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1. INTRODUCTION

Over the years, researchers are trying to develop faster iterative scheme for different operators and sill it is a
challenging question for them to find an iterative scheme with better efficiency. In the present work, we have compared
the efficiency of various iterative schemes available in the literature using different control sequences and different
initial points.

It is well known that finding solution to a nonlinear equation and approximating fixed points of a corresponding
contractive type operator have close association. It creates interest of researchers towards approximating the fixed point
of these operators. Famous Picard [13] iterative scheme is generally used to approximate these operators satisfying the
following condition (contractive condition):

IT, =Tyl <6l xyl (1.1)
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where T:H—H is an operator, 6€(0,1),x,y€H and H is a non empty subset of a Banach space X. A point X€H is called
fixed point of the mapping T if Tx=x.

Itis the drawback of Picard's iteration that it fails to converge to fixed point of nonexpansive mappings. To overcome
it, Mann [7] introduced the following iterative scheme:
Xni1 = (1 — ap)xy + @y Ty . (1.2)"
In [6], Ishikawa produced examples to claim that Mann's iteration process fails to converge to fixed points of pseudo-
contractive operator and defined the following iterative scheme to overcome it.
Xns1 = (1 —ap)xy + ayTyy,,
Yo == Bp)xp + BnTxn.
Noor [8], introduced the following iterative scheme to give solution to variational inequalities:
Xne1 = (1 —ap)xy + apTxy,
Yo =1 =Bp)xn+ BnTzy,, (1.4)
z, =0 —=vy)x, +1,Tx,.
In [14], Khan introduced the Picard Mann hybrid iterative scheme for nonexpansive mappings as follows:
Xn+1 = Tyn
Yn =1 —a)xy +dyTxy,,
Khan [14], also claimed its efficiency than some of existing iterative schemes in the sense of Berinde [4] for
contractive mappings.
Recently, Okeke and Abbas [15] introduced Picard-Krasnoselskii iterative process given by
Xnt1 = TYn
Yo =1 —=Dx, + AT (x). (1.6)

(1.3)

(1.5)

They used this scheme to find solution of delay differential equation.
Ali and Ali [2], introduced the F iterative scheme for contraction mappings as follows:

Zy = T((1 — ap)xn + @y Txy)

Yo =Tzy (1.7)
Xnt1 = TYn-
They showed the stability, better rate of convergence of this iterative procedure in the setting of generalized
contractions. Some notable work in this direction is due to [9,10,18,19].

Definition 1.1[4]: Let T_1 T ":H—H be two operators. We say that T ~ is an approximate of T if for all x,y€H and for a

fixed £>0, we have
I Tx — Tx II< e. (1.8)")

Now we recall some lemmas which are important in proving the main results.

Lemma 1.2 [4] : Let § is a real number such that 0<S<1 and {e_n }_(n=0)"oo is a sequence of positive numbers such
that lim_(n—o)e_n=0, then for any sequence of positive numbers {u_n }_(n=0)"co satisfying u_(n+1)<éu_n+e,0( )
n=0,1,2,...

Then lim_(n—o00)u_n=0.

Lemma 1.3 [17]: Let {B_n }_(n=0)"oc0 and {p_n }_(n=0)"co be nonnegative real sequences satisfying the following
inequalities:

ﬁn+1 = (1 - An)ﬁn + Pn,
where 1, € (0,1) foralln > nqy, Y-, 4, = o and i—n — 0 asn — oo Then lim_(n—o)B_n=0.

n
Lemma 1.4 [16]: Let {f,}n=, be a nonnegative sequence for which one assumes there exists n_0€EN such that for
all n=n_0 the following inequality holds
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ﬁn+1 < (1 - .un)ﬁn + UnYno

where u,, € (0,1) foralln € N, Yol = 0 and y,, = 0 VN.
Then the following inequality holds
0 < limsupf, < limsupy,.

n—->0oo n—-oo
Ostrowski [12], introduced the concept of stability for iterative schemes. Generally, in the process of approximating
fixed points, we consider appropriate sequence instead of original sequence due to rounding errors and numerical
approximations of functions.

