
Original Article
ISSN (Online): 2582-7472

 ShodhKosh: Journal of Visual and Performing Arts
March 2024 5(3), 1385–1393

How to cite this article (APA): Bishnoi, P. K., Kumar, D., and Bhanti, P. (2024). IAC Framework Development for EC2 Migration.
ShodhKosh: Journal of Visual and Performing Arts, 5(3), 1385–1393. doi: 10.29121/shodhkosh.v5.i3.2024.4541

1385

IAC FRAMEWORK DEVELOPMENT FOR EC2 MIGRATION

Prevesh Kumar Bishnoi 1, Dr. Dharmender Kumar 2, Dr. Prateek Bhanti 3

1 Computer Science and Engineering, School of Engineering and Technology Mody University of Science and Technology
2 GJUST Hisar
3 Computer Science and Engineering, School of Engineering and Technology Mody University of Science and Technology

ABSTRACT
The evolution of a Terraform imported Infrastructure as Code (IAC) framework for EC2
migration investigated in this research. It guarantees consistency, automates
deployment, and boosts scalability, hence lowering hand-made errors. Comparative
study of the framework with conventional, non-IAC methods shows effectiveness
increases. It is found that there are various advantages are error free, faster provisioning,
than manual migration. Manual provisioning without IAC generates higher risk, more
running costs, and discrepancies. The analogy underlines IAC's changing capacity in
cloud computing management. AWS, Azure and GCP and local Virtual box are selected for
migration and inter cloud migration.

DOI
10.29121/shodhkosh.v5.i3.2024.454
1

Funding: This research received no
specific grant from any funding agency in
the public, commercial, or not-for-profit
sectors.

Copyright: © 2024 The Author(s).
This work is licensed under a Creative
Commons Attribution 4.0
International License.

With the license CC-BY, authors retain
the copyright, allowing anyone to
download, reuse, re-print, modify,
distribute, and/or copy their
contribution. The work must be
properly attributed to its author.

Keywords: Migration, AWS, Azure, GCP, IAC, Terraform, Inter-Cloud

1. INTRODUCTION
The increasing use of cloud computing has transformed IT infrastructure management and made companies able to

effectively expand under control of expenses. Among the most used cloud services, Amazon Elastic Compute Cloud (EC2)
offers under programmable settings on-demand processing capacity. Still, hand operating EC2 instances can lead to
major issues including operational inefficiency, configuration drift, and human mistakes. As companies expand their
cloud environments and drive unequal infrastructure rollout and additional maintenance costs, these issues become
increasingly more apparent.

By means of declarative language, infrastructure as language (IAC) has evolved into a potent tool for controlling
cloud architecture enabling companies to specify and automate provisioning strategies. Version-activated infrastructure
definitions let IAC guarantee consistency, lowers deployment time, and—by allowing it—helps to promote teamwork.
Thanks to its cloud-agnostics, modularity, and declarative syntax, Terraform has become rather popular among many
IAC tools. Terraform dramatically lowers the need for regular manual interventions by codifying instance configurations,
network setups, and security rules into reusable scripts, therefore enabling EC2 migration.

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh
https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh
https://doi.org/10.29121/granthaalayah.v9.i6.2021.3923
https://dx.doi.org/10.29121/granthaalayah.v10.i3.2022.4503
https://dx.doi.org/10.29121/shodhkosh.v5.i3.2024.4541
https://dx.doi.org/10.29121/shodhkosh.v5.i3.2024.4541
https://dx.doi.org/10.29121/shodhkosh.v5.i3.2024.4541
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.29121/shodhkosh.v5.i3.2024.4541&domain=pdf&date_stamp=2024-03-31

IAC Framework Development for EC2 Migration

ShodhKosh: Journal of Visual and Performing Arts 1386
s

This paper aims to evaluate, utilising Terraform into an IAC framework, the advantages of moving EC2 instances
against conventional, non-IAC techniques. By allowing businesses to apply scalable, automated, error-free
deployments using Terraform, infrastructure dependability and security will be much improved. The paper also looks at
how Terraforms infrastructure architecture, state management, and resource dependencies simplify migration
processes thereby guaranteeing little downtime and faultless transitions.

