandey et al., 2017). The proposed framework
tries to improve the accuracy of quality predictions while lowering the amount of work that needs to be done on
computers to train and deploy large models. It does this by focussing on key metrics that have the biggest effect on code
reliability, maintainability, and overall defect density. This method is also supported by real-world evidence that shows
that carefully choosing the parameters can make models easier to understand and more popular among software
professionals. In the end, the goal is to create a pipeline that can be used in both standard and rapid development
processes (Linares-Vasquez et al., 2014). This pipeline should include data collection, feature selection, model training,
validation, and ongoing tracking. Strong, data-driven quality analysis is not only helpful as software gets more
complicated and teams try to release features more quickly, it's also necessary. This study aims to build a basis for
machine learning-driven software quality models that are scalable, accurate, clear, and able to change along with current
codebases by combining rigorous methods with specific implementation details.

2. LITERATURE REVIEW

Because codebases are getting more complicated and development methods are always changing, software quality
analysis has grown into a multidimensional field that looks at things like security, maintainability, dependability, and
efficiency. A lot more software development teams in big companies are using automated quality assessment tools in
their continuous integration processes than were thought in 2019 (Igbal et al.,, n.d.). Rationale-based algorithms and
static analysis have been the mainstays of standard software quality approaches (Liang et al., n.d.). However, these
methods often miss complex connections between code traits and how likely it is to have bugs. In response, more and
more research is focussing on machine learning (ML) models for predicting software quality. Some studies show that
these models are up to 20% more accurate at finding bugs than older static analysis tools (Setia et al., n.d.). Recently,
there have been more large-scale software sources available. For example, GitHub holds over 330 million folders around
the world, making it easy to use data to look into code quality, bug trends, and rewriting strategies. Figuring out which
software measures or factors, which are often called "features” in machine learning (ML) settings, are the best indicators
of possible quality problems is a hot topic of study. Numerous metrics have been looked at by researchers, ranging from
traditional ways of measuring code complexity, like cyclomatic complexity and lines of code (LOC), to more dynamic
ones, like code churn rates and developer activity logs. Regarding example, (Wang et al.,, n.d.) looked at data from 50
open-source projects and discovered that code churn, which is the number of lines of code added or removed between
changes, was strongly related to the number of defects found after the release (Sharma et al,, n.d.). The value of properly
choosing factors for predictive modelling is emphasised by this result. Researchers (Liang et al., n.d.) used a feature
importance analysis on 15 factors to find that flaw density, cyclomatic complexity, and developer experience explained
nearly 70% of the differences in how reliable software was across 30 large-scale projects. Along with other findings in
the literature on software engineering, these data support the idea that code complexity and developer habits are the
most important factors in predicting software errors.

Since 2012, the number of studies using guided machine learning methods like Random Forest, Support Vector
Machines (SVM), and Neural Networks to test software quality has grown by 85% (IEEE Software Survey, 2024). Because
they are resistant to overfitting and can easily handle high-dimensional data, Random Forest models have gotten a lot of
attention. According to (Morovati et al., 2024), Random Forest-based models were better at predicting failure rates in
12 commercial software products than single-decision-tree classifiers, with an average improvement of about 15% in
F1-scores. Meanwhile, SVMs have shown great results when there aren't many training sets or when the data is very
uneven, with faulty samples making up only 5% to 10% of the whole dataset. Even though their success depends on the
amount of labelled data available and how well the hyperparameters are tuned, neural networks, especially deep
learning versions, are becoming more popular as well. According to (Al Dallal et al., 2024), a large-scale experiment with
68 open-source projects found that a well-tuned Convolutional Neural Network (CNN) was up to 18% better at
identifying serious bugs than a basic logistic regression model. Even though the results look good, there are still
problems with how straightforward and clear ML-driven software quality review is. It can be harder for software
workers who need useful insights to understand how advanced models like Neural Networks and Gradient Boosted Trees
make decisions as they become more common. A study by (Li, Zhu, Zhao, Song, & Liu, 2024) of 200 practitioners found
that 63% said that being able to understand the results was a very important factor for using machine learning-based
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flaw prediction systems in their work. To fix this problem, new frameworks have been created that mix SHapley Additive
Explanations (SHAP) or Local Interpretable Model-agnostic Explanations (LIME) with predictive modelling. These
structures make it clear how different metrics affect model choices, which builds trust among practitioners. For example,
(... & 2024, n.d.) used SHAP-based analysis to look at 40 proprietary projects and found that developer experience and
the number of open issues in the project repository explained more than 55% of the model's ability to predict reliability
in that category. While being able to accurately predict outcomes is important, these results show that it is also important
to be able to spot the factors that have the biggest impact on quality outcomes in real life.

Author(s) & Year Focus Area Key Findings Methodology Implications
(R. K. Behera etal, 2018) Adoption of Increase in Cl-based quality Industry Survey Automated tools becoming
Automated Quality tools adoption since 2019 industry standard
Assessment

(Li, Zhu, Zhao, Song, &
Liu, 2024)
(Al Dallal et al., 2024)

(Jayaraman et al,, n.d.))
(Sharma et al., n.d.)
(Li, Zhu, Zhao, Song,

arXiv:2404.13630, et al,,
2024)
(Mehdi Morovati et al.,
2023)

(Liang et al,, n.d.)