Definition 1.5 [12]: Let T be a self map defined on Banach space with fixed bunt p. Let {t_n } be any arbitrary sequence
in X. Consider the iterative scheme x_(n+1)=f(T,x_n ) for some function f, converging to P, is said to be stable w.r.t. T if
and only if for

&n = thy1 — fF(T,t) I, we have lim,_, . &, = 0 & lim,,_,,t, = P.

2. CONVERGENCE ANALYSIS OF F-ITERATION PROCESS IN BANACH SPACES

We begin the section by claiming that strong convergence of F-iteration process and its higher rate of convergence
than Picard-Mann hybrid iteration process [14] and Picard- Krasnoselskii hybrid iterative process [15]. We also compare
the rate of convergence of F-itertion process with some of the existing iteration schemes available in the literature.

Theorem 2.1: Let H be a nonempty closed convex subset of a Banach space E and T:H—H be a mapping satisfying
the contractive condition (1.1). Let {x_n } be the iterative sequence generated by (1.7) with real sequence {a_n}_(n=0)"oco
in [0,1] satisfying Y,_(n=0)"coa_n=co. Then {x_n } converges strongly to a unique fixed point of T.

Proof: By consequences of Banach contraction principle the existence and uniqueness of fixed point p is decided. We
need only to prove the convergence of iterative scheme (1.7) to fixed point p. Now

Iz, — ol =IT((1 = axn, + ayTx,) —p |
=1 T((1 — ap)xy + anTx,) — Tp |l
<511 — ay)x, + a,Tx, —pll
< 6"(1 - an)(xn - p) + an(Txn - p)”
< 8[(1 = ap)lix, — pll + @y - Slix, — pll]
<5[(1—a, + a,0)lx, — pll]
= 6[(1 - (1 - 6)an)"xn - p"]
<6(1—ap(1—8)lx, —pl. (2.1)
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Again using (1.1), (1.7) and (2.1) we have:
lyn —pll = 1Tz, — pll

=Tz, — Tpll
< 6llz, — pll
< §2(1 - a,(1 = 8))llx, — pll. (2.2)

Now using (1.1), (1.7) and (2.2) we have
lxne1 — ol = Ty, — Tpll
< 8lly, —pll
< 83(1 = a,(1 = 8))llx, — pll. (2.3)

Now (1 —a,(1—98)) <1landd € (0,1), we can write
lxne1 —pll < 531 — an (1 = 8)lix, — pll
lxn = pll < 6°(1 — a1 (1 — )lxp—1 — pl
lxn—1 —pll < 53(1 —ap_(1— 5))||Xn—2 -l
lx, —p IS 831 — ay (1 — &))lxy —pll . (2.4)

From the above in above inequalities, we derive

n
ns =PIl < 83001, —pll | | (-t -8),  @8)
i=1

where (1 — a;(1 —6)) € (0,1) since § € (0,1) and «; € [0,1]foralli € N.
Now using this famous result from analysis that 1-x<e”(-x) for all x€[0,1] in (2.5), we obtain

63(n+1) "x1 _ p”
e=O¥L d;

”xn+1 - p” S (26)

lloc; —pll§3(+1)

———t > 0asn — oo.
9(1_5)2?=1ai}

Hence, lim,_,o, X471 — Pl < {

It means that lim,_,llx, — pll = 0. This completes the proof.

Theorem 2.2: Let H be a non empty closed convex subset of a Banach space E and T:H—H be a mapping satisfying
the contractive condition (1.1). Let each of the iterative process (1.5), (1.6) and (1.7) converges to same fixed point P of
T, where {a,}ym=o and A are such that 0 < A, a,, < 1 for all n € N. Then iteration scheme (1.7) has higher rate of
convergence than (1.5) and (1.6).
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Proof: Using ([14], proposition 1), we have

lunsr — oIl < [86(1 = 8)a]™llu, —pll. (2.7)
Let

a, =[6(1— (1 = 8)a]"llu, —npll. (2.8)
Using ([15], proposition 2.1), we have

Wnsr —pll < [6(1 — (1 = &)al™llv, —pll. (2.9)
Let b, = [611~(1 — &) a] v, — pl. (2.10)