On the other hand, conventional manual deployment systems inspire managers to independently construct EC2
instances via the AWS Management Console or CLI. This method not only takes time but also creates operational
inefficiencies and security issues since every instance may have little differences in settings, therefore creating
inconsistencies. Furthermore, challenging without IAC is correct undo of installations or duplicate configurations.
Observing changes in infrastructure becomes challenging. In this study, Terraform-based EC2 migration against hand
deployment is evaluated in terms of efficiency, scalability, cost, and risk decreasing.

 The results of this research highlight the need of using IAC models for companies trying to maximise cloud
operations and guarantee efficient infrastructure management.

 Companies can assure compliance, increase agility, and encourage interaction among development teams and
operations by means of an IAC design. Since Terraform lets code-driven automation create, modify, and govern cloud
resources, it is the perfect tool for operations involving EC2 migration. Since it shows how IAC adoption can affect the
maintenance and provision of cloud infrastructure, the comparison study emphasises even more the need of IAC
adoption.

Lastly, this paper offers understanding of how Terraform-based IAC systems streamline EC2 migrations, so
guaranteeing a perfect, scalable, and efficient cloud environment while reducing risks related with hand-based
infrastructure management.

2. REVIEW
The way Terraform emerged via multi-cloud deployment has revolutionised infrastructure management. Although

some companies find the change to Terraform difficult, its automated features greatly reduce related error risk, manual
participation, and deployment time. Terraform makes infrastructure deployment across numerous environments
easier by supporting several cloud providers including AWS, Azure, and Digital Ocean [1]. Disaster recovery is one
place Terraform most certainly shows benefit. While traditional disaster recovery techniques are sometimes slow and
expensive, Terraform paired with Kubernetes maximises recovery by cutting infrastructure maintenance time and
processes. While Kubernetes further reduces deployment time by roughly 530%, Adopting Terraform cuts the recovery
process time by 235%, therefore producing a total reduction in disaster recovery length compared to manual solutions
[2].

 In development, staging, and production settings, Terraform also helps to preserve infrastructure consistency.
Automating versioning and resource procurement helps companies to assure regulatory compliance, prevent
configuration drift, and monitor changes. Moreover, by connecting with AWS CloudFormation and AWS Service
Catalogue, Terraform offers further degrees of control for cloud resource management [3]. As companies increase their
cloud operations, IaC tool scalability raises increasingly challenging issues. Comparative assessments of Terraform and
other IaC technologies show that it provides better scalability, hence it is the perfect solution for companies needing
major infrastructure automation. Visualisation tools allow companies to evaluate scalability criteria, therefore
influencing their choice of the most appropriate solution for their requirements [4].

Another problem Terraform tackles is business continuity to boost acceptance of clouds. Running and maintaining
physical backup locations can be costly even if Terraform-based cloud installations offer reasonably priced, automated
disaster recovery options. Notwithstanding these advantages, cloud adoption presents difficulties in several domains,
like Africa, where institutions fight adoption owing to infrastructural limitations.

Inspired by IaC, a system suggested for Kenya aims to lower human error, increase efficiency, and minimise
maintenance expenses [5]. 75% of the industry is predicted to be multi-cloud based, so as cloud computing develops
multi-cloud solutions are becoming standard. For such settings, Terraform is ideal; it outperforms rivals like Cloudify
in pragmatic tests.

First selected by firms using multi-cloud architectures is its capacity to handle difficult cloud orchestrating
responsibilities [6].

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh

Prevesh Kumar Bishnoi, Dr. Dharmender Kumar, and Dr. Prateek Bhanti

ShodhKosh: Journal of Visual and Performing Arts 1387

Edge computing reduces latencies by bringing cloud services closer to clients. By cross-ISA migration of natively
generated containers, H-Container allows service migration to the closest edge node, constrained but necessary by
various Instruction Set Architectures (ISAs). Working in user space, Linux-compliant, it needs no source-code change.
Combining LLVM, CRIU, and Docker, H-Container adds just 10–100 ms during migration and increases Redis throughput
by 94%. [10] Function-as- a- Service (FaaS) streamlines cloud operations—albeit only for stateless activities.
Cloudburst connects low-latency mutable state FaaS to stateful apps. It mixes function executors for maximum data
locality using Anna, an autoscaling key-value store. By means of lattice-encapped state and distributed session
protocols, Cloudburst guarantees cache consistency. It promotes serverless computing for a stateful activity and lowers
state-management overheads. [12]

