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ABSTRACT 
This research paper presents a comprehensive comparative analysis of gradient descent 
optimization algorithms using a Diabetes Prediction dataset. The study explores their 
strengths, weaknesses, and performance characteristics under two different conditions, 
namely with and without feature engineering. The objective is to obtain proper insights 
into the effectiveness and efficiency of these algorithms in predicting diabetes. The 
analysis focuses on widely used algorithms, including stochastic gradient descent (SGD) 
and advanced variants like Nesterov accelerated gradient and adaptive learning rate 
techniques (e.g., Adam, AdaGrad, AdaMax, and AdaDelta). By evaluating their 
performance on the dataset under two different scenarios this research provides 
valuable insights into the performance of these algorithms. The obtained result show 
that, SGD variants (classic SGD, momentum, Nesterov), RMSProp, Adam, AdaMax, and 
Nadam outperformed AdaGrad and AdaDelta in minimizing error (lower MAE values) in 
both scenarios. 
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1. INTRODUCTION 
The concept of gradient descent has revolutionized machine learning and optimization, serving as a fundamental 

approach to discovering optimal solutions in a wide range of complex problems [16]. With the ever-increasing volume 
of data and the need for efficient computational methods, the development and refinement of gradient descent 
optimization algorithms have become crucial for researchers and practitioners alike [17]. 

The objective of this research paper is to perform a comprehensive comparative analysis of different gradient 
descent optimization algorithms. By examining their strengths, weaknesses, and performance characteristics, we aim to 
shed light on the most effective and efficient algorithms for different problem domains. This analysis will provide 
valuable insights for researchers, enabling them to make informed decisions while choosing the appropriate 
optimization algorithm for their specific applications. 
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The study focuses on investigating a range of widely used gradient descent optimization algorithms, including but 
not limited to: stochastic gradient descent (SGD) and advanced variants such as momentum-based methods (e.g., 
Nesterov accelerated gradient), adaptive learning rate techniques (e.g., Adam, AdaGrad, AdaMax and AdaDelta).  

 
2. RELATED WORKS 

One popular extension of gradient descent is stochastic gradient descent (SGD). Unlike traditional gradient descent 
that computes the gradients of the loss function for the entire training dataset, SGD updates the model parameters based 
on the gradient computed for a random subset of the data. This random sampling introduces noise in the updates, which 
can lead to faster and more memory-efficient training [18]. However, SGD may also result in noisy updates and reduced 
accuracy compared to traditional gradient descent [1]. 

Another variant of gradient descent is Nesterov accelerated gradient (NAG). NAG incorporates a momentum term 
into the update rule, which allows the algorithm to take into account the direction of the previous update. By considering 
this momentum factor, NAG can achieve faster convergence and improved performance in certain cases [2]. 

RMSprop is another optimization technique that has gained attention in recent years. It addresses the challenges 
posed by non-stationary problems by adapting the learning rate for each parameter based on the historical gradients. 
This adaptive learning rate prevents the learning rate from oscillating too much and helps the algorithm converge more 
effectively [3]. 

AdaGrad is an optimization algorithm that adjusts the learning rate for each parameter based on the historical 
gradients. It gives larger updates to parameters associated with infrequent features and smaller updates to frequently 
occurring features. This adaptive learning rate scheme has shown promising results, particularly in scenarios with sparse 
data [4]. 

Adadelta is another adaptive learning rate method that addresses some of the limitations of AdaGrad. It seeks to 
improve the stability of the learning process by using a more sophisticated update rule that takes into account only a 
window of the most recent gradients. This windowing approach allows Adadelta to adapt more effectively to changing 
conditions during training [5]. 

Adam, short for adaptive moment estimation, is a popular optimization algorithm that combines ideas from both 
momentum-based methods and adaptive learning rate methods. It maintains exponential moving averages of both the 
gradients and the squared gradients. By utilizing these estimates, Adam can adaptively adjust the learning rate and 
momentum parameters for each parameter in the model. This adaptive behaviour has contributed to the algorithm's 
widespread adoption and success across various domains [6]. 

Adamax is a variant of Adam that introduces an infinity norm constraint on the update step. By using the infinity 
norm, Adamax can provide better handling of very large gradients, which can be beneficial in scenarios where the 
magnitude of gradients varies significantly across different parameters [7]. 