Using (2.3), we have

I%n41 — Pl < 831 — ay (1 = 8))lix, —pll

= loper — pll < [63(1 — a1 = 8))]"lx; — pll. (2.11)
Let ¢, = [63(1 — a, (1 — 8))]"llxy — pl. (2.12)

Using (2.12) and (2.10), we have
Cn [6°(1 = (1 = 8)a]"llx, —pl

by [6(1—(1—=8)a]™llv, —pll
_8Mx, —pll
lv, — pll

- 0asn — oo,

Hence, {x_n } converges faster to P than {v_n }.
Using (2.12) and (2.8), we have
& _[6°( =@ =8)a]"lx, —pl
an B [6(1=8)a)™ I
_ 8Mlxy — pll
g —pll

lu, — pll

- 0asn — co.

Hence, {x_n} converges faster to P than {u_n }.This completes the Proof.
Now, we support Theorem 2.2 with following numerical example:

Example 2.1: Let H = [1,10] and T:H—H be an operator defined by T (x) = 3/2x + 4 for all x€H. Let a,, = 1 = %

for each neN. Clearly, T is a contraction mapping with constant ﬁ. Also, the unique fixed point of the mapping T is 2.

7
Table 2.1. shows the higher rate of convergence of iteration scheme (1.7) than (1.5) and (1.6).

Table 2.1: Values generated of various iterative schemes for mapping T of Example 2.1
Step | Iteration (1.7) Iteration (1.5) Iteration (1.6)

1. 5.00000000 5.0000000 5.00000000
2. 2.00681559913 = 2.25128435404 2.25128435407
3. 2.0001839755 2.02406896909 | 2.02406896909
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4 2.00000004968 2.00236363938 2.0023636968
5. 2.0000000117 2.00022714115 2.00022714115
6 2.00000000003 @ 2.00002208286 2.00002208286
7 2.00000000000 & 2.00000214694 2.00000021694
14 | 2.00000000000 @2.00000000002 @ 2.0000000002
15  2.00000000000 2.00000000000 ' 2.0000000000

Example2.2: Let H = [0,1] and T: H = H be an operator satisfying T (x) = x/2 for all x€H. Clearly, 0 is the only
fixed point of the operator T. Now, for a,, = .70, b,,, = .65, ¢;;, = .90, the values of iterative schemes M [9],Picard-S
[5],Abbas[1],Noor[8],Ishikawa[6],Mann[7] and F iteration are given in Table 2.2.

Table 2.2: Iterative values obtained by various schemes for the operator T of Example 2.2

Steps F M Picard-S = Abbas | Agarwal Noor Ishikawa Mann
1 0.8000  0.8000 0.8000 0.8000 0.8000 | 0.8000 0.8000 0.8000
2 0.065 | 0.1300 0.1545 0.1964 0.3090 | 0.3880 0.4290 0.5200
3 0.0052  0.2112 0.0298 0.0482 0.1193 0.1882  0.2300 0.3380
4 0.0004  0.0034 0.0057 0.0118  0.0460  0.0913 0.1233 0.2197
5 0 0.0005 0.0011 0.0029 0.0178 | 0.0442 0.0661 0.1428
6 0 0 0.0002 0.0007 = 0.0068 | 0.0214 @ 0.0354 0.0928
7 0 0 0 0.0001 0.0026 | 0.0104 0.0190 0.0603
8 0 0 0 0 0.0010 | 0.0050 0.0102 0.0392
9 0 0 0 0 0.0003 0.0024 0.0054 0.0254
10 0 0 0 0 0.0001 0.0011 0.0029 0.0165
11 0 0 0 0 0 0.0005 0.0015 0.0107
12 0 0 0 0 0 0.0002  0.0008 0.0070
13 0 0 0 0 0 0.0001 = 0.0004 0.0045
14 0 0 0 0 0 0 0.0002 0.0029
15 0 0 0 0 0 0 0.0001 0.0019
16 0 0 0 0 0 0 0 0.00012

Now we study the influence of initial points for various iteration schemes in obtaining the fixed point. Table 2.3,
provides the number of iterations required to obtain fixed point for various initial points in Example 2.2.