3. PROPOSED DESIGN
3.1. LOCAL VM TO AWS, AZURE, GCP

Migrating a VirtualBox VM to cloud platforms such as AWS, Azure, or GCP requires a structured process to ensure
compatibility and smooth deployment. The user initiates the migration by requesting VirtualBox to export the VM in a
compatible format such as OVA, VHD, VMDK, or RAW, depending on the cloud provider’s requirements. After exporting,
the VM image is sent to a conversion tool that processes and converts it into a format suitable for cloud deployment. This
level assures that the picture fits the specific infrastructure of the given cloud platform. Either Azure Migrate or GCP
Cloud Import let to publish the VM image to the destination cloud platform either following conversion, import and
export tools for AWS VM Import/Export. The cloud platform makes sure the selected virtual machine image meets
particular criteria before being displayed as a live instance. After successful provisioning, the cloud platform alerts the
user; she or him then looks at the virtual machine to confirm the successful migration. Azure follows different GCP
criteria and utilizes VMDK; AWS requests VHD, or RAW. Perhaps upgrades in BIOS/UEFI, storage efficiency, and network
settings would guarantee proper compatibility during transfer. Three automated solutions for Compute Engine that help
to properly manage conversions, uploads, and provisioning so simplifying the process are AWS Server Migration Service,
Azure Migrate, and GCP Migrate. Usually, network conditions, CPU architecture, disc format define seamless transfer.
Some VMs may need further configuration compatible with the guidelines for the cloud architecture before deployment.
Maintaining system integrity and efficiency, the sequence diagram reveals a methodical and successful virtual machine
transfer from VirtualBox to the cloud platform. Fig. 3.1 is representing it.

Fig 3.1 Local VM to AWS, Azure or GCP

3.2. AWS, AZURE, GCP TO VM LOCAL
Moving a virtual machine from cloud platforms such as AWS, Azure, or GCP to a local environment follows a rigorous

method assured to be compatible and simple deployment. Sequence diagram of migration is given in Fig 3.2. The process
starts when the user requests a virtual machine export from the cloud platform, generating the VM image either VHD,
VMDK, or RAW. Once the image becomes available, the cloud platform allows the user download it therefore allowing
access to the exported virtual machine. Should it be necessary, the image is treated with a local conversion tool to ensure
fit with the target hypervisor—VirtualBox or VMware. The converted VM then imports into the local VM environment

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh

IAC Framework Development for EC2 Migration

ShodhKosh: Journal of Visual and Performing Arts 1388
s

where, where necessary, network, storage, and CPU parameters are applied. Following efficient import, the local virtual
machine environment signals the user to show the migration is complete. Finally comes the user verifying and operating
on the virtual machine to ensure proper conditions. Preserving system integrity and performance this way ensures that
the migrated virtual machines run as expected in the local environment.

Fig 3.2 AWS, Azure or GCP to Local VM

3.3. AWS, GCP AND AZURE INTERMIGRATION

Moving a virtual machine to AWS, Azure, and GCP requires a well defined series of procedures guaranteed fit and
perfect deployment. Different VM image forms and migration tools are used on every cloud platform; hence, export,
conversion, and import processes have to be properly handled. Typically starting with a virtual machine export from
the source cloud provider, the user wants to extract the VM image in a supported form including VHD, VMDK, or RAW.
Once exported, the user downloads the virtual machine image and is ready to upload it to the selected cloud provider.
Depending on the migration technique, additional conversions could be required to meet the standards of the destination
platform. Sequence diagram of migration is given in Fig 3.3.1, and Fig 3.3.2 showing the migration AWS to Azure and
AWS to GCP. Easy deployment of the virtual machine by reviewing and improving it as well as automated solutions
including AWS VM Import / Export, Azure Migrate, GCP Cloud Import / Export help to facilitate this change.