In addition to the individual analyses of these optimization techniques, several studies have conducted comparative 
analyses to evaluate their performance against each other [19][20][21]. For instance, in a study focused on wind speed 
forecasting [8], researchers compared Gradient descent, Momentum, AdaGrad, RMSprop, Adam, and Adadelta. The 
results showed that Adam and RMSprop outperformed the other techniques in terms of both performance and training 
time. 

Similarly, in the field of ophthalmology, a comparative study [9] compared various optimization techniques and 
their impact on finding optimal solutions in minimum iterations. The authors found that AdaGrad consistently provided 
the best solutions within the least number of iterations in this specific domain. 

These comparative analyses highlight the importance of selecting an appropriate optimization technique based on 
the specific problem domain and requirements. The choice of optimization algorithm can significantly impact both the 
training time and the quality of the resulting models [22]. Researchers continue to explore and propose new extensions 
and improvements to gradient descent in order to further enhance its performance and applicability in various fields. 
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3. GRADIENT DESCENT OPTIMIZATION ALGORITHMS 
3.1. STOCHASTIC GRADIENT DESCENT (SGD) 

SGD minimizes the time to converge by randomly selecting the data points at each iteration to update the 
parameter. The update parameter for SGD is as follows: 

 
                                             𝜃𝜃 = 𝜃𝜃 − 𝜂𝜂 ⋅ 𝛻𝛻𝜃𝜃𝐽𝐽(𝜃𝜃;  𝑥𝑥(𝑖𝑖),𝑦𝑦(𝑖𝑖))       
              
Where x(i) and y(i) are randomly selected data points. This random selection, however, results in less accuracy in 

comparison to gradient descent. 
 

3.2. MOMENTUM  
The momentum technique [10] is used to improve the convergence of SGD by adding a fraction of the previous 

gradient to the current gradient. This fraction is referred to as the momentum coefficient (γ). The parameter, in this case, 
is updated as follows:   

 
                                                      𝑣𝑣𝑡𝑡 = 𝛾𝛾𝑣𝑣𝑡𝑡−1 + 𝜂𝜂𝛻𝛻𝜃𝜃𝐽𝐽(𝜃𝜃)            

                                          
                                                                      𝜃𝜃 = 𝜃𝜃 − 𝑣𝑣𝑡𝑡                             
                                             

Here   𝑣𝑣𝑡𝑡 is the velocity vector. Momentum has been shown to improve the convergence speed of SGD and reduce 
oscillations, which can lead to better performance in training deep neural networks [11].  
 
3.3. NESTEROV ACCELERATED GRADIENT (NAG) 

The NAG algorithm can be seen as a modification of the classical momentum algorithm, where instead of calculating 
the gradient at the current position, the gradient is calculated at the estimated future position of the parameters. This 
estimated future position is obtained by adding the current momentum to the current parameter position. The NAG 
algorithm then uses this estimated future position to calculate the gradient, which is then used to update the momentum 
and the parameters [2]. So, the update rule for the NAG algorithm can be written as follows: 
                                                                                𝑣𝑣𝑡𝑡 = 𝛾𝛾𝑣𝑣𝑡𝑡−1 + 𝜂𝜂𝛻𝛻𝜃𝜃𝐽𝐽(𝜃𝜃 − 𝛾𝛾𝑣𝑣𝑡𝑡−1)    
 

                                                                                 𝜃𝜃 = 𝜃𝜃 − 𝑣𝑣𝑡𝑡 
 

where 𝜃𝜃 and 𝛻𝛻𝜃𝜃𝐽𝐽(𝜃𝜃) are the current parameters and gradient, respectively, 𝑣𝑣𝑡𝑡 is the current momentum, γ is the 
momentum coefficient, 𝜂𝜂 is the learning rate, and 𝛻𝛻𝜃𝜃𝐽𝐽(𝜃𝜃 − 𝛾𝛾𝑣𝑣𝑡𝑡−1) is the gradient at the estimated future position of the 
parameters. 