Table 2.3: Number of iterations required to obtain fixed point for the operator T of Example 2.2

Initial Value = Agarwal iteration = Picard-S iteration = M- iteration @ F-iteration

0.2 10 6 5 4
0.4 11 6 5 4
0.6 12 7 6 5
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0.8 12 7 6 5
1.0 12 7 6 5

Now, we prove the following convergence result using a contractive condition satisfying rational expression:
Theorem 2.4: Let H be a nonempty closed convex subset of a Banach space E and T:H—H be a mapping defined by

the following rational expression

YUlx=Tyl)+allx—yl (2.13)

T,—T, <
I =Ty lI= 1+Mllx—Tyll

forall x,y € H,a € [0,1),M > 0,1 is a monotone increasing function with 1(0) = 0. Let {x,,} be the sequence
generated by (1.7) where a_n<1 for all n€N. Then iterative process (1.7) converges to unique fixed point of T.

Proof: First, we prove the convergence of iterative scheme.

Using (1.7) and (2.13) we have
lzn —pll = T((1 = an)xn + a@nTx,) —p
=lp—T((1 - ap)x, + a,Tx, |l
_elp=TpI)+qlp— (= an)tn+anTx)
- 1+MIlp—Tpl

iz, —pll < allp — (1 — @)%, + @, Tx, |l
= a[(l - an)llxn —pl+ a?’l”TZ’n—P"H]
_ ¥ llp—Tp Il galla, —pl
s [[l ~anlln = pll+ @ [ D
= a(.l - I5“-‘11)”:"’:1 —pll+ adn(qllxn - P||)
< (a(1—a,) + a’a,)llx, —pl
= (a(.l —a, + aan))”xn =l
<a(l-(1-a)a,))lx, - pl. (2.14)
Again using (1.7) and (2.13), we have
Iy, — Pl = T2, — I
= ITp — Tz,
<ydlp—Tp 1) +qliz, —pl
1+MIp—Tpl
< allz, —pll
< a(1 — (1~ Q)an)lx, — Pl (2.15)
Now
”xn+1 _P” = ”T}In - p” = HT]'J - Tyn“
_YUp=Tp ) +aly, —pl

1+Mlip—Trl
= qlly, —pll
<¢*(1 - (1 - Qay))lx, —pll. (2.16)

From (2.16), we can deduce that,
I%n41 = Il < @*(1 = (1 = )ay))llx, — pll
I, = pll < @®*(1 = (1 = @)an_1))lxp_1 — pll

lx; = pll < a*(1 = (1 — a)ay))llx; — pll
Hence, %1 — Pl < @2V )lxy — pll [T, (1 —a;(1— a)), (2-17)
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where (1 — a;(1 — a)) € (0,1) since a€[0,1) and «_i€[0,1] for all neN.
Now using the result 1 — x < e~ for all x€[0,1] we obtain from (2.17)
B3+ v — anli
. oa llx; —pll
—p| <
”xn+1 p” — e(l—Q) Z‘{"zl al .
a?y(n+1)”x1 _ p”

Therefore lim |[x — < — Qasn — oo,
n—>oo” n+1 — Pl < e(l-a) Z?zl a;

It proves the convergence of sequence {x_n } to fixed point p. Now, we show that T has unique fixed point. Let if
possible p** is another fixed point of mapping T. Then we have

lp—p=*Il =ITp—Tp=*l)
<ll}llzo—Tpll +allp—p=
= 1+MIp=Tpl
<alp-—p=ll.

This implies that p=p*. It establishes the proof of theorem.

3. STABILITY RESULTS IN COMPLEX VALUED BANACH SPACES

Theorem 3.1: Let H be a nonempty closed convex subset of a Banach space E and T:H—H be a mapping defined by
(1.1). Let for some p € F(T), the iterative scheme (1.7) converges to p, where Yo7, =  for each neN. Then F
iteration process is T- stable.

Proof: Let {u, }y=; € H H be any arbitrary bounded sequence.

let ey, =l Upyq — T, Il, (3.1)
where a,, = T((l —ap)u, + a:nTun).

