Original Article ISSN (Online): 2582-7472

USERS' PERCEPTION TOWARDS SMARTPHONE APPLICATIONS IN DELHI NCR: DEMOGRAPHIC PERSPECTIVE

Dr. Neelam Jain ¹ , Vaibhav Jindal ²

- ¹ Professor, IMSAR, MDU, Rohtak
- ² Research Scholar, IMSAR, MDU, Rohtak

DOI

10.29121/shodhkosh.v4.i2.2023.502

Funding: This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Copyright: © 2023 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License.

With the license CC-BY, authors retain the copyright, allowing anyone to download, reuse, re-print, modify, distribute, and/or copy their contribution. The work must be properly attributed to its author.

ABSTRACT

This study investigates the perception of smartphone users in Delhi NCR towards communication applications, focusing on their attitudes and usage patterns. The research employed a survey method with a sample of 200 respondents aged 18-65. Data were analyzed using Chi-square tests to examine associations between demographic variables (age, gender, income, education) and perceptions. Results indicate that users in Delhi NCR generally hold a positive and receptive attitude towards smartphone applications. Demographic factors such as age, gender, income, and education play a significant role in shaping user perceptions. Younger individuals and those with higher educational backgrounds tend to demonstrate greater openness and comfort with these digital tools, indicating a higher level of digital engagement. Similarly, users with higher income levels are more likely to appreciate the benefits of smartphone apps, possibly due to better access and exposure. Gender differences are also observed, with females showing more favorable attitudes towards communication applications, suggesting a growing alignment of smartphone technology with academic and professional aspirations. Overall, the findings emphasize that user perception is deeply influenced by personal and socioeconomic factors, offering valuable insights for developers, educators, and policymakers aiming to expand the reach and impact of mobile applications in urban

Keywords: Smartphone Perception, Communication Applications, User Attitude, Demographic Influence

1. INTRODUCTION

Smartphones are transforming communities by bridging communication gaps, enabling instant connectivity, and providing access to education and information like never before. They are fostering digital inclusion, empowering individuals with tools for learning, collaboration, and social interaction across all segments of society. Smartphones have redefined communication in India, emerging as essential tools in daily life. With a good smartphone penetration in urban India (Kemp, S. (2021)), Delhi NCR stands out as a significant hub of technological adoption. This transformation has reshaped user behavior, necessitating an exploration of perceptions towards communication applications. Communication apps like WhatsApp and Telegram enable instant connectivity, yet user attitudes towards these tools differ across demographics.

While prior studies have examined smartphone usage for social and functional purposes (Van Deursen et. al., 2015), few have explored how demographic factors shape perceptions of communication applications in urban India. This study addresses this gap by analyzing attitudes and usage patterns among Delhi NCR residents, emphasizing symbolic and

practical benefits. Understanding these perceptions is critical as they influence adoption and engagement, impacting both users and application developers.

2. SIGNIFICANCE OF SMARTPHONE APPLICATION PERCEPTIONS

Smartphone applications provide distinct value, setting them apart from traditional tools. Perceptions—positive, negative, or anxious—drive usage and reflect emotional connections (Triplett, 1994). Unlike hardware features, perceptions are intangible, difficult to replicate, and pivotal to user loyalty. Developers capitalize on these attitudes to boost engagement, making perception a key factor in application success. Positive perceptions build trust and self-expression, while negative or anxious attitudes may hinder usage, affecting long-term.