 
3.4. ADAGRAD 

The adaptive gradient algorithm (Adagrad) is an optimization algorithm that adapts the learning rate for each 
parameter in the network based on its previous history of gradients. The main idea behind Adagrad is to use a different 
learning rate for each parameter, based on the information available for that parameter, rather than using a global 
learning rate for all parameters [4]. The equation for the updating of parameters is as follows: 

 
𝑔𝑔𝑡𝑡,𝑖𝑖 = 𝛻𝛻𝜃𝜃𝑡𝑡 𝐽𝐽�𝜃𝜃𝑡𝑡,𝑖𝑖� 
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𝜃𝜃𝑡𝑡+1,𝑖𝑖 = 𝜃𝜃𝑡𝑡,𝑖𝑖 − 𝜂𝜂 ⋅ 𝑔𝑔𝑡𝑡,𝑖𝑖  
 

𝜃𝜃𝑡𝑡+1,𝑖𝑖 = 𝜃𝜃𝑡𝑡,𝑖𝑖 −
𝜂𝜂

�𝐺𝐺𝑡𝑡,𝑖𝑖𝑖𝑖 + 𝜖𝜖
⋅ 𝑔𝑔𝑡𝑡,𝑖𝑖  

 

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 −
𝜂𝜂

�𝐺𝐺𝑡𝑡 + 𝜖𝜖
⊙ 𝑔𝑔𝑡𝑡 

 
where θ_(t,i) and ∇_(θ_t  ) J(θ_(t,i) ) are the current parameters and gradient, respectively, g_(t,i)  is the sum of the 

squares of the gradients for parameter i up to time step t, η is the learning rate, G_t is a diagonal matrix where each 
diagonal element i,i is the sum of the squares of the gradients for parameter θ_i up to time step t, and ϵ is a small constant 
added to the denominator to ensure numerical stability. 

One of the benefits of Adagrad is that it requires little tuning of hyperparameters and can converge quickly, 
especially for sparse data sets [12]. However, Adagrad has been shown to have some limitations, such as the 
accumulation of squared gradients over time, which can lead to a very small learning rate [12]. 
 
3.5. RMSPROP 

Root Mean Square Propagation (RMSprop) is an optimization algorithm that adapts the learning rate for each 
parameter in the network based on its moving average of squared gradients [3]. The main idea behind RMSprop is to 
divide the learning rate for weight by a running average of the magnitudes of recent gradients for that weight [3]. 

 
𝐸𝐸[𝑔𝑔2]𝑡𝑡 = 𝛽𝛽𝛽𝛽[𝑔𝑔2]𝑡𝑡−1 + (1 − 𝛽𝛽)𝑔𝑔𝑡𝑡2 

 

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 −
𝜂𝜂

�𝐸𝐸[𝑔𝑔2]𝑡𝑡 + 𝜖𝜖
𝑔𝑔𝑡𝑡 

 
 Where E is moving average of squared gradients and 𝛽𝛽 is moving average parameter. 
 

3.6. ADADELTA 
Adadelta is an adaptive learning rate optimization algorithm that is similar to RMSprop. Like RMSprop, Adadelta 

maintains a moving average of the squared gradient for each weight, but instead of using a fixed learning rate, Adadelta 
uses the ratio of the root mean squared (RMS) of the gradients and the RMS of the updates to adjust the learning rate [5].  

 
𝑔𝑔𝑡𝑡 = 𝛻𝛻𝛻𝛻(𝜃𝜃𝑡𝑡) 

 
𝐸𝐸[𝑔𝑔2]𝑡𝑡 = 𝜌𝜌𝜌𝜌[𝑔𝑔2]𝑡𝑡 − 1 + (1 − 𝜌𝜌)𝑔𝑔𝑡𝑡2 

 