Using (1.7) and (3.1) we have

lupsr — Pl <Nl up —Ta, I +1 Ta, —p |
<ée,+6lla, =Pl
<& +IOT1 - )u, + a,Tu,) — Pll]
<&, +6[63(1 — a,(1—6))llu, — Pl
<& +6*(—a,(1—M)lu, —PIl. (3.2)

Since a_n€(0,1) for all neEN and 6€(0,1) we have (1-o_n (1-8))<1. Hence, by lemma 1.3 and (3.2), we have
lim_(n—o0)u_n=p. Conversely

&n = lupss —Tayll
< lupsr —pll + llp — Ta,ll
< lupsr —pll + élla, —pll
< "un+1 - p” +46 T((l - an)un + anTn) —-bp I
< lupsr — pll + 8[63(1 — a, (1 = ) llu, — pll]
< Nupgr = pll + 8*((1 = sing (1 — ) llu, — pll).

Since 6”4 (||-a_n (1-8))<1, we obtain
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&n < lupyq — pll + lluy, — pll.

Taking limit n—oo both sides, we have
lime, =0
n—-oo
It means that F-iteration is T-stable.
Example 3.2: Let H=[0,1] and T:H—H be a mapping defined by T(x)=x/2. Then T is a contraction mapping with

constant 1/2. Clearly, 0 is the unique fixed point of this mapping. Suppose {u, } = %, is any arbitrary sequence in H and

1 :
an =7 foreachn € N..Thenlim,_,,u, = 0. Let

&n = luns1r — F(T,an) =lun — Tayl, (3.3)
where a, =T —ay)u, + a,Tuy,).
Now &, = |upy1 — Tayl
1-au, + a,Tu,
= un+1 - 4
- |1u _ (1 B an)un _ AnUn

n+1 8n E

Hence, limeg, =0.
n—-oo

1 1 1 |

Hence, F-iteration scheme is T-stable.
Theorem 3.2: Let H be a non empty closed convex subset of a Banach space E and T:H—H be a mapping given by
the following rational expression:
YUlx—Txl)+allx—yl vx,y € H,a € [0,1),
14+ Mllx — T, ' M>0

| Tx — Ty lI<

where s is a monotone increasing function such that y(0)=0. let {x,} be the sequence generated by F iteration
satisfying Y'n—o @, = 0 and a,, < a € (0,1) for eachn € N. This iteration scheme is T- stable.

Proof: Suppose {u, }n=1CH CH be any arbitrary bounded sequence.

Put &, = lluye1 — Thyll,
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where b, = T((l —ap)u, + anTun).
Now
lupss — Il < llupyes — Thyll + ITh, — pli
= llups1 — Thyll + llp — Thyll
<e, Yl p—Tp Il +alb, —pl)
- 1+MIllp—Tpl
= &, + allb, — pll
=&, +a(T((1 — ap)uy + 2, Tu,) — p)
<& t+al@1— (1 - aaylk, —pl).

(using the arguments similar to 2.16)
Now,
Itnss — pll < & + (@*((1 — (1 — a)an)llu, — plD. (3.4)
Since a, < a € (0,1) forallm € N anda a € [0,1) we have a*(1 — (1 — @)a,,) < 1.
Hence, lim,,_ llu, — pll = 0 = lim,,,,u, = p.

Conversely,
&n = llups1 — Thyll
< lups1 —pll + lIp = Thyll
YUip—=Tp )+ qlib, —pl
1+M(lp—Tpl
< llupy1 — pll + alib, — pll
< lupsq — oIl + a[ll T((l —a)u, + anTun) -p II].

< lupsq —pll +

Using arguments similar to 2.16, we obtain
&n < lluper —pll 4+ a*(1 - (1 — @)an)llu, —pl

<a*(l1-(1-a)a,) <1. (3.5)
Taking limit n -0, we have lim_(n—o)e_n=0. This completes the proof.

4. DATA DEPENDENCE RESULT

Theorem 4.1: Let T “be an approximate operator of contraction T:H—H. defined by (1.1). Let {x;, };r=; be the iterative
scheme generated by (1.7) for T. Consider the iterative sequence {X,}n-; as follows:

Zn =T ((1 = )y + Ty
Vn = Tzn
nsr = TPm €N, (4.1)

with real sequence {a,, }5= in [0,1] satisfying the following conditions
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()5 < tpn for all n+N

(i) Xpm1@p =

If Tp = p~=Tp = Psuch thatlim,,_,, i, = P, then

we havellp —p IS 14_—85 where € > 0 is a fixed number.