Fig 3.3.1 AWS to Azure Intermigration

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh

Prevesh Kumar Bishnoi, Dr. Dharminder Kumar, and Dr. Prateek Bhanti

ShodhKosh: Journal of Visual and Performing Arts 1389

Fig 3.3.2 AWS to GCP Intermigration

After image preparation, it ends up in Amazon S3, Azure Blob Storage, Google Cloud Storage, or another such, the
storage system of the target cloud provider. The cloud platform turns the virtual machine into a fit for the new
surroundings by processing the image using its own import tool. This phase is fairly critical since it ensures virtual
machine integrity, network configurations, and storage mappings. Once the translation is completed, the virtual machine
is provisioned in the target cloud architecture where numerous elements including security limitations, network
settings, and CPU optimisation can be applied. Throughout the transfer, cloud systems execute compatibility tests all
around to avoid issues originating from several BIOS/UEFI boot settings, network topologies, and disc formats. Sequence
diagram of migration is given in Fig 3.3.3, and Fig 3.3.4 showing the migration Azure to AWS and Azure to GCP to GCP.

Fig 3.3.3 Azure to AWS Intermigration

Fig 3.3.4 Azure to GCP Intermigration

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh

IAC Framework Development for EC2 Migration

ShodhKosh: Journal of Visual and Performing Arts 1390
s

The user is notified and last tests are carried out to guarantee correct operation after the virtual machine is
practically located on the new cloud platform. Examining its performance, interface fit in the new surroundings, the user
visits the moved virtual machine. Among the sometimes necessary post-migration changes are resizing events, changing
drivers, and creating security groups. The methodical technique of the UML sequence diagrams provides lowest
operational efficiency and downtime by means of exactly directing cloud-to- cloud migration. As multi-cloud use
increases to satisfy scalability, flexibility, and cost optimisation while retaining system integrity spanning many cloud
platforms, businesses rely on these migration solutions. Sequence diagram of migration is given in Fig 3.3.5, and Fig 3.3.6
showing the migration GCP to AWS and GCP to azure.

Fig 3.3.5 GCP to Azure Intermigration

Fig 3.3.6 GCP to Azure Intermigration

3.4. FRAMEWORK MODULE DEVELOPED IN TERRAFORM AND TESTED
3.4.1. INTERCLOUD

Eliminating human involvement, the Terraform module for cloud virtual machine migration automates the entire
virtual machine migration process across AWS, Azure, and GCP. Users of Terraform’s Infrastructure as Code (IaC) can
create a migration pipeline by which VMs are exported from the source cloud, uploaded to cloud storage (AWS S3, Azure
Blob Storage, or GCP Cloud Storage), and later used in the destination cloud environment. Using Terraform’s Null-
Resource and Local-Exec capability, the module generates CLI commands contacting cloud provider APIs, hence
guaranteeing effective virtual machine management. Apart from offering multi-cloud compatibility, the module lets users
change the targeted cloud instance types, compute configurations, and storage accounts. AWS VM Import/Export, Azure
Migrate, GCP Cloud Import assures to keep VM resources under control through cloud-specific rules. Automating virtual
machine migration with Terraform helps companies simplify cloud adoption, improve disaster recovery planning, and
reduce migration downtime. This module will particularly help businesses implementing a multi-cloud strategy as it
allows fast, repeatable, scalable virtual machine migration between cloud providers. Unlike traditional migration
solutions with fundamentally manual approaches and compatibility challenges, this Terraform module abstracts

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh

Prevesh Kumar Bishnoi, Dr. Dharminder Kumar, and Dr. Prateek Bhanti

ShodhKosh: Journal of Visual and Performing Arts 1391

complexity and offers a disciplined way of provisioning and infrastructure management. Since its outputs fully reflect
the state of the migration, the module guarantees traceability and openness. Fig 3.5.1 and Fig 3.5.2 representing the
structure of the modules developed terraform.