3. LITERATURE REVIEW

A literature review of smartphone user perceptions reveals diverse insights shaped by individual, contextual, and societal factors across regions. Kushlev, Proulx, and Dunn (2021) found that higher smartphone use was associated with reduced psychological well-being. This suggests that excessive or frequent engagement with smartphones may interfere with users' emotional and cognitive states, potentially leading to stress, distraction, or dissatisfaction. The study's daily diary methodology reinforces the reliability of this association, as it captures real-time behavioral patterns and mood fluctuations. It highlights the need to distinguish between purposeful and passive smartphone use, as the latter may be more strongly linked to adverse psychological outcomes. These findings contribute to growing concerns about the mental health implications of pervasive digital device usage and call for a more nuanced understanding of how, when, and why individuals use smartphones. Keusch, Antoun, Couper, and Kreuter (2020) examined how U.S. smartphone users perceive the use of their devices for data collection, especially in research settings. It found that users with higher education levels were more likely to view smartphones as empowering tools—but only when privacy was clearly protected. While many participants acknowledged the benefits of smartphones in improving research and services, there were widespread concerns about surveillance and data misuse. The study highlights that trust and transparency are key to user acceptance of smartphone-based data collection. Gupta and Singh (2022) surveyed 500 Indian young adults, revealing that smartphone use for social media and education was perceived positively for connectivity and learning, yet negatively due to addiction concerns, with cultural factors like family expectations shaping usage patterns. Montag et al. (2020) reviewed scales for problematic smartphone use (PSU), noting users often perceive excessive use as a selfregulation failure linked to reduced attention and social withdrawal. Cha and Seo (2019) found Thai students associating overuse with anxiety and lower well-being, reinforcing awareness of negative consequences. Busch and McCarthy (2019) highlighted the dual appeal and risk of gaming and social networking among youth, underscoring the smartphone's complex role. These studies collectively illustrate varied perceptions—empowerment, dependency, and risk—but point to a research gap: the lack of an integrated framework that unifies contextual, psychological, societal, and cultural dimensions of smartphone perception across global contexts, essential for addressing negative impacts while maximizing positive potential.

4. RESEARCH GAP

Although smartphone usage and digital communication have been extensively studied, there remains a limited focus on how demographic factors influence perceptions of communication applications in urban Indian contexts like Delhi NCR, particularly in the post-2015 digital boom era. Foundational works (e.g., Venkatesh & Davis, 2000) provide theoretical frameworks such as the Technology Acceptance Model, but they lack specificity to India's rapidly evolving urban digital landscape. For instance, Arora, Malik, and Chawla (2020) highlight in their qualitative study of mobile app adoption in the National Capital Region that "the pattern of usage and beliefs associated with mobile applications vary significantly across age groups, with younger users valuing ease of use and social influence as key adoption factors" (p. 335), yet their work does not delve into the broader spectrum of communication apps like WhatsApp and Telegram across diverse demographics. Despite India's significant strides in digitalization post-2015, driven by initiatives like Digital India, the specific interplay of age, gender, income, and education with attitudes toward communication applications remains underexplored in urban settings.

5. RESEARCH METHODOLOGY

This exploratory study utilized a survey method with convenience sampling. Data were collected from 200 smartphone users in Delhi NCR, aged 18-65. The questionnaire included two sections: (1) socio-demographic details and (2) perception and usage items on a 5-point Likert scale (1 = Strongly Disagree, 5 = Strongly Agree), adapted from Rosen et al. (2013).

6. RELIABILITY ANALYSIS

To ensure the reliability of the questionnaire used in this study, a reliability analysis was conducted using a pilot sample. The internal consistency of the perception-related items was measured through Cronbach's Alpha, a widely accepted statistical tool for assessing scale reliability. The analysis yielded a Cronbach's Alpha value of approximately 0.875, indicating a high level of internal consistency among the questionnaire items. This confirms that the items used to measure users' perceptions towards communication applications are coherent, dependable, and effectively capture the underlying construct. SPSS 26.0 was used for Chi-square analysis to test associations.

7. HYPOTHESIS DEVELOPMENT

 H_{01} : There is no association between age and perception of communication applications.

 H_{02} : There is no association between gender and perception of communication applications.

 H_{03} : There is no association between income and perception of communication applications.

 H_{04} : There is no association between education and perception of communication applications.

8. ANALYSIS AND CONCLUSIONS

8.1. BASIC INFORMATION ON RESPONDENTS

Of 200 respondents, 45% were aged 18-30, 35% were 31-45, and 20% were 46-65. Females comprised 52%, and males 48%. Income distribution showed 50% earning below \$5 lakhs annually, 30% between \$5-10 lakhs, and 20% above \$10 lakhs. Education levels included 20% high school, 40% bachelor's, 30% postgraduate, and 10% other qualifications.