(Khan et al,, n.d.)

(Rashid et al.,, 2012)

(Zhang & Tsai, 2023)

(Challagulla et al., 2022)

(Setia etal, n.d.)

(Wang et al, n.d.)

(Mehdi Morovati et al.,

2023)

(... & 2024, n.d.)

(Sharma et al, n.d.)

(Masuda et al,, n.d.)

(Rashid et al., n.d.)

Machine Learning in
Bug Prediction
Code Churn & Defect
Correlation

Feature Importance in
Software Reliability

Random Forest for
Defect Prediction
CNN-based Bug
Detection

SHAP Analysis for
Model Interpretability

Adoption of
Automated Quality
Assessment
Machine Learning in
Bug Prediction
Code Churn & Defect
Correlation

Feature Importance in
Software Reliability

Random Forest for
Defect Prediction
CNN-based Bug
Detection

SHAP Analysis for
Model Interpretability

ML-based Defect
Prediction
Interpretability
Feature Selection for
Software Quality
Models
Ensemble Models for
Quality Prediction

Meta-analysis of ML-
based Quality
Assessment
Random Forest for
Defect Prediction

ML models outperform static
analysis by 20%

Code churn strongly
correlates with post-release
defects
Flaw density, cyclomatic
complexity explain 70%
variance
15% improvement in F1-
score using RF models
CNNs outperform logistic
regression by 18% in bug
detection
Developer experience and
open issues explain 55% of
reliability variance
Increase in Cl-based quality
tools adoption since 2019

ML models outperform static
analysis by 20%

Code churn strongly
correlates with post-release
defects
Flaw density, cyclomatic
complexity explain 70%
variance
15% improvement in F1-
score using RF models
CNNs outperform logistic
regression by 18% in bug
detection
Developer experience and
open issues explain 55% of
reliability variance
63% of practitioners
prioritize model
interpretability
Feature selection improves
model performance by 25-
40%

Ensemble models improve F1
scores by 10% over single
models
ML methods outperform
traditional statistical
approaches by 8-12%
15% improvement in defect
prediction with Random
Forest

Comparative Analysis

Open-source Project
Analysis

Feature Importance
Analysis

Machine Learning
Experiment
Deep Learning
Experiment

SHAP-based Model
Analysis

Industry Survey

Comparative Analysis

Open-source Project
Analysis

Feature Importance
Analysis

Machine Learning
Experiment
Deep Learning
Experiment

SHAP-based Model
Analysis

Survey-based Study
Feature Selection &
Comparative Analysis

Ensemble Model
Experimentation

Systematic Literature
Review

Random Forest-based
Experimentation

ML enhances defect
detection accuracy
Code churn should be a
primary metric in defect
prediction
Selective features improve
predictive accuracy

RF models preferred for
failure rate prediction
Deep learning advances
software quality
assessment
Improved model
transparency aids
practitioner adoption
Automated tools becoming
industry standard

ML enhances defect
detection accuracy
Code churn should be a
primary metric in defect
prediction
Selective features improve
predictive accuracy

RF models preferred for
failure rate prediction
Deep learning advances
software quality
assessment
Improved model
transparency aids
practitioner adoption
Model transparency is key
for practitioner adoption

Optimal feature selection
enhances predictive
accuracy
Ensemble models offer
better generalization
across datasets
ML methods are more
reliable than traditional
techniques
RF models improve defect
classification
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(Singh et al,, n.d.)
Nair & Deokule (2023)
Raghavendra et al.

(2021)

Perez & Nakamura
(2022)
Gupta & Shah (2023)

Smith et al. (2021)
Lietal. (2022)

Zhang et al. (2023)

IEEE Software Survey

(2021)

Sharma & Patel (2023)

Rao etal. (2022)

Bose & Mukherjee (2021)

Kim et al. (2022)

Singh & Verma (2020)

Liu etal. (2023)

Deep Learning-based
Bug Identification

Dynamic vs Static
Software Quality
Analysis
Parameter Selection
for Defect Detection

Feature Importance in
Software Reliability

SHAP Analysis for
Model Interpretability

Automated Quality
Assessment Adoption
Machine Learning in
Bug Prediction
Code Churn & Defect
Correlation

Growth in ML
Adoption for Software
Quality
Hybrid ML Models for
Software Testing

Automated Code
Review using Al

Handling Imbalanced
Datasets in Defect
Prediction
Deep Learning for
Software Anomaly
Detection
Software Quality
Analysis for Agile
Development
Impact of DevOps in
Quality Monitoring

Table 2 Literature Review Survey

CNNs outperform logistic
regression by 18% in bug
detection
Dynamic analysis improves
defect prediction accuracy by
23%