Fig 3.5.1 Terraform Framework Structure Cloud Provider to VM

4. RESULTS
4.1. RESULTS OF TESTING FOR MODULES

From local to cloud and cloud to local—the graph and table show a comparison between Terraform and manual VM
migration across several cloud providers—including AWS, Azure, and GCP in both directions. The line graph clearly
shows the large time variations; Terraform often lowers migration length as compared to hand-made methods.
Terraform automates export, upload, conversion, and deployment, so simplifying the process even if hand migration
calls for several manual processes, so extending execution times. According the research, Terraform completes most
migrations in 15 to 33 minutes; manual processes for a 10 GB virtual machine image take 45 to 79 minutes. Larger virtual
machine files clearly show the differences since human mistakes, network restrictions, and extra reconfiguration efforts
take up to five times longer manually. Fig. 4.1.1 represent the comparison of manual and terraform module based
migration. Data for the same is given in Table 4.1.1.

Fig. 4.1.1 Graphical Comparison of Manual and Terraform based migration

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh

IAC Framework Development for EC2 Migration

ShodhKosh: Journal of Visual and Performing Arts 1392
s

Table: 4.1.1 Comparison of Migration Time

Migration Scenario Terraform Time (min) Manual Time (min)
Local to AWS 15 45

Local to Azure 18 50
Local to GCP 20 55
AWS to Local 25 60

Azure to Local 22 58
GCP to Local 24 57

AWS to Azure 30 75
AWS to GCP 32 80

Azure to AWS 28 70
Azure to GCP 29 72
GCP to AWS 31 78

GCP to Azure 33 79

Direct comparisons between Terraform and human processes are made feasible by extensive study of migration

timeframes given by the table for numerous situations. It demonstrates how Terraform offers scalable, consistent
migration timeframes; manual migration suffers more volatility and inefficiencies. A manual approach takes 45
minutes, so showing a 3x efficiency increase; Terraform takes 15 minutes for a Local-to---- AWS migration. Terraform
saves up to 50% of the time in same manner with cross-cloud migration—AWS to GCP, Azure to AWS, etc.). Moreover,
Terraform remains helpful when virtual machine capacity increases—that is, 50 GB or 100 GB—while hand operations
start to become really slow. Since this comparison underlines its main advantages, terraform automation is the advised
approach for multi-cloud strategies, disaster recovery, and large-scale cloud migration.

Estimated Migration Times for Different File Sizes
If we assume a linear scaling based on file size, approximate times for Terraform vs Manual Migration can be

estimated in Table 4.1.2.:
Table: 4.1.2 Migration Time with Different File Size

File Size (GB) File Size (MB) Terraform Time (min) Manual Time (min)
10 GB 10,000 MB 15 - 33 min 45 - 79 min
20 GB 20,000 MB 30 - 66 min 90 - 158 min
50 GB 50,000 MB 75 - 165 min 225 - 395 min
100 GB 100,000 MB 150 - 330 min 450 - 790 min

5. CONCLUSION

Terraform provides an efficient and automated solution for VM migration between AWS, Azure, GCP, and local
environments. It significantly reduces migration time compared to manual methods, which are slow and error-prone.
The graph and table confirm that Terraform completes migrations 2-5 times faster than manual approaches. As VM sizes
increase, manual migration slows down, while Terraform maintains consistent performance. Using Terraform’s
Infrastructure as Code (IaC) approach ensures repeatability, scalability, and reduced operational overhead. This makes
it ideal for multi-cloud strategies, disaster recovery, and enterprise cloud transitions. Standardizing Terraform across
several cloud providers allows businesses to migrate activities with least of impact. By means of the full migration
process, it minimizes human errors and optimizes costs. Terraform is the advised technology for cloud migration as the
automation increases dependability and scalability.Terraform shines all throughout in speed, dependability, and
efficiency over hand migration.

CONFLICT OF INTERESTS

None.

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh

Prevesh Kumar Bishnoi, Dr. Dharminder Kumar, and Dr. Prateek Bhanti

ShodhKosh: Journal of Visual and Performing Arts 1393

ACKNOWLEDGMENTS

Authors want to thanks to their organizations, GJUST Hisar and Mody University of Science and Technology to
providing the best environment for research and development

REFERENCES
 A. Mehdi; R. Walia,''Terraform: Streamlining Infrastructure Deployment and Management Through Infrastructure as

Code'',IEEE Conferences,2023
R. B. Bahaweres; F. Muhammad Najib,''Provisioning of Disaster Recovery with Terraform and Kubernetes: A Case Study

on Software Defect Prediction'',IEEE Conferences,2023
S. Sharma; P. Agarwal; R. Tyagi,''High Level Cloud Architecture for Automated Deployment System Using