𝛥𝛥𝜃𝜃𝑡𝑡 = −
�𝐸𝐸[𝛥𝛥𝜃𝜃2]𝑡𝑡 − 1 + 𝜖𝜖
�𝐸𝐸[𝑔𝑔2]𝑡𝑡 + 𝜖𝜖

𝑔𝑔𝑡𝑡 

  
𝐸𝐸[𝛥𝛥𝜃𝜃2]𝑡𝑡 = 𝜌𝜌𝜌𝜌[𝛥𝛥𝜃𝜃2]𝑡𝑡 − 1 + (1 − 𝜌𝜌)𝛥𝛥𝜃𝜃𝑡𝑡2 

𝜃𝜃𝜃𝜃 + 1 = 𝜃𝜃𝜃𝜃 + 𝛥𝛥𝜃𝜃𝑡𝑡 
 

where 𝑔𝑔𝑡𝑡 is the gradient at time step t,  𝐸𝐸[𝑔𝑔2]𝑡𝑡 is the exponentially decaying average of the past squared gradients, 𝛥𝛥𝜃𝜃𝑡𝑡 
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is the update at time step t, 𝐸𝐸[𝛥𝛥𝜃𝜃2]𝑡𝑡 is the exponentially decaying average of the past squared updates, ρ is the decay 
rate, and ϵ is a small constant added to avoid division by zero [12]. 

 
3.7. ADAM 

Adam is a popular optimization algorithm that combines momentum-based optimization and adaptive learning rate 
methods. Adam maintains a running estimate of the first and second moments of the gradient (i.e., the mean and variance 
of the gradient), which are then used to update the parameters. Specifically, Adam computes a moving average of the 
gradient and its squared values, which are then used to adjust the learning rate for each weight. The algorithm includes 
two key hyperparameters: the learning rate (α) and the momentum decay rate (β) [6]. 

The update rule for Adam is as follows: 
 

𝑚𝑚𝑡𝑡 = 𝛽𝛽1𝑚𝑚𝑡𝑡−1 + (1 − 𝛽𝛽1)𝑔𝑔𝑡𝑡   
 

𝑣𝑣𝑡𝑡 = 𝛽𝛽2𝑣𝑣𝑡𝑡−1 + (1 − 𝛽𝛽2)𝑔𝑔𝑡𝑡2 
 

To correct the bias from the first and second moments: 
 

𝑚𝑚𝑡𝑡� =
𝑚𝑚𝑡𝑡

1 − 𝛽𝛽1𝑡𝑡
 

 

𝑣𝑣𝑡𝑡� =
𝑣𝑣𝑡𝑡

1 − 𝛽𝛽2𝑡𝑡
 

 

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 −
𝜂𝜂

�𝑣𝑣𝑡𝑡� + 𝜖𝜖
𝑚𝑚𝑡𝑡�  

 
3.8. ADAMAX 

Adamax is another variant of the Adam optimization algorithm that is designed to address certain shortcomings of 
Adam when dealing with very large datasets. While Adam calculates the exponentially weighted moving average 
(EWMA) of both the first and second moments of the gradient, Adamax only calculates the EWMA of the first moment 
and uses the L-infinity norm (maximum absolute value) of the gradients for the second moment [7] [13]. 

The update rule for Adamax is as follows: 
𝑣𝑣𝑡𝑡 = 𝛽𝛽2𝑣𝑣𝑡𝑡−1 + (1 − 𝛽𝛽2)|𝑔𝑔𝑡𝑡|2 

 
𝑣𝑣𝑡𝑡 = 𝛽𝛽2

𝑝𝑝𝑣𝑣𝑡𝑡−1 + �1 − 𝛽𝛽2
𝑝𝑝�|𝑔𝑔𝑡𝑡|𝑝𝑝 

 
𝑢𝑢𝑡𝑡 = 𝛽𝛽2∞𝑣𝑣𝑡𝑡−1 + (1 − 𝛽𝛽2∞)|𝑔𝑔𝑡𝑡|∞ 

 
= (𝛽𝛽2 ⋅ 𝑣𝑣𝑡𝑡−1, |𝑔𝑔𝑡𝑡|)  

 

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 −
𝜂𝜂
𝑢𝑢𝑡𝑡
𝑚𝑚𝑡𝑡�  
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The key difference between Adamax and Adam is that Adamax uses the L-infinity norm to normalize the gradients 
instead of the L2 norm. This makes Adamax more resilient to outliers, which can be particularly useful when working 
with large datasets that may contain noisy or corrupted data [7] [13]. 

 
3.9. NADAM 

Nadam (Nesterov-accelerated Adaptive Moment Estimation) [14] is another variant of the Adam optimization 
algorithm that combines the Nesterov accelerated gradient (NAG) method with Adam. NAG is a variant of gradient 
descent that uses a momentum term to accelerate the convergence of the optimization algorithm. Nadam builds on Adam 
by incorporating the NAG method to achieve faster convergence and better generalization. 