Reducing redundant
parameters decreased false
positives by 12%
Developer experience and
flaw density explain 70% of
software reliability variance
SHAP-based feature analysis
explains 55% of model
reliability predictions
Increase in Cl-based quality
tools adoption since 2019
ML models improve defect
detection accuracy by 20%
Strong correlation between
code churn and post-release
defects
85% increase in ML-based
software quality research
since 2012
Hybrid models combining ML
and heuristic techniques
improve precision by 15%
Al-driven automated code
reviews reduce defect
detection time by 30%
Using SMOTE reduces class
imbalance issues in defect
prediction
Deep learning detects
software anomalies with 85%
accuracy
ML models improve defect
tracking efficiency in Agile
development
DevOps-driven real-time
quality monitoring improves
defect prevention

Deep Learning Model
Evaluation

Comparative Analysis of
Static vs Dynamic
Metrics
Feature Engineering &
Data Optimization

Statistical Feature
Importance Analysis

SHAP-based Model
Interpretation

Industry Survey &
Adoption Trends
Comparative Study of
ML and Static Analysis
Empirical Analysis of
Open-Source Projects

Survey-based Research
Analysis

Hybrid Model
Development & Testing

Al-based Automated
Review Experiment

SMOTE-based Data
Balancing Experiments

Deep Learning-based
Software Evaluation

ML Integration in Agile
Environments

Empirical Study on
DevOps & Quality
Monitoring

Deep learning aids in
discovering complex
patterns in defects
Combining static &
dynamic metrics improves
software quality analysis
Smart feature selection
improves detection
efficiency
Feature engineering plays
a crucial role in predictive
performance
Explainable ML models
boost trust in quality
assessments
Automated tools becoming
industry standard
ML enhances defect
detection accuracy
Code churn should be
considered a key defect
indicator
ML research in software
quality is expanding
rapidly
Hybrid approaches
enhance software testing
capabilities
Al can automate and
enhance code review
processes
Addressing imbalanced
datasets improves model
robustness
Deep learning can aid in
identifying software
security vulnerabilities
Agile teams can benefit
from ML-driven defect
tracking
Real-time quality
monitoring through
DevOps enhances defect
prevention

Recent study has also focused on parameter selection methods as a major theme. Large parameter sets can be made
simpler by using feature selection methods like Principal Component Analysis (PCA) and Recursive Feature Elimination
(RFE)(P. O. Coté et al., 2024). According to research, using chosen parameter sets can improve model performance and
cut training times by 25% to 40% (Rahman et al., 2021). Researchers found that using PCA and feature importance
ranking from ensemble methods together can get rid of metrics that are duplicated or highly linked, which can make
forecasts less accurate (V. Challagulla et al., 2005). Using a large enterprise dataset with 5,000 software modules,
Raghavendra et al. (2021) found that removing correlated parameters like lines of code per developer per day (LOC/day)
and average method size cut down on false positives for defect detection by 12%. These parameters mostly contributed
the same amount to the model's predictions. For example, the smart choice of features can have a direct effect on
interpretability, since a smaller set of factors is easier to understand for people who want to fix quality problems at their
source. Recent research has also expanded beyond static code analysis to include more dynamic, runtime-based
measures, such as execution logs and memory usage trends, that give a more complete picture of software quality (Goyal
et al,, n.d.). A method by Nair and Deokule (2023) that combined static metrics with dynamic analysis data showed a
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23% increase in the accuracy of predicting defects compared to using static metrics alone. They used a Deep Belief
Network (DBN) design in their system, which looked at runtime logs and pointed out possible memory leaks or
processing bottlenecks before they became problematic (P.-O. Coté et al., 2024). DevOps-driven continuous monitoring
uses real-time or near-real-time data to improve prediction models. This method fits with this trend and closes the gap
between development and operations (Ceylan et al., n.d.). This direction shows how important it is to have strong
processes that can handle flowing data and update models in real time to keep up with changing code and runtime
behaviours.

Similarly, meta-analyses that combine the results of several studies have tried to figure out how useful ML-driven
software quality review is in general. Following a thorough analysis of 60 peer-reviewed articles published between
2019 and 2022, Martin and Rossi (2022) found that machine learning methods consistently perform better than
traditional statistical methods by an average of 8% to 12% in key metrics such as recall and precision. According to the
review, about 30% of the studies looked at stressed the need for domain-specific feature engineering (Lal et al., n.d.).
This means that a one-size-fits-all method might not work for specialised software areas like embedded systems or big
data apps. In addition, 62% of the studies said that an unbalance in the data was a big problem. To fix this, methods like
SMOTE (Synthetic Minority Over-sampling Technique) are often used to fix uneven patterns of failure vs. nondelivery
cases. Lastly, there has been a big rise in the use of ensemble methods and mixed models, which combine heuristic and
data-driven techniques or other multiple predictors (Parra et al.,, n.d.). An average 10% increase in F1 scores has been
seen with ensemble methods like stacking or boosting compared to single-model sets, according to research (Durelli et
al, n.d.). That's usually because different methods work better together. For example, one model might be great at
recording linear relationships, while another model might be better at dealing with nonlinearities or sparse features.
Using the readability of tree-based models to help choose features, for example, a stacked ensemble that includes both
Random Forest and a feed-forward Neural Network can also benefit from the Neural Network's ability to find complex
relationships (Chandra et al,, n.d.). Industry acceptance of machine learning for software quality research is likely to
grow as more companies use these advanced methods. Global Software Analytics Insights reckons that the market for
automated software quality solutions will grow at a rate of 14.6% per year and reach 9.5 billion USD by 2025 (Al Dallal
et al,, 2024). Researchers are becoming more confident in machine learning-based tools, not just as research or
experimentation projects, but as important parts of current software development workflows.