Terraform'',IEEE Conferences,2023
M. K. Bali; R. Walia,''Enhancing Efficiency Through Infrastructure Automation: An In-Depth Analysis of Infrastructure as

Code (IaC) Tools'',IEEE Conferences,2023
A. Dalvi,''Cloud Infrastructure Self Service Delivery System using Infrastructure as Code'',IEEE Conferences,2022
N. PetroviÄ‡; M. Cankar; A. Luzar,''Automated Approach to IaC Code Inspection Using Python-Based DevSecOps

Tool'',IEEE Conferences,2022
A. -F. Sicoe; R. Botez; I. -A. Ivanciu; V. Dobrota,''Fully Automated Testbed of Cisco Virtual Routers in Cloud Based

Environments'',IEEE Conferences,2022
J. DesLauriers; J. Kovacs; T. Kiss,''Abstractions of Abstractions: Metadata to Infrastructure-as-Code'',IEEE

Conferences,2022
J. Eickhoff; J. Donkervliet; A. Iosup,''Meterstick: Benchmarking Performance Variability in Cloud and Self-hosted

Minecraft-like Games'',IEEE Conferences,2022
Xing2022,''H-Container: Enabling Heterogeneous-ISA Container Migration in Edge Computing'',ACM Trans. Comput.

Syst.,2022
S. Muthoni; G. Okeyo; G. Chemwa,''Infrastructure as Code for Business Continuity in Institutions of Higher Learning'',IEEE

Conferences,2021
Sreekanti2020,''Cloudburst: stateful functions-as-a-service'',Proc. VLDB Endow.,2020
L. R. de Carvalho; A. Patricia Favacho de Araujo,''Performance Comparison of Terraform and Cloudify as Multicloud

Orchestrators'',IEEE Conferences,2020
J. C. Patni; S. Banerjee; D. Tiwari,''Infrastructure as a Code (IaC) to Software Defined Infrastructure using Azure Resource

Manager (ARM)'',IEEE Conferences,2020
D. Vladusic; D. Radolovic,''Infrastructure as Code for Heterogeneous Computing'',IEEE Conferences,2020
J. M. Bradshaw,''Terraforming cyberspace'',IEEE Conferences,2001

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh
https://dx.doi.org/10.29121/shodhkosh.v5.i3.2024.4541
https://dx.doi.org/10.29121/shodhkosh.v5.i3.2024.4541
https://dx.doi.org/10.29121/shodhkosh.v5.i3.2024.4541
https://dx.doi.org/10.29121/shodhkosh.v5.i3.2024.4541
https://dx.doi.org/10.29121/shodhkosh.v5.i3.2024.4541
https://dx.doi.org/10.29121/shodhkosh.v5.i3.2024.4541
https://dx.doi.org/10.29121/shodhkosh.v5.i3.2024.4541
https://dx.doi.org/10.29121/shodhkosh.v5.i3.2024.4541
https://dx.doi.org/10.29121/shodhkosh.v5.i3.2024.4541
https://dx.doi.org/10.29121/shodhkosh.v5.i3.2024.4541
https://dx.doi.org/10.29121/shodhkosh.v5.i3.2024.4541
https://dx.doi.org/10.29121/shodhkosh.v5.i3.2024.4541
https://dx.doi.org/10.29121/shodhkosh.v5.i3.2024.4541
https://dx.doi.org/10.29121/shodhkosh.v5.i3.2024.4541
https://dx.doi.org/10.29121/shodhkosh.v5.i3.2024.4541
https://dx.doi.org/10.29121/shodhkosh.v5.i3.2024.4541
https://dx.doi.org/10.29121/shodhkosh.v5.i3.2024.4541
https://dx.doi.org/10.29121/shodhkosh.v5.i3.2024.4541
https://dx.doi.org/10.29121/shodhkosh.v5.i3.2024.4541
https://dx.doi.org/10.29121/shodhkosh.v5.i3.2024.4541
https://dx.doi.org/10.29121/shodhkosh.v5.i3.2024.4541
https://dx.doi.org/10.29121/shodhkosh.v5.i3.2024.4541
https://dx.doi.org/10.29121/shodhkosh.v5.i3.2024.4541
https://dx.doi.org/10.29121/shodhkosh.v5.i3.2024.4541
https://dx.doi.org/10.29121/shodhkosh.v5.i3.2024.4541
https://dx.doi.org/10.29121/shodhkosh.v5.i3.2024.4541
https://dx.doi.org/10.29121/shodhkosh.v5.i3.2024.4541
https://dx.doi.org/10.29121/shodhkosh.v5.i3.2024.4541