Sub-Category Frequency Category Percentage (%) 18 - 3090 45.00% **Age Group** 31 - 4570 35.00% 46-65 40 20.00% Gender Male 96 48.00% 104 52.00% Female **Family Income** Below ₹5 lakhs 100 50.00% ₹5-10 lakhs 60 30.00% Above ₹10 lakhs 40 20.00% **Education Level** High School 40 20.00% Bachelor's 40.00% 80 30.00% Postgraduate 60

Table 1: Demographic Profile of the Respondents (N = 200)

Source: Researchers' Calculation

20

10.00%

Other

Association of Perception and Demographic Variables

Chi-square tests assessed associations between perception levels (low, moderate, high) and demographics.

Independent Variable: Age

 H_{01} : There is no association between age and perception of communication applications.

Table 2. Chi-square Test for Age and Perception

Test	Value	N	df	P-Value	Remarks
Pearson Chi-square	18.452	200	4	0.001	Rejected

Source: Researchers' Calculation through SPSS

Inference: In Table 2, the Chi-square value is 18.452 with 4 degrees of freedom, and the p-value is 0.001, which is below the significance level of 0.05. Therefore, the null hypothesis stating that age and perception are not associated is rejected.

Table 3. Cross-tabulation of Perception × Age

Age Group	Perception Level	Low	Moderate	High	Total
18-30	Count	10	50	30	90
	% within age	11.10%	55.60%	33.30%	100%
31-45	Count	20	40	10	70
	% within age	28.60%	57.10%	14.30%	100%
46-65	Count	15	20	5	40
	% within age	37.50%	50.00%	12.50%	100%
Total	Count	45	110	45	200

Source: Researchers' Calculation through SPSS

Table 3 shows that among the 90 respondents aged 18–30, 11.1% have low perception, 55.6% have moderate perception, and 33.3% have high perception. For the 70 respondents aged 31–45, 28.6% have low perception, 57.1% moderate, and 14.3% high. In the 46–65 age group, 37.5% show low perception, 50.0% moderate, and only 12.5% high.

The majority across all age groups demonstrated moderate perception, but it is evident that younger adults (18–30) have a significantly higher proportion of high perception compared to older groups.

It can be inferred that younger smartphone users (especially in the 18–30 age group) are more perceptive and open towards communication applications—particularly tools like WhatsApp and Telegram—indicating their adaptability and higher engagement with digital communication compared to older age groups.

Independent Variable: Gender

 H_{02} : There is no association between gender and perception of communication applications.

Table 4. Chi-square Test for Gender and Perception

Test	Value	N	df	P-Value	Remarks
Pearson Chi-square	9.875	200	2	0.007	Rejected

Source: Researchers' Calculation through SPSS

Inference: In Table 4, the Chi-square value is 9.875 with 2 degrees of freedom, and the p-value is 0.007, which is less than the 0.05 significance level. Hence, the null hypothesis is rejected, indicating a significant association between gender and perception.

Table 5. Cross-tabulation of Perception × Gender

Gender	Perception Level	Low	Moderate	High	Total
Male	Count	25	55	16	96
	% within gender	26.00%	57.30%	16.70%	100%
Female	Count	20	55	29	104
	% within gender	19.20%	52.90%	27.90%	100%
Total	Count	45	110	45	200

Source: Researchers' Calculation through SPSS

As per Table 5, out of 96 male respondents, 26.0% had low perception, 57.3% had moderate perception, and 16.7% had high perception. Among 104 female respondents, 19.2% had low perception, 52.9% moderate, and 27.9% high.

These results show that females tend to have a higher perception, especially for educational apps like Webex, compared to males.

Therefore, gender significantly influences perception, with females showing greater awareness and engagement with communication applications. This reflects social factors that may encourage female users to prioritize digital tools for learning and development.