The updated rule for Nadam [14] is as follows: 
 

𝑚𝑚𝑡𝑡 = 𝛽𝛽1𝑚𝑚𝑡𝑡−1 + (1 − 𝛽𝛽1)𝑔𝑔𝑡𝑡  
 

𝑣𝑣𝑡𝑡 = 𝛽𝛽2𝑣𝑣𝑡𝑡−1 + (1 − 𝛽𝛽2)𝑔𝑔𝑡𝑡2 
 

𝑚𝑚𝑡𝑡� =
𝑚𝑚𝑡𝑡

1 − 𝛽𝛽1𝑡𝑡
 

 

𝑣𝑣�𝑡𝑡 =
𝑣𝑣𝑡𝑡

1 − 𝛽𝛽2𝑡𝑡
 

 

𝜃𝜃𝑡𝑡 = 𝜃𝜃𝜃𝜃 − 1 −
𝛼𝛼

�𝑣𝑣𝑡𝑡� + 𝜖𝜖
�𝛽𝛽1𝑚𝑚𝑡𝑡� +

(1 − 𝛽𝛽1)�1 + 𝛽𝛽1(𝑚𝑚𝑡𝑡 − 𝑚𝑚𝑡𝑡� )�
1 − 𝛽𝛽1𝑡𝑡

𝑔𝑔𝑡𝑡� 

 
Where 𝛽𝛽1, 𝛽𝛽2, 𝑚𝑚𝑡𝑡 �𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑡𝑡�  are have significance as in adam. 
 

4. CASE STUDY 
In the following study we have used tensorflow optimizers to compare the performance of SGD, momentum, NAG, 

RMSProp, AdaGrad, AdaDelta, Adam, AdaMax and Nadam algorithms. The performance is measured on speed of 
convergence and accuracy. We have considered two cases, (i) Fixed number of iterations and (ii) No constraint on 
iterations.  

Data 
The dataset in both the cases is for diabetes prediction [15]. The Pima Indian Women Diabetes Prediction dataset 
comprises a collection of 768 instances, all of which pertain to female individuals of Pima Indian heritage. Each instance 
is characterized by eight different diagnostic measurements and a binary outcome variable. The dataset features are 
described as follows: 

Table 1 Features of Dataset 
Feature Description 

Pregnancies Number of times the patient has been pregnant 

Glucose Plasma glucose concentration measured 2 hours after an oral glucose tolerance test 

Blood Pressure Diastolic blood pressure recorded in millimetres of mercury (mm Hg) 

Skin Thickness Thickness of the triceps skin fold measured in millimetres (mm) 

Insulin 2-Hour serum insulin level measured in microunits per millilitre (mu U/ml) 
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BMI Body mass index calculated as weight in kilograms divided by the square of height in meters 
(kg/m^2) 

Diabetes Pedigree 
Function 

A function that quantifies the hereditary risk of diabetes 

 
The target variable is ‘Outcome’: A binary variable indicating the presence (1) or absence (0) of diabetes. 

Case I: Fixed number of iterations  

 
Figure 1 SGD Error Function 

 

 
Figure 2 Momentum Error Function 

 

 
Figure 3 NAG Error Function 
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Figure 4 Ada Delta Error Function 

 

 
Figure 5 Ada Grad Error Function 

 

 
Figure 6 Adam Error Function 
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Figure 7 Ada Max Error Function  

 

 
Figure 8 Nadam Error Function 

 

 
Figure 9 RMSprop Error Function 

 

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh


Performance Measure of Various Machine Learning Optimizers for Diabetes prediction in Indian woman 
 

ShodhKosh: Journal of Visual and Performing Arts 4454 
 

Case II: No constraint on iterations 
 

 
Figure 10 SGD Error Function 

 

 
Figure 11 Momentum Error Function 

 

 
Figure 12 NAG Error Function 
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Figure 13 Ada Delta Error Function 

 

 
Figure 14 Ada Grad Error Function 

 

 
Figure 15 Adam Error Function 
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Figure 16 Ada Max Error Function 

 

 
Figure 17 Nadam Error Function 

 

 
Figure 18 RMSprop Error Function 

 
5. RESULT AND DISCUSSION  

Table 2 Comparison of performance of algorithms – Case I 
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Optimization Algorithm Number of iterations MAE TensorFlow Keras Optimizer 