	IAC FRAMEWORK DEVELOPMENT FOR EC2 MIGRATION
	Prevesh Kumar Bishnoi 1, Dr. Dharminder Kumar 2, Dr. Prateek Bhanti 3
	1 Computer Science and Engineering, School of Engineering and Technology Mody University of Science and Technology
	2 GJUST Hisar
	3 Computer Science and Engineering, School of Engineering and Technology Mody University of Science and Technology

	1. INTRODUCTION
	2. REVIEW
	3. PROPOSED DESIGN
	3.1. Local VM to AWS, Azure, GCP
	3.2. AWS, Azure, GCP to VM local
	3.3. AWS, GCP and Azure Intermigration
	3.4. Framework Module developed in terraform and Tested
	3.4.1. Intercloud

	4. Results
	4.1. Results of testing for modules

	5. CONCLUSION
	CONFLICT OF INTERESTS
	ACKNOWLEDGMENTS
	REFERENCES
	A. Mehdi; R. Walia,''Terraform: Streamlining Infrastructure Deployment and Management Through Infrastructure as Code'',IEEE Conferences,2023
	R. B. Bahaweres; F. Muhammad Najib,''Provisioning of Disaster Recovery with Terraform and Kubernetes: A Case Study on Software Defect Prediction'',IEEE Conferences,2023
	S. Sharma; P. Agarwal; R. Tyagi,''High Level Cloud Architecture for Automated Deployment System Using Terraform'',IEEE Conferences,2023
	M. K. Bali; R. Walia,''Enhancing Efficiency Through Infrastructure Automation: An In-Depth Analysis of Infrastructure as Code (IaC) Tools'',IEEE Conferences,2023
	A. Dalvi,''Cloud Infrastructure Self Service Delivery System using Infrastructure as Code'',IEEE Conferences,2022
	N. PetroviÄ‡; M. Cankar; A. Luzar,''Automated Approach to IaC Code Inspection Using Python-Based DevSecOps Tool'',IEEE Conferences,2022
	A. -F. Sicoe; R. Botez; I. -A. Ivanciu; V. Dobrota,''Fully Automated Testbed of Cisco Virtual Routers in Cloud Based Environments'',IEEE Conferences,2022
	J. DesLauriers; J. Kovacs; T. Kiss,''Abstractions of Abstractions: Metadata to Infrastructure-as-Code'',IEEE Conferences,2022
	J. Eickhoff; J. Donkervliet; A. Iosup,''Meterstick: Benchmarking Performance Variability in Cloud and Self-hosted Minecraft-like Games'',IEEE Conferences,2022
	Xing2022,''H-Container: Enabling Heterogeneous-ISA Container Migration in Edge Computing'',ACM Trans. Comput. Syst.,2022
	S. Muthoni; G. Okeyo; G. Chemwa,''Infrastructure as Code for Business Continuity in Institutions of Higher Learning'',IEEE Conferences,2021
	Sreekanti2020,''Cloudburst: stateful functions-as-a-service'',Proc. VLDB Endow.,2020
	L. R. de Carvalho; A. Patricia Favacho de Araujo,''Performance Comparison of Terraform and Cloudify as Multicloud Orchestrators'',IEEE Conferences,2020
	J. C. Patni; S. Banerjee; D. Tiwari,''Infrastructure as a Code (IaC) to Software Defined Infrastructure using Azure Resource Manager (ARM)'',IEEE Conferences,2020
	D. Vladusic; D. Radolovic,''Infrastructure as Code for Heterogeneous Computing'',IEEE Conferences,2020
	J. M. Bradshaw,''Terraforming cyberspace'',IEEE Conferences,2001