Independent Variable: Income

 H_{03} : There is no association between income and perception of communication applications.

Table 6. Chi-square Test for Income and Perception

Test	Value	N	df	P-Value	Remarks
Pearson Chi-square	14.321	200	4	0.006	Rejected

Source: Researchers' Calculation through SPSS

Inference: Table 6 presents a Chi-square value of 14.321 with 4 degrees of freedom, and a p-value of 0.006. Since this p-value is below the 0.05 threshold, the null hypothesis is rejected, confirming a significant association between income and perception.

Table 7. Cross-tabulation of Perception × Income

Income Group	Perception Level	Low	Moderate	High	Total
Below ₹5 lakhs	Count	25	60	15	100
	% within income	25.00%	60.00%	15.00%	100%
₹5-10 lakhs	Count	15	30	15	60
	% within income	25.00%	50.00%	25.00%	100%
Above ₹10 lakhs	Count	5	20	15	40
	% within income	12.50%	50.00%	37.50%	100%
Total	Count	45	110	45	200

Source: Researchers' Calculation through SPSS

Table 7 shows that among those earning below ₹5 lakhs, 25.0% had low perception, 60.0% moderate, and 15.0% high. In the ₹5–10 lakhs group, 25.0% had low perception, 50.0% moderate, and 25.0% high. Among those earning above ₹10 lakhs, only 12.5% had low perception, 50.0% moderate, while 37.5% had high perception.

These figures suggest that perception increases with income, possibly due to greater exposure and access to premium tools and features in communication apps like Telegram.

Thus, income is a key factor influencing perception. Higher income groups are more likely to engage positively with communication applications, especially those offering advanced or paid functionalities.

Independent Variable: Education

 H_{04} : There is no association between Education and perception of communication applications.

Table 8. Chi-square Test for Education and Perception

Test	Value	N	df	P-Value	Remarks
Pearson Chi-square	12.654	200	6	0.049	Rejected

Source: Researchers' Calculation through SPSS

Inference: Table 8 reports a Chi-square value of 12.654 with 6 degrees of freedom, and a p-value of 0.049. Since this value is slightly below the 0.05 significance level, the null hypothesis is rejected, indicating a statistically significant association between education and perception.

Table 9. Cross-tabulation of Perception × Education

Education Level	Perception Level	Low	Moderate	High	Total
High School	Count	15	20	5	40
	% within education	37.50%	50.00%	12.50%	100%
Bachelor's	Count	20	45	15	80
	% within education	25.00%	56.30%	18.80%	100%
Postgraduate	Count	8	35	17	60
	% within education	13.30%	58.30%	28.30%	100%
Other	Count	2	10	8	20
	% within education	10.00%	50.00%	40.00%	100%
Total	Count	45	110	45	200

Source: Researchers' Calculation through SPSS

According to Table 9, among high school graduates, 37.5% had low perception and only 12.5% had high perception. For bachelor's degree holders, 25.0% had low and 18.8% high perception. Among postgraduates, 13.3% had low perception, while 28.3% had high perception. In the 'other' category (possibly professionally certified or specialized education), 40.0% reported high perception.

This pattern indicates that higher educational attainment is associated with higher perception, particularly for communication apps like WhatsApp, which are valued for professional networking and coordination.

Thus, the level of education significantly shapes how users perceive communication applications, with those holding postgraduate or professional qualifications exhibiting a stronger inclination to leverage tools like WhatsApp and Telegram for enhancing social connectivity and managing daily interactions effectively.

9. FINDINGS OF THE STUDY

The study reveals that all four demographic dimensions—age, gender, income, and education—have a significant association with perception towards the use of communication applications. Firstly, younger adults (aged 18–30) exhibit a higher level of perception, showing a strong preference for using apps like WhatsApp and Telegram for instant messaging and group interactions. This suggests their adaptability and openness to digital communication tools. Secondly, females display a higher perception compared to males, particularly for social connectivity through platforms like WhatsApp, indicating their stronger alignment with maintaining relationships and coordination. Thirdly, individuals from higher income groups demonstrate greater perception, likely due to better access to technology and their ability to

utilize advanced features available in apps such as Telegram. Lastly, those with postgraduate or professional education show elevated perception, valuing communication platforms like WhatsApp not just for their functionality but also for their utility in professional networking and daily management.