Proof: Using (1.7), (1.1) and (4.1) we have

Since 6<1, we have

1z = Zall =N T((1 = @)y + @ Tn) = T (1 = @)% + a7 .
Letb, = (1 — a)x, + a,Tx,,

b, = (1 —ay)%, + a,T%,.

Izy = Z,ll =N Thy, — Thy I=Il Thy, — Thy, + Thy, — Thy, I
< Thy — Thy | +1l Ty, — by, |
<sllby,—byll +¢
< S[I (1 — ap)xy + anTx, — (1 — ap)x, — an T, 1l] + &

lz, — 2,1l < (1 —a)lx, — %, + a,l|Tx,, — T, || + €

< (1 —a)lx, — ol + aylITx, — T, + TX, — T, || + €
< -a)lx, — X%, + andllx, — X, + ane + ¢
<A-a,+a,0)lx, — x|l + 2¢

<A-0A-8a,lla, — %, + 2¢.

Now using ,(1.1) we have

Iy = Yull =0Ty, — T2, |

=Tz, -T2, + Tz, —Tt, |
< Tz, —TZ, I+ TZ, — T2, |
S ”Zn - Zn” + &. (4‘3)

Using (4.2) in (4.3), we have

"3/71 -

Joul  <6[1—(1=8)ayllx, —yll +2¢] + ¢
< (1= (1=8)ayllx, — #,ll + 3. (4.4)

Again using (1.7) and (1.1) we have
Ixn41 = Xngall = Tyn — Tj}n I
=N Ty = TP + T = T |
< Ty = TFll+1 TP = T3
< 6llyn — Inll + €
< llyn =l + & (4.5)

Using (4.4) in (4.5), we obtain
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IXpe1 — Xl S (A=A =&ay)llx, — X1l +3e+ ¢
< (1 - (1 - S)an)”xn - D\én" + 4¢

< (1 - a1 = &)y — Zull + (1 = 8) .
4¢
Let 5, = lIx, — Xpl, iy = (1 —6) € (0,1) and y, = T

4e

Using lemma 1.4, we have

0 < limsupllx, — %,I < lim ——
n-owl—§

n—>0oo
From our earlier results, we have lim_(n—co)x_n=p. Also, we have assumed that lim_(n—o0)x " n=p ~. we have [lp-p

“lls4€/(1-8). This completes the proof.

5. APPLICATION TO DELAY DIFFERENTIAL EQUATIONS

In this section, we have proved that F iteration scheme can be used to find the solution of delay differential equations.

consider the space C[a,b] endowed with Chebyshev norm given by:
— pik
=Y = t) —y(@)l,
Ihx =y lleo= €™ max [x(t) — y(£)]

X,y €Ecla,b], k € [O'%]'

C[a,b] represents the set of all the continuous functions defined on the interval [a,b]. It is a Banach space. In the
present work, we have studied the following delay differential equation:

x'(t) = f(t,x(®), x(t — 1)), ¢t € [to, b], (5.1)

with initial condition
x(t) = Y(t),t € [ty —T,t0]. (5.2)

Assuming that following conditions hold:
(D to,b S R,T > O,

(ii) f € C([to, b] x R%,R],
(iii) ¥ € C[ty — 7, b], R),

(iv)2Lp (b — ;) < 1.
Hence, there exists L_f>0 such that
|f(t' q1, CIZ) - f(t' 7"1'7”2)| < lf |CIl - ril VCIi'ri € R. (53)

2
i=1
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By a solution of delay differential equation (5.1),(5.2), we mean a function F xeC[t_0-t,b],RNC*' (t_0,b],R). First of
all, we reformulate delay differential equation (5.1)- (5.2) in the form of following integral equation:

l/)(t), t e [tO -1, tO]!

“O= ) + [ B2, x(B - D)dp, t € [to, bl (54)

Now, we prove the main result of this section.

Theorem 5.1: Assume that conditions (i)- (v) are satisfied. The delay differential equations (5.1)- (5.2) has a unique
solution say p in C([t, — T, b], R) N C'([ty, b], R) and F iteration process converges to p.

