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ABSTRACT 
In this paper, an analysis is conducted on several fuzzy matrices associated with a fuzzy 
graph, including the adjacency matrix A(G) and the Laplacian matrix L(G). The 
eigenvalues of the adjacency matrix (λi) of a fuzzy graph and their properties are stated 
and discussed. Fuzzy vertex connectivity (κ), along with algebraic connectivity (ϑn−1), 
adjacency, and Laplacian eigenvalues, are studied under conditions κ ≤ q to make 
contributions to spectral fuzzy graph theory, enhancing the connectivity in network 
structures due to the occurrence of linguistic and inexact variables. Additionally, the 
relation- ship between κ and ϑn−1 shows the strength of connectivity among the vertices. 
Keywords: Adjacency eigenvalue, laplacian eigenvalue, fuzzy vertex connectivity, second 
smallest laplacian eigenvalue, maximum strong degree, minimum strong degree. 
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1. INTRODUCTION 
Spectral graph theory entails the analysis of the spectral properties of specific matrices derived from a given graph. 

These matrices encompass fundamental representations like the adjacency matrix and the Laplacian matrix, along with 
other related ones. The exploration of graph spectra has been a well- established field of research for more than half a 
century. Nevertheless, within the last fifteen years, there has been a noticeable surge in interest surrounding the 
investigation of generalized Laplacian ma- trices associated with graphs. For a comprehensive overview of the findings 
in spectral graph theory and the inverse eigenvalue problem of graphs, readers can refer to [11]. This dredges the 
intricate intercon- nections and introduces pioneering outcomes pertaining to the construction of matrices with minimal 
rank, specifically tailored for distinct graph types such as [0, 1]-matrices or generalized Laplacians. The fundamental 
terminology and the characterization of graphs with minimal rank in this context were established by Leslie Hogben in 
[3]. The second largest eigenvalue (λ2) and second smallest Lapla-cian eigenvalue (ϑn−1) of a graph serve as critical 
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indicators of its connectivity, as they are intimately connected to connectivity attributes such as vertex and edge 
connectivity. 

In [1], the upper bounds for the second-largest eigenvalues of regular graphs and multigraphs with a specified order 
are presented. These bounds ensure a predefined level of vertex connectivity and are expressed in terms of the graph’s 
order and degree. Additionally, in [17], analogous results concerning the properties ϑn−1(G) and λ2(G) are discussed in 
the context of characterizing the vertex connectivity of regular graphs, triangle-free graphs, and graphs with a fixed girth. 

Fuzzy models, as highlighted in [16], emerge as valuable tools for effectively addressing uncertainty and achieving 
solutions characterized by accuracy and precision. The foundation for this approach was laid by Zadeh in 1965 when he 
introduced fuzzy sets as a means of handling uncertainty in representa- tion. The concept of fuzzy graphs (FGs) was 
introduced by Kaufmann based on Zadeh’s fuzzy relations. The inception of FGs dates back to 1975 when they were 
independently introduced by Rosenfeld and Yeh with Bang. A concise overview of fuzzy relations and fuzzy groups 
(1991) was provided in [12]. In the domain of FGs, Rosenfeld made seminal contributions by establishing fundamental 
concepts related to structure and connectivity [5]. On the other hand, Yeh and Bang’s work extended the field by intro- 
ducing a variety of connectivity parameters specific to FGs. Their research also delved into the practical applications of 
these parameters, particularly in the domain of clustering analysis. 

In [4], Bhattacharya further contributed to this field by introducing novel connectivity principles centered around 
fuzzy cut nodes and fuzzy bridges. Additionally, Bhattacharya introduced the concept of fuzzy groups and metric notions. 
Furthermore, researchers from various quarters have dedicated efforts to crafting algorithms aimed at determining node 
connectivity and degrees of connectedness within FGs. These endeavors have also led to the creation of algorithms for 
computing connectedness matrices in the context of FGs. 