Table 10: Findings of the Study

S. No.	Demographic Dimension	Association with Perception
1	Age	Significant
2	Gender	Significant
3	Income	Significant
4	Educational Qualification	Significant

Source: Researchers' Calculation through SPSS

10. CONCLUSION

The study concludes that perception towards communication applications is broadly positive and significantly shaped by demographic factors. Users across different age groups, genders, income levels, and educational backgrounds increasingly rely on these apps for effective, convenient, and real-time communication. Communication platforms like WhatsApp and Telegram have become integral to both personal and professional life, enabling users to stay connected, share information instantly, and manage daily tasks efficiently. The widespread acceptance and growing dependence on these tools highlight their role as essential components of modern digital interaction. As smartphone usage continues to rise, communication applications are expected to remain central to digital engagement, with user perception evolving alongside technological advancements.

REFERENCES

- Arora, A., Malik, A., & Chawla, R. (2020). Understanding mobile app adoption in India: A study of users in the National Capital Region. *Journal of Mobile Technology & Communication Research*, 8(4), 330–340.
- Busch, P. A., & McCarthy, S. (2019). Antecedents and consequences of problematic smartphone use: A systematic literature review of an emerging research area. *Computers in Human Behavior*, 114, 106414. https://doi.org/10.1016/j.chb.2020.106414
- Cha, S.-S., & Seo, B.-K. (2019). Smartphone use and smartphone addiction in middle school students in Korea: Prevalence, social networking service, and game use. *Health Psychology Open*, *6*(1), 1–15. https://doi.org/10.1177/2055102919843359
- Gupta, R., & Singh, A. (2022). Smartphone use among Indian youth: Patterns, perceptions, and problems. *Journal of Youth and Media Studies*, 4(2), 55–68.
- Keusch, F., Antoun, C., Couper, M. P., & Kreuter, F. (2020). Perceptions of data collection through mobile devices: A comparison of smartphone users' attitudes toward privacy and research participation. *PLOS ONE*, *15*(4), e0232520. https://doi.org/10.1371/journal.pone.0232520
- Kemp, S. (2021). Digital 2021: India. DataReportal. https://datareportal.com/reports/digital-2021-india
- Kushlev, K., Proulx, J. D., & Dunn, E. W. (2021). Smartphones reduce smiles between strangers. Computers in Human Behavior, 114, 106561. https://doi.org/10.1016/j.chb.2020.106561
- Montag, C., Wegmann, E., Sariyska, R., Demetrovics, Z., & Brand, M. (2020). How to overcome taxonomical problems in the study of Internet use disorders and what to do with "smartphone addiction"? *Journal of Behavioral Addictions*, *9*(4), 908–914. https://doi.org/10.1556/2006.8.2019.59
- Rosen, L. D., Whaling, K., Carrier, L. M., Cheever, N. A., & Rokkum, J. (2013). The media and technology usage and attitudes scale: An empirical investigation. *Computers in Human Behavior*, *29*(6), 2501–2511. https://doi.org/10.1016/j.chb.2013.06.006
- Triplett, R. E. (1994). Consumer perception and product performance. *Journal of Consumer Research*, 21(3), 543–547.
- Van Deursen, A. J. A. M., Bolle, C. L., Hegner, S. M., & Kommers, P. A. M. (2015). Modeling habitual and addictive smartphone behavior: The role of smartphone usage types, emotional intelligence, social stress, self-regulation, age, and gender. *Computers in Human Behavior*, 45, 411–420. https://doi.org/10.1016/j.chb.2014.12.039
- Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. *Management Science*, 46(2), 186–204. https://doi.org/10.1287/mnsc.46.2.186.11926