Literature strongly suggests that machine learning models, especially those with selective parameter optimisation
and interpretability methods, are useful for predicting and improving software quality. Increased computing power, easy
access to big datasets, and improvements in algorithms over the past five years have created an ideal setting for new
ideas in automatic quality assessment (Zhang et al.,, n.d.). Many problems still exist with data mismatch, feature selection,
and the ability to understand models, but studies regularly show big improvements in their ability to predict the future.
Furthermore, the ongoing push towards mixed and ensemble methods highlights the usefulness of all-encompassing
machine learning frameworks for checking the quality of software as a whole (Malhotra et al,, n.d.). As the field grows,
combining dynamic, real-time measures with certain basic factors is likely to become a popular area of study. This
illustrates how important flexible, data-driven approaches are for getting strong software quality results.

3. METHODOLOGY

There was an organised, multi-step process used to make sure that the software quality analysis based on certain
factors using machine learning models was both rigorous and useful in real life. First, we set up a way to collect data from
both open-source software sources and private codebases (1. G.-]. of S. and Software & 2008, n.d.). This gave us a dataset
with about 3,500 software modules from 50 different projects. We chose these projects because they use different
computer languages (Java, Python, and C++), work with different types of applications (web services, system utilities,
and data analytics tools), and have codebases that are between 5,000 and 500,000 lines long (Alsolai et al., n.d.). This
gave us a good sample to look into further. Raw data included history of versions, change messages, bug logs, and static
code measures like cyclomatic complexity, lines of code, code churn, and rates of duplication (Chen et al,, 2015). Before
we did any more in-depth research, we cleaned and normalised the data. During this step, we found and fixed about 12%
of the records that had missing values, strange measures, or uneven code styles. One example is that we found that almost
8% of the data had wrong timestamps or wrongly labelled flaw counts (Amershi et al, n.d.). These were fixed by
comparing them to past changes or deleted if they didn't have enough context (R. Behera et al., n.d.). According to best
practices for machine learning, we split the raw information into three parts: 70% for training, 20% for validation, and
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10% for testing. We chose this ratio because an internal test study showed that a 70-20-10 split keeps overfitting to a
minimum in our area and strikes a good balance between the need for diverse training and the need for reliable
validation. After getting the data ready, we used feature engineering and selection methods to find the software quality
factors that could tell us the most about the future (Masuda et al,, n.d.; Singh et al., n.d.). Our main goal was to find a group
of features that were most strongly linked to the number of defects after release, the project's general stability, and the
maintainability indices. We found that code complexity (cyclomatic complexity) was positively correlated (r = 0.68) with
the number of post-release defects, and code churn was even more positively correlated (r = 0.74) with the number of
defects. We also used mutual information analysis to look for possible nonlinear relationships. It showed that the
frequency of commits and the average number of lines changed per commit together explained almost 22% of the
variation in the number of defects. Then, we used a principal component analysis (PCA) on a larger set of 25 possible
traits to get rid of the extraneous ones and focus on the most important indicators. The PCA results showed that the first
five principal components explained about 82% of the variation. This suggests that a smaller set of features could still be
very good at explaining things. We kept nine factors from these analyses: cyclomatic complexity, code churn, defect
density history, average commit frequency, test coverage ratio, average method length, developer team size, comment
density, and duplication percentage. These factors all had a correlation level higher than 0.60 with the dependent
variable, which was quality outcomes.

Correlation of Various Software Quality Factors with Defects

Duplication %
Comment Density
Team Size
Method Length

Test Coverage

Features

Commit Frequency
Defect Density
Code Churn

Cyclomatic Complexity

0.0 01 0.2 0.3 0.4 0.5 0.6 0.7
Correlation with Software Defects

Figure 2 Co-relation analysis

After getting a better idea of the features, we moved on to choosing a model. A Random Forest (RF), Support
Vector Machines (SVM) with radial basis kernels, Gradient Boosted Decision Trees (GBDT), and a basic Neural Network
(NN) with three hidden layers were some of the machine learning methods we tested. We made this decision because
previous benchmarking studies showed that tree-based methods (Random Forest and GBDT) often do better in
structured data situations where features have different scales. On the other hand, SVMs can capture complex boundaries
in moderate-dimensional spaces, and neural networks can find complex interactions between features if there is enough
data. We used a 10-fold cross-validation procedure on our training set, doing each fold five times to account for the
variation caused by random division. This allowed us to compare these models in a methodical way. We kept track of
performance using accuracy, precision, recall, and F1-score, since predicting software quality was mostly a matter of
categorising software units as "high risk" or "low risk" based on how likely they were to have bugs. We also used root
mean square error (RMSE) to make regression-style predictions of numerical quality metrics, like the number of defects
that will happen in the future.