Proof. Let {x,}n=; be the sequence generated by F iterative scheme for the operator (5.4). Let p be the fixed point
of T. We need to show that x,, = p as n - 0. Clearly, x,, = p foreach t € [ty — T, t,]. We need only to establish the
result for the interval [ty, b].

We have
Iz, —pll, =1 T((1 — @n)xn + @nTxn) = P lloo
< eik max || ((1 = ap)xn + anTxy) —p o

< e“c max [(1—an)||xn pll, + anllTx, —pll_]

te[to—T
ik _ _ ik
<e te[rtl(l)@ri'b][(l a)llx, —pll, +e Qn, JOaX | T, (£) — Tpol]
t t
f(s,x,(5), my(s —))dp—1 P(t) — | f(s,p(s), P(£ —1))ds |
to to

= elk max I(l—an)llxn pll_, +anelk max IJ f(s,x,(s),
te to Tb

Xp(s —1))dp — f(S,p(S),p(S —1))ds |

t
< ik _ —7) — -
<e te[rga>r<b]jt Le|zy(s) — P(s)| + |zp(A — 1) — p(s — T)lds

€ [tO —T,b]

< 2Ly (b — to)e¥liz, — pll,

Again using (1.7), we have
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es —pll, =T, —pll,

<o max 1 [ fn(hnls = 1) = fp(s)p(s — s |

te[ty—T.b]

t
< el max ) J | (8, 3n(8), yu(s = D) = f(s,p(s),p(s — D)) | ds

tp

t
ik _ A _
<o max, j ) P (s pls D) 1ds

< 2Lg(b— to)e*ly, — pll_,.
Combining (5.6) and (5.7), we have

_ _ ik | 5ik _ _ _ _
I = Plly, < 2Lp(b — to)e™ - e max, [1-ay (1~ 2L (b~ t0)) Iy = P,

<2Ly(b - ty)e2ik (1 —a, (1 — 2L (b — to)) tEmaF;b]IIxn —pll,. (59

[ty
Combining (5.8) and (5.9)

lxpia — pll,, < 2Lp(b — to)c (21 (b — t5)e (1 — a, (1 — 2Ly (b — )

max || Xy, —
s e pll,

2 .
< (21:(b — 1)) e** (1 — an (1 - 2Lr (b — 1))
2Le(b — to)e™llx, — pll,
< (2Lp(b - t0)c** (1 - @, (1 - 2L, (b — 1) ) Ity — P, (5.10)

Applying assumption (v) on (5.10), we have

lnsr — Pl < €% [1— a, (1 21000 — t))| I — pll. (5 11)

Using induction on (5.11), we have

n
Nxpeq — p"w < otk 1_[ [1 — a; (1 — 2Lf(b — to))] [, — p"
i=1

Since a,, € [0,1] for a || n € N and by using assumption (v) we obtain
[1-a, (1250 - t)] < 1.

Hence,

|4 121 Pl |

e(1—z:f(b—ro)]2?:1 o

lxpss —pll, = . Hence, lim,,_llx,.1 —pll,, 2 0asn— oo,

Hence,

It means that lim_(n—o0)|Ix_n-pll_co=0. This complete the proof.
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Remark 5.1. Theorem 5.1 generalizes various results available in literature including the work of Okeke [18],
Common et. al. [20] and Okeke and Abbas [15].

Concluding Remarks: The present work reports some fixed point results based on contractive condition and
contractive condition of rational expression. Numerically in the Table 2.1 and Table 2.2, it is claimed the F-iteration
scheme is more efficient than some of the existing iterative schemes available in the literature. Even the change in the
initial value does not reduce the efficiency of F-iteration scheme as claimed with the help of Table 2.3. As an application
to our results we have proposed solution to a delay differential equation. Our results are improvement of many results
including the work of Okeke [18], Common et. al. [20] and Okeke and Abbas [15]. Further, there are some work in the
future like developing some more efficient iterative schemes than F-iteration, replacing or changing some conditions in
our main results, extending our results to another metric spaces like fuzzy metric space, b- metric space etc.
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