Stochastic 100 0.1687 SGD 

Momentum 100 0.1623 SGD 

Nesterov 100 0.1788 SGD 

AdaGrad 100 1.7982 Adagrad 

RMSProp 100 0.1626 RMSprop 

Adam 100 0.1623 Adam 

AdaDelta 100 2.3780 Adadelta 

AdaMax 100 0.2310 Adamax 

Nadam 100 0.1629 Nadam 

 
                               Table 3 Comparison of performance of algorithms – Case II 

Optimization Algorithm Number of iterations MAE TensorFlow Keras Optimizer 

Stochastic 296 0.1621 SGD 

Momentum 46 0.1625 SGD 

Nestereov 290 0.1621 SGD 

AdaGrad 6000 0.3056 Adagrad 

RMSProp 83 0.1626 RMSprop 

Adam 127 0.1622 Adam 

AdaDelta 6000 1.0958 Adadelta 

AdaMax 264 0.1622 Adamax 

Nadam 151 0.1624 Nadam 

 
In case I, the observations are made for fixed number of iterations (100). The obtained results (Table 1), show that 

among the stochastic gradient descent (SGD) variants, both the classic SGD and momentum-based methods achieved 
similar performance in terms of Mean Absolute Error (MAE). The MAE values obtained were 0.1687 and 0.1623, 
respectively, indicating that both algorithms effectively minimized the error during the optimization process. 

The Nesterov accelerated gradient descent algorithm showed a slightly higher MAE value of 0.1788 compared to the 
SGD and momentum variants. This suggests that the Nesterov algorithm might not have performed as well in minimizing 
the error in this experiment. 

Among the adaptive learning rate techniques, Adam, RMSProp, and Nadam all achieved similar MAE values around 
0.1623-0.1629. This indicates that these algorithms were effective in optimizing the model and producing accurate 
predictions. 

AdaGrad and AdaDelta algorithms, on the other hand, yielded higher MAE values of 1.7982 and 2.3780, respectively. 
This suggests that these algorithms might not have been as effective in reducing the error compared to other 
optimization techniques in this experiment. 

The AdaMax algorithm achieved an MAE value of 0.2310, which was higher compared to the Adam algorithm but 
lower than AdaGrad and AdaDelta. This suggests that AdaMax performed reasonably well in this experiment but might 
not have been as effective as Adam or some other algorithms. 

 
In case II, there is no constraint on number of iterations, however a patience value of 10 iterations is applied to the 

model. This helps in early stopping the iterations if the value of mean absolute error remains same for 10 continuous 
iterations. The results of this experiment show that, the stochastic gradient descent (SGD) variants, including classic SGD, 
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momentum, and Nesterov, all achieved very similar MAE values ranging from 0.1621 to 0.1625. This suggests that these 
algorithms were effective in minimizing the error, with no significant difference in performance observed among them. 

The AdaGrad algorithm required a much larger number of iterations (6000) to achieve a comparable MAE of 0.3056. 
This indicates that AdaGrad took more time to converge to a similar level of accuracy compared to the SGD variants. 

RMSProp, Adam, AdaMax, and Nadam all achieved MAE values close to each other, ranging from 0.1622 to 0.1626. 
This suggests that these algorithms were effective in optimizing the model and producing accurate predictions, similar 
to the performance of the SGD variants. 

AdaDelta, on the other hand, yielded a higher MAE value of 1.0958, indicating that it might not have been as effective 
in reducing the error compared to other optimization techniques in this experiment. 
 
6. CONCLUSION 

In this study we compared existing gradient descent optimization algorithms to predict the diabetes. We observed 
that both time and computational capacity play an important role in selection of the optimization algorithm for models. 
The SGD variants (classic SGD, momentum, and Nesterov), along with RMSProp, Adam, AdaMax, and Nadam, 
demonstrated relatively better performance in terms of minimizing the error (lower MAE values) compared to AdaGrad 
and AdaDelta algorithms in both scenarios. However, it is important to note that these conclusions are specific to the 
experiment conducted, and further analysis and evaluation may be required to generalize these findings to different 
datasets or problem domains. The performance of optimizers also vary with some other factors like size of dataset and 
models used for testing.  
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