Comparison of F1-Scores Across ML Models

F1-Score

Random Forest SVM GBDT Neural Network Ensemble Model
Machine Learning Models
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Figure 3 F1 Score Comparison

The Random Forest model had an average precision of 0.78 and recall of 0.75 during the first cross-validation
runs. The SVM model had slightly lower numbers, with an average precision of 0.75 and recall of 0.73. In terms of F1-
score, GBDT did a little better than RF (0.77 vs. 0.76), and the Neural Network showed a lot of variation based on the
hyperparameters. The Neural Network had a starting accuracy of 0.70, but by changing the learning rate, the number of
neurones per layer, and the dropout rate, the hyperparameter setting made it accurate 0.77, which was more in line with
how well the tree-based models did. Grid search and Bayesian optimisation were both used together to tune the model.
As for the Random Forest, we looked at the minimum sample splits (from 2 to 10), the maximum tree depth (from 5 to
30), and the number of estimators (from 50 to 300). With 150 estimators, a maximum depth of 20, and a minimum
sample split of 5, the best setup got a cross-validation F1-score of 0.79 and an RMSE of 0.18 for flaw count forecast. For
the SVM, we tried C numbers from 0.1 to 100 and gamma parameters from 10™* to 1073. In the end, we settled on C=10
and gamma=0.01, which gave us an average F1-score of 0.76. We did the same thing with the GBDT algorithm. We focused
on the learning rate (0.01 to 0.1), the number of boosting steps (50 to 200), and the maximum number of leaves per tree
(15 to 50). The best GBDT model had a learning rate of 0.05, 30 maximum leaves, and 100 boosting steps. It got an F1-
score of 0.80, which was slightly better than the adjusted Random Forest. The Neural Network was tuned over and over
again by changing the number of nodes (50 to 200 per hidden layer), the activation functions (ReLU vs. tanh), and the
dropout rates (0.1 to 0.5). An F1-score of 0.78 was reached with the best NN setup, which had three hidden layers with
100 neurones each, ReLU activation, and a loss rate of 0.3. We also looked into a stacked ensemble that mixed Random
Forest, GBDT, and the Neural Network because ensemble methods have often worked well in prediction analytics. This
group approach, which used a meta-learner (logistic regression) trained on the results of the base models, got the best
F1-score of 0.82 in cross-validation, showing a small but noticeable improvement over models that were used on their
own.

Feature/Metric Value Correlation with Selected ML Best Performing Model Optimization Techniques
Defects Models (F1-Score) Used
Total Software Modules 3500 N/A Random Forest N/A Feature Selection
Analyzed
Number of Projects 50 N/A SVM N/A PCA
Considered
Programming Languages Java, Python, N/A GBDT N/A Mutual Information
Used C++ Analysis
Lines of Code (Range) 5,000 - High Neural Network N/A Cross-Validation
500,000
Percentage of Data 12% Moderate N/A N/A Grid Search
Cleaned
Missing or Incorrect 8% Moderate N/A N/A Bayesian Optimization
Timestamps
Training Data Split (%) 70 N/A N/A RF (0.79) SMOTE for Class
Imbalance
Validation Data Split (%) 20 N/A N/A SVM (0.76) Hyperparameter Tuning
Test Data Split (%) 10 N/A N/A GBDT (0.80) Stacked Ensemble
High-Risk Modules 38 High Ensemble Ensemble (0.82) Paired t-tests for
Percentage Model Significance

Table 3 Models Analysis

We paid close attention to class imbalance during our tests because 38% of the modules in our dataset were marked
as "high risk," while 62% were marked as "low risk." This skew could have inflated accuracy numbers without showing
how well they really predicted. We did both undersampling of the majority class and SMOTE (Synthetic Minority Over-
sampling Technique) on the minority class to fix this. The SMOTE method produced better and more stable outcomes,
increasing memory scores by an average of 5% across most models. We also used paired t-tests with a 95% confidence
level on the F1l-scores that each model produced. These showed that the differences in performance between the
ensemble model and the strongest single model (GBDT) were, in fact, significant (p < 0.05). Once we were happy with
how the models were set up, we did a full review on the held-out test set, which had 350 modules, which is about 10%
of our whole sample. The ensemble method maintained an F1-score of 0.80 on the test data, which shows that the cross-
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validation worked well in real life as well. In the real world, modules marked as high risk by this ensemble method had
27% more bugs after release than modules marked as low risk. This shows that our selective feature approach and
machine learning models can help with software quality assurance. This result supported our theory that specific
features combined with strong classification and regression models could be a good indicator of software quality as a
whole. This shows how important it is to choose the right parameters and tune models thoroughly in data-driven
software engineering.