Fuzzy graph theory offers a broader framework compared to classical graph theory, albeit with dis- tinctive 
characteristics. In classical graphs, the measure of connectivity between vertices is binary, represented as either 0 or 1. 
However, in FGs as outlined in [16], this measure can assume any real value within the range [0, 1]. This real-valued 
notion of connectedness extends to paths and cycles within FGs. Furthermore, in [8], an extensive inquiry is conducted 
exploring the attributes associated with diverse degrees, orders, and sizes of FGs. This enhanced effectiveness stems 
from the capability of fuzzy graphs to adeptly manage the varying strengths of edges. The research conducted by Sunil 
Mathew and Sunitha, which focuses on connectivity concepts in FGs and their practical utilization in clustering and 
network analysis, not only underscores the current advancements but also suggests potential directions for future 
research. This includes further exploration of how connectivity concepts in FGs can be harnessed to address various 
challenges within network-related problem-solving. 

The present study attempts to tackle shortcomings observed in existing parameters while striving to establish a 
more resilient framework for scrutinizing fuzzy graphs within real-world contexts. This research extends knowledge by 
focusing on the relationship between fuzzy vertex connectivity and al- 

gebraic connectivity in FGs, as the connectivity bounds can be easily attained. Theoretical contributions on ϑn−1(G) 
and κ yield the fact that ϑn−1 ≃ κ. 

The paper is organized as follows: Section 2 provides the foundational concepts and background information. A 
comprehensive analysis of the eigenvalues of fuzzy adjacency matrices and fuzzy Lapla- cian matrices, along with 
theorems describing combinatorial properties, is established in Section 3. In Section 4, fuzzy vertex connectivity in fuzzy 
graphs, and its associated properties are explored. It is shown that the fuzzy vertex connectivity is less than or equal to 
a particular membership value (q) un- der specified conditions. Additionally, the maximum and minimum strong degrees 
in the context of fuzzy graphs, drawing connections to the second smallest Laplacian eigenvalues are examined. Section 
5 concludes the paper. 
 
2. PRELIMINARIES 

A fuzzy graph G = (V, σ, µ) is defined by a set V where each vertex is associated with a mem- bership function σ 
mapping to [0, 1], and an edge set µ mapping pairs of vertices to [0, 1], satisfy- ing µ(xy) ≤ σ(x) ∧ σ(y) for all vertices x, y 
∈ V. The adjacency matrix of a fuzzy graph G is A = [aij], where aij = µ(σi, σj) denotes the strength of connection between 
vertices σi and σj· The eigenvalues λi of A, ordered from largest to smallest, form the adjacency spectrum or fuzzy spec- 
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trum of G· The eigenvalues are denoted by λi : λ1 ≥ λ2 ≥ λ3 ≥ . . . ≥ λn of A· The Laplacian matrix L(G) = D(G) − A(G), where 
D(G) is a diagonal matrix representing vertex degrees, pro- vides Laplacian eigenvalues ϑi, ranging from 0 to the largest 
eigenvalue. These Laplacian eigenval- ues are symbolized as 0 = ϑn ≤ ϑn−1 ≤ . . . ≤ ϑ2 ≤ ϑ1· The algebraic connectivity 
ϑn−1 corre- sponds to the Fiedler eigenvalue, crucial for understanding graph connectivity patterns. Fuzzy distances 
fd(µi, µj) between vertices are computed using minimum operations on membership values σ and con- nection strengths 
µ· Fuzzy vertex connectivity κ(G) is defined as the minimum strong weight [13] of a fuzzy vertex cut, where attributes 
like strong edge weights (ds(σi)), minimum (δs(G)), and maximum (∆s(G)) vertex degrees [13], and overall edge 
strengths illustrate the robustness of G· A set of vertices J = {σ1, σ2, . . . , σn} ⊂ V is said to be a fuzzy vertex cut if CONNG−J 
(σi, σj) < CONNG(σi, σj). 