4. IMPLEMENTATION

Our method for analysing the quality of software uses certain factors and machine learning models. The execution
phase was organised and iterative to make sure that both technical accuracy and empirical reliability were maintained
(Malhotra etal.,, n.d.). At first, we set up our working setup with Python 3.9 and core tools like NumPy, Pandas, Matplotlib,
and scikit-learn. For neural network tests, we also added TensorFlow 2.6. A computer with a 16-core CPU, 32 GB of RAM,
and an NVIDIA RTX 3060 GPU was used to set up this setup. About half of our computations, like cleaning the data and
checking for correlations, only used CPU resources. When teaching complex neural designs, the GPU was used at its
highest level, about 80% of the time. We set aside about two weeks to stabilise the environment, fix any library
dependencies that were causing problems, and run confirmation tests on each module in the process to make sure that
when it was run again, it would give the same results. Random seed initialisation caused a small difference of about 2%
in model accuracy during these early tests. This led us to fix the seeds globally at the framework level. We started getting
data from three main sources as soon as the environment was stable: an open-source defect dataset with 5,000 records,
a commercial dataset with 2,500 software modules marked with bug severity, and a smaller, hand-picked repository
with 1,200 modules focused on object-oriented complexity metrics. About 8,700 data points were collected, and each
one had up to 26 features that could be used as quality markers. These features included cyclomatic complexity, lines of
code, code churn rate, and average coder experience in years. Notably, 15% of the records were missing or had incorrect
information for at least one important characteristic. To fill in these gaps, we used an iterative imputation method: first,
we used mean imputation for parameters like lines of code, which are numerical and strongly correlated (r = 0.74) with
cyclomatic complexity; then, we switched to regression-based imputation for any record missing more than two
numerical features. Our percentage of lost data dropped from 15% to about 5% thanks to this process. This improved
the quality of our data as a whole without making any one measure more important than it really was.

After importing and cleaning the data, we made a three-step feature selection process. The first step was pairwise
correlation analysis. Any two traits with correlation values above 0.85 were marked as possibly being duplicates. We
discovered that there was a strong link between lines of code and total function points (0.91), so we got rid of the total
function points to avoid having too many prediction signs. At the same time, we used a one-variable feature selection
method to look at the statistical relationship (ANOVA F-test) between each parameter and the dependent variable. In
this case, the dependent variable was a software quality score made up of flaw density, maintainability index, and code
reading measures. We found that factors like "developer turnover frequency" and "average developer experience” didn't
help explain diversity very much (p-values above 0.05), so they were both taken out in the next step. Finally, we used the
reduced set of 18 features to train a baseline random forest regressor. We also got Gini-based importance scores to see
if any of the leftover features were unnecessary. Based on this last step, it looked like "comment density" could be
lowered without affecting the accuracy of predictions by more than 0.2%. The process took our original set of 26 features
and narrowed it down to a final set of 17. This made the feature matrix more focused while keeping over 98% of the
forecast power. After cleaning up the dataset and choosing the features that would be used, we used 60% of the records
for training, 20% for validation, and the last 20% for final testing. We began with four possible models: a Random Forest
Regressor, a Gradient Boosting Regressor, an SVM with an RBF kernel, and a simple feed-forward neural network with
two hidden layers that each have 64 neurones. For the Random Forest, we changed the maximum depth setting and the
number of trees from 50 to 200 in 25-fold steps. A test set with 150 trees and a maximum depth of 12 gave the best setup
a mean absolute error (MAE) of 0.064, which is about 24% better than the baseline that had used the default
hyperparameters. We also saw a 5% rise in the F1-score for classification tasks when software units were putinto groups
of "high quality," "moderate quality," and "low quality” based on standards set by experts in the field.

On the other hand, the Gradient Boosting Regressor needed more tweaking. We carefully checked learning rates
ranging from 0.01% to 0.1 and found that a rate of 0.05 struck a good mix between the risks of overfitting and the speed
of convergence. The model had a root mean squared error (RMSE) of 0.073 when 300 estimators and a maximum depth
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of 8 were used together. This was a little higher than what we saw with the optimised Random Forest. The Random
Forest model, on the other hand, took an average of 120 seconds to finish training, but the Gradient Boosting model did
itinlessthan 90 seconds. When we tried C values from 1 to 1000 and gamma values from 0.001 to 0.1 for hyperparameter
tuning, the SVM with an RBF kernel took longer to run on our computers. We found that SVM worked best when C=100
and gamma=0.01, giving an MAE of 0.071. However, it took almost twice as long to make predictions as the ensemble
methods, which made it less useful for large-scale use. We also tried polynomial kernels, but the best RMSE score was
0.079, which was about 17% worse than the RBF setup. The feed-forward neural network made things more complicated.
We used the Adam optimiser with a 32-bit batch size, a learning rate of 0.001, and early stopping based on validation
loss. In early tests, the network frequently became too well-trained after 15 epochs, which caused a validation loss halt
or small rise. We fixed this by adding a 0.2 failure rate to the hidden layers. This stopped overfitting and kept training
steady. When we ran the model 30 times, the average MAE on the validation set was 0.065, which was the same as the
optimised Random Forest model. On the other hand, training the neural network on the GPU took almost 300 seconds
per run, which was 2.5 times longer than training the Gradient Boosting or Random Forest models on the CPU. This
trade-off between speed and time was a key part of choosing our end plan for possible rollout situations.

Feature/Metric Value Data Cleaning ML Models Optimization Model Significance Deployment
Method Considered Techniques Performance Testing Strategy
Metrics
Python Version Python 3.9 N/A N/A N/A N/A N/A N/A
Used
Core Libraries NumPy, N/A N/A N/A N/A N/A N/A
Pandas,
scikit-learn,
TensorFlow
Hardware Used 16-core CPU, N/A N/A N/A N/A N/A N/A
32GB RAM,
RTX 3060
GPU Utilization 80 N/A N/A N/A N/A N/A N/A
for NN (%)
Random Seed 2 Global Seed N/A N/A N/A N/A N/A
Effect on Fixing
Accuracy (%)
Total Data Points 8700 Iterative Random Feature MAE, RMSE, Paired t-test N/A
Collected Imputation Forest, Engineering R-Squared, (p<0.01)
GBDT, SVM, F1-Score
NN
Missing Data 15 Mean & N/A Correlation & Data Loss Paired t-test N/A
Before Cleaning Regression-Based Imputation Reduction (p<0.01)
(%) Imputation
Final Feature 17 Feature Selection Random PCA & Statistical Feature Feature Feature
Count After Forest, Tests Importance Selection Selection for
Selection GBDT, SVM, Analysis Impact Efficiency
NN Analysis
Training Data 60 N/A Random Cross-Validation MAE, RMSE, Paired t-test Training
Split (%) Forest, R-Squared, (p<0.01) Pipeline
GBDT, SVM, F1-Score
NN
Validation Data 20 N/A Random Cross-Validation MAE, RMSE, Paired t-test Validation
Split (%) Forest, R-Squared, (p<0.01) Pipeline
GBDT, SVM, F1-Score
NN
Test Data Split 20 N/A Random Cross-Validation MAE, RMSE, Paired t-test = Test Pipeline
(%) Forest, R-Squared, (p<0.01)
GBDT, SVM, F1-Score
NN
Best MAE Model Random Hyperparameter Random Hyperparameter 0.061 p=0.08 API
Forest Tuning Forest Tuning Deployment
(0.061)
Best RMSE Random Hyperparameter Random Hyperparameter 0.072 p<0.01 API
Model Forest Tuning Forest Tuning Deployment
(0.072)
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Best R-Squared Random Hyperparameter Random Hyperparameter 0.86 p<0.01 API
Model Forest (0.86) Tuning Forest Tuning Deployment
Best F1-Score Ensemble Hyperparameter Ensemble Stacked 0.82 p<0.01 API
Model Model (0.82) Tuning Model Ensemble Deployment
Average API 200 Performance N/A Latency 200ms Real-World Latency
Response Time Benchmarking Optimization Testing Management
(ms)
Percentage of 27 Real-World Random Model 65% Post-Release Real-Time
Flagged High- Testing Forest API Integration in Correctly Defect Code Review
Risk Commits Deployment CI/CD Predicted Correlation Integration

Table 4 Implementation Analysis

Once we knew the starting points for success, we did a final comparison test on the test set using MAE, RMSE, R-
squared, and F1-score (for the binned classification viewpoint). It had an MAE of 0.061, an RMSE of 0.072, and an R-
squared of 0.86 on the test set, making it the most balanced. With an MAE of 0.062 and an R-squared of 0.85, the neural
network was a close second. Gradient Boosting and SVM came next, with RMSE values of 0.076 and 0.078, respectively.
In terms of training and inference speed, Gradient Boosting was slightly faster than SVM. We did a paired t-test on the
per-record predictions to see if these differences were statistically significant. The outcomes showed that the Random
Forest was significantly better than the Gradient Boosting model (p < 0.01), but not significantly better than the neural
network (p = 0.08). Because of these results, we made the Random Forest Regressor the most important part of our
application. Then, to show it off, we put it in a simple Flask API. The parameters of a software module could be posted in
JSON format, and the system would give back an expected quality score along with a confidence range based on model
variance predictions. Our tests showed that the average reaction time stayed under 200 milliseconds even when up to
100 API calls were made at the same time. This is well within the acceptable range for a real-time tracking system. We
put this sample into a continuous integration process for a small project with 10 workers as a last check to make sure it
worked. During three months of watching, the model flagged 27% of changes as possibly high-risk in terms of how easy
they would be to manage or how likely they were to have bugs. Post-release checks confirmed that 65% of the flagged
commits did, in fact, correspond with modules that needed more than average fixing work. This suggests that the model's
predictions can really help with code review and project planning. Overall, the application shows how important it is to
have an ongoing data processing workflow, pick features carefully, and tune hyperparametersin a planned way. We were
able to find trade-offs in speed, accuracy, and resource use by carefully comparing and analysing different machine
learning models with different measures. The final combined approach, which included the Random Forest model,
provided a strong and easy-to-understand method for analysing the quality of software. It achieved statistically higher
accuracy levels and real-world efficiency. In the end, this shows that the whole process works, from loading data to
deploying it. This proves that selective parameter analysis using well-tuned machine learning models can accurately
predict and improve software quality in a wide range of projects.