The order n∗ of G sums all vertex memberships, providing a measure of the graph’s scale and com- plexity. A fuzzy 
graph G is complete [9] if µ(x, y) = σ(x) ∧ σ(y) for all x, y ∈ V. A fuzzy graph G 

is called a regular fuzzy graph if every vertex in the graph has the same degree whereas G is called a totally regular 
fuzzy graph [9] if every vertex has the same strong degree [13]. The strong degree ds(σi) of G associated with a vertex σi 
is determined by summing the membership values of all strong edges [14] incident at that vertex. 

 
Example 2.1. Consider a fuzzy graph G with four vertices σ1, σ2, σ3, σ4 with the vertex and edge membership as σ1 

= 0.5, σ2 = 0.3, σ3 = 0.2, σ4 = 1 and µ12 = 0.2, µ23 = 0.1, µ34 = 0.1, µ14 = 0.4, µ24 = 0.3· 

 
Figure 2.1 Fuzzy Graph G depicting vertex connectivity and fuzzy spectrum 
  

The adjacency matrix of a fuzzy graph G is given by, A =  
 
The fuzzy spectrum of G yields values λ(G) = {0.6284, 0.0071, −0.2104, −0.4252}. The Laplacian matrix L(G) = D(G)− 

A(G), provides Laplacian eigenvalues ϑ(G) = {0, 0.2528, 0.8, 1.1472}. 
Also, ∆s = 0.8, δs = 0.2, n∗ = 2· The fuzzy vertex cut (FVC) sets of Fig.2.1 are denoted such that J1 = {σ3} is the only 1-

FVC with s(J1) = 0.1. The only 2-FVC in G is J2 = {σ2, σ4} and s(J2) = 0.2. Any three vertices of G form a 3-FVC with s({σ1, 
σ3, σ4}) = s({σ1, σ2, σ3}) = s({σ1, σ2, σ4}) = 0.6 and s({σ2, σ3, σ4}) = 0.3. Thus, κ = 0.1· 

 
3. PROPERTIES ON SPECTRUM OF FGS 

Fiedler introduced algebraic connectivity [7], vital for understanding graph robustness. Brouwer and Haemers 
(2011) detailed the spectral properties of graphs [6], while Jiang offerred an accessible introduction to spectral graph 
theory [10]. In this section, the theorems presented and proven articulate the spectral properties of simple connected, 
and regular fuzzy graphs with n vertices. 
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1 2 n−1 

The theorem below relates the eigenvalues of the subgraph induced by the cut vertex and arranged in a non-
increasing order. 

  
Theorem 3.1. Let λi, i = 1, 2, . . . , n be the spectrum of a fuzzy graph G. If a cut vertex of a fuzzy graph induces a 

subgraph, then the spectrum of the resultant fuzzy graph GA are λ∗, i = 1, 2, . . . , n − 1, then 
 

 
 

Proof. Let G = (σ, µ) be a fuzzy graph with n vertices and m edges. The adjacency matrix A of a fuzzy graph G is a 
matrix where each entry Aij represents the weight (or membership value) of the edge between vertices i and j. The 
eigenvalues of the adjacency matrix A are λ1 ≥ λ2 ≥ . . . ≥ λn. 

Removing a cut vertex v from G results in a subgraph GA with adjacency matrix AA, which is a prin- cipal submatrix 
of A. Let λ∗ be the eigenvalues of AA. By the properties of principal submatrices, the eigenvalues of AA interlace with the 
eigenvalues of A. 

The Interlacing Theorem states that if AA is a principal submatrix of A, then the eigenvalues of AA 
interlace with those of A. 

λ1 ≥ λ∗ ≥ λ2 ≥ λ∗ ≥ . . . ≥ λ∗ ≥ λn 

 
This means that each λi∗ lies between λi and λi+1. Since the eigenvalues λi∗ of AA interlace with those of A, the 

ordering of λ∗i is preserved in a non-increasing manner. Specifically, for AA, the eigenvalues  are 
bounded by λi and λi+1 of A ensuring 

 

.  . 
 
The eigenvalues of AA (the adjacency matrix of the subgraph) are not only interlaced but also ordered non-

increasingly due to the inherent properties of the adjacency matrix and the interlacing theorem. 
Thus the removal of a cut vertex results in a subgraph whose spectrum interlace with those of the original graph, 

preserving their non-increasing order. 
Corollary. Let G = (σ, µ) be a fuzzy graph and suppose Vc is a cut vertex of G. If the largest component of G − {Vc} 

contains r vertices, then 

 
Proof. It is known that λ1(G − {Vc}) ≤ r. By theorem 3.1, there exists λ2(G) ≤ r − 1. 
The following example illustrates this concept. 
 
Example 3.2. Consider the subgraph GA as given below of graph G as depicted in Fig.2.1. 
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Figure 3.1 Fuzzy Subgraph GA obtained from Graph G 

 
The subgraph GA has eigenvalues λ∗ = {0.4113, −0.0911, −0.3202} that satisfies λ∗ ≥ λ2 ≥ . . . ≥ λ∗ ≥ λn−1. 
Following theorems depicts that, if the graph is totally regular, the largest eigenvalue equals the degree. Otherwise, 

the largest eigenvalue is between the average degree and the maximum strong degree, and also between the minimum 
strong degree and the square root of the maximum strong degree. 

Theorem 3.3. Let G be a fuzzy graph with largest spectrum λ1. If G is a totally regular fuzzy graph of degree d, then 
λ1 = d. Otherwise, δs < dg < λ1 < ∆s where δs, ∆s, dg denotes minimum strong, maximum strong, and average degrees of 
fuzzy graphs. 

Proof. Assume G is a totally regular fuzzy graph with degree d. This means every vertex in G has the same degree d. 
Let λn, (n = 1, 2, . . .) be the sum of absolute eigenvalues with adjacency matrix A. Given that, λ1 has the largest spectrum 
for any G that is regular, then λ1 = d. 

By Perron-Frobenius theorem [6], for a non-negative, irreducible matrix A, the largest eigenvalue (spec- tral radius) 
is real and positive. For each eigenvalue λ of G, we have |λ| ≤ λ1. If G is primitive, then |λ| = λ1 =⇒ λ = λ1. 

For a totally regular fuzzy graph, the eigenvector corresponding to λ1 = d is a constant vector. Since G is totally 
regular, λ1 = d. 

For a non-regular fuzzy graph, the degrees of vertices are not all equal. Since G is connected and undi- rected, the 
largest eigenvalue λ1 of the adjacency matrix A satisfies: δs ≤ λ1 ≤ ∆s. 

By the properties of the average degree, δs ≤ dg ≤ ∆s. Because λ1 is the largest eigenvalue, it will be greater than the 
average degree dg but less than the maximum strong degree ∆s. Since G is connected, the minimum strong degree δs will 
be less than the average degree dg. Combining these inequalities, we get δs < dg < λ1 < ∆s. 

Theorem 3.4. Let G be any fuzzy graph with n vertices. Then, 
 
1) dg ≤ λ1 ≤ ∆s 
  
2) δs ≤ λ1 ≤ √∆s 
 
Proof. Let G = (σ, µ) be a fuzzy graph with n vertices. For any G with /IV /I = n where V is a vertex set and E = {µ1, µ2, 

. . . , µm} denotes the edge set having the eigenvalues of A with λ1 ≥ λ2 ≥ . . . ≥ λn. We know that the adjacency matrix of the 
fuzzy graph G is a non-negative, symmetric matrix. By the Perron-Frobenius theorem for fuzzy matrices, 

• There exists a unique non-negative eigenvector v corresponding to the largest eigenvalue λ1. 
• All other eigenvalues of the adjacency matrix have modulus strictly less than λ1. 

 
Since v is non-negative and vT v = 1, it follows that λ1 is greater than or equal to the minimum degree dG of vertices 

in G. Hence, dG ≤ λ1. Similarly, since all entries of the adjacency matrix are atmost 1, it follows that λ1 is less than or equal 
to the maximum degree ∆s of vertices in G. Hence, λ1 ≤ ∆s. 
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Therefore, the inequality dg ≤ λ1 ≤ ∆s holds. 
Similarly, we can establish that δs ≤ λ1 ≤ √∆s. Since the strength of vertices in G are analogous to the degrees of 

vertices in a crisp graph, the proof follows similar lines as in property i), applying the Perron-Frobenius theorem for 
fuzzy matrices. 

 
Theorem 3.5. For any fuzzy graph G on n vertices, the following conditions hold: 

• 
L

i λi ≤ with equality holding iff G has no isolated vertices and loops 

• For n ≥ 2, λ1 ≤ n−1 with equality holding iff G is a complete fuzzy graph on n vertices 

• For a fuzzy graph G which is not complete implies λi ≤ 1 
 

        Proof. Let G be a fuzzy graph with n vertices.  follows from considering the trace of a Laplacian fuzzy graph L(G). 
Assuming i = 1, as λ1 yields the largest eigenvalue of G, λ1 ≤ n. 

       Also, the sum of absolute eigenvalues λi of A is zero. The inequality for n   follows from S

, 

      If G has no isolated vertices and loops,  For n = 3, the fuzzy graph holds the eigenvalue lesser than  . 
Suppose G has two non-adjacent vertices x and y. Let W be the diagonal matrix (v, v)th entry value dv 
defined by, 

 
  
 Then  

 
  
The dirichlet sum of overall unordered pairs {u, v} to the sum of the squares of f (v) equals the largest eigenvalue in 

G. Therefore, for any non-complete fuzzy graph G, λ1 ≤ 1. 
The relationship between the determinant, Laplacian and adjacency eigenvalues are discussed here. 
 
Theorem 3.6. Let G be a regular fuzzy graph with n vertices. Suppose that the eigenvalues of L(G) are 
ϑ1, ϑ2, . . . , ϑn−1, ϑn with ϑn = 0. Then 

 
where L0 is the fuzzy laplacian matrix with ith row and ith column deleted for all i = 1, 2, . . . , n. 
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Proof. G is a regular fuzzy graph whenever there exists a walk with membership degree between any two vertices. 
For any Laplacian matrix L(G), Let L0 be a matrix obtained by deleting the row and column i in G. Let ϑ1, ϑ2, . . . , ϑn−1, ϑn 
be the eigenvalues of L(G) with ϑn = 0. The determinant of L0 is related to the determinant of L(G) as follows: 

 

 
We know that ϑn = 0 is an eigenvalue of L(G), implying that det(L(G)) = 0. Removing the ith row and ith column of L(G) 

to obtain L0 affects the fact that its determinant is non-zero. Therefore, . since,  the given 

expression  is also non-zero. Therefore, 

 
Theorem 3.7. Suppose that G is a regular fuzzy graph of degree ds and the eigenvalues of A(G) are 

. Then, 
 

 
where L0 is the fuzzy laplacian matrix with ith row and ith column deleted for all i = 1, 2, . . . , n. 
Proof. Let G be a regular fuzzy graph of degree ds with n vertices. Let A(G) be the adjacency matrix obtained from G 

with eigenvalues λ1, λ2, . . . , λn−1, λn with λn = ds. L0 denotes the Laplacian matrix obtained by deleting the ith row and iith 
column for i = 1, 2, . . . , n. To prove the statement, utilize the fact that the determinant of a matrix changes upon deletion 
of a row and a column from it. The determinant of L0 is related to the determinant of L(G) as follows: 

 

 
 

Let us prove this theorem by contradiction. Assume that the given statement holds true, i.e., 
 

 
From the relationship between determinants, we see that 
 

 
Multiplying both sides by n, we get 
 

 
Simplifying, we have: 

 
Since det(L(G)) is a constant, this would imply that the right-hand side is also a constant. However, this contradicts 

the fact that the eigenvalues λi can vary, and thus the right-hand side is not constant. 

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh


Analyzing Fuzzy Matrices and Connectivity in Spectral Fuzzy Graph Theory 
 

ShodhKosh: Journal of Visual and Performing Arts 822 
 

 

Therefore, our assumption that the statement holds true leads to a contradiction. Therefore,  

 not equals the determinant of the reduced Laplacian matrix