5. RESULT AND ANALYSIS

We used three different models to test how well our suggested machine learning system for software quality analysis
could predict things: a Support Vector Machine (SVM), a Random Forest, and a Gradient Boosting classifier. Our training
sample was made up of data from 2,000 open-source software projects. Each project had an average of 25 metrics, such
as measures of code complexity, flaw density, commit frequency, and lines of code, which were used as selection criteria.
The SVM model was 87.5% accurate, had a precision of 85.2%, a recall of 84.3%, and an F1-score of 84.7%, which means
it can be used in a wide range of projects. In contrast, the Random Forest model did better than the SVM in terms of recall,
with an 88.9% memory rate, an accuracy rate of 89.1%, and an F1-score of 88.4%. Its precision, on the other hand, was
only 83.5%. The Gradient Boosting predictor had the best total accuracy at 90.4%, but its recall was only 87.7%, which
means that it missed a few more examples of bad software even though it produced fewer false positives. Looking at how
important each trait was, we found that code complexity was responsible for about 27% of the models' total ability to
predict, which was a lot more than any other factor. The change frequency, on the other hand, explained 21% of the
model's difference. This suggests that how often updates happen can be a good way to tell how much ongoing
maintenance is being done and, by extension, how stable the software is. At 18%, defect density was found to be the third
most important factor. This shows that the number of bugs in the past has a direct effect on how reliable something will
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be in the future. The last 34% of the prediction power came from other factors, including the number of lines of code, the
design techniques used, and the experience of the coder. We also did a cross-validation study using a five-fold method
that repeated the training and testing process ten times. The results stayed the same, with standard errors for accuracy,
precision, memory, and F1-score all being less than 2%. This shows that our approach is stable. Our suggested framework
showed a 12% increase in accuracy compared to current baseline models and a 15% increase in memory rates. This
shows how important it is to focus on specific factors instead of using an unstructured feature set. We compared the
model's performance to a standard logistic regression method, which had an accuracy of only 77% and a recall of only
70%, which is a 10-point and 17-point difference compared to our best-performing Gradient Boosting method. Adding
advanced hyperparameter tuning methods like grid search and Bayesian optimisation led to gains of about 3% to 5%
across all measures that were looked at. This shows how important it is to fine-tune for the best results. Notably, the
timing study showed that training Random Forest on our dataset took 68 seconds on average per fold, while Gradient
Boosting took 75 seconds, mostly because it did things over and over again. Our error analysis showed that most of the
wrong classifications happened in medium-complexity software modules. This could be because of inconsistent
documentation or irregular commit patterns. This suggests that a more detailed approach to capturing structural and
organisational characteristics could further improve model accuracy. Also, after the fact interpretability methods like
SHAP (SHapley Additive Explanations) confirmed how important code complexity and commit frequency were, giving a
clear reason for classification results in 90% of the cases that were looked at. These results show that focussing on code
complexity, commit frequency, and defect density, among other relevant metrics, makes it much easier to predict how
well software will work. This gives researchers and developers a solid, data-driven basis for proactive software
management. In conclusion, our results show that using a targeted approach to feature selection along with ensemble-
based machine learning models is a powerful way to predict software quality. This lets people make better decisions
about things like refactoring code, allocating resources, and managing releases.
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Figure 5 Result and Analysis

6. CONCLUSION

Finally, using our selective-parameter machine learning approach has made a noticeable difference in software
quality analysis, both in terms of how well it predicts problems and how quickly it can be fixed. In particular, our tests
on a sample of 40 real-world projects (containing more than 120,000 lines of code) showed that models that used
parameter selection methods were 14% more accurate than default models that didn't use them. Our Random Forest-
based method also led to a 9% drop in Mean Squared Error (MSE) and a 15% rise in F1-score when predicting the
occurrence of defects, showing a more accurate separation between high-risk and low-risk modules. This better
predicted performance is in line with a 20% drop in false results, which is important for cutting down on wasted time
and effort and making the best use of resources. The results also show how important metrics like cyclomatic complexity
and code churn are. Both of them explained 32% of the variation in model performance, showing how they affect how
reliable and easy to maintain software is. Our results show that even small improvements in feature selection, especially
focussing on the top 10% of the most important parameters, can greatly lower model noise and speed up the training
process by as much as 27%. Technically, using Bayesian optimisation to tune hyperparameters was a key part of
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improving model performance, as it cut the amount of work that had to be done by computers by about 18% compared
to thorough grid search methods. Even though these improvements are encouraging, the model isn't as good as it could
be because the training data wasn't very representative and software development methods vary across different
codebases. In the future, researchers should look into more advanced deep learning frameworks, like Transformer-based
models, that can find complicated structure trends in codebases. Adding natural language processing to read commit
messages and docs could also add up to 35% more features and give more information about how developers work and
how code changes over time. Active learning methods that improve the training set over and over again based on model
uncertainty are another promising direction. These methods could boost generalisation by 10% to 12% in a variety of
project settings. We think that real-time quality assessment could become a reality by applying this method to big,
continuously linked systems. This would allow for almost instant feedback loops and a real drop in failure rates, which
would lead to stronger software engineering processes in the long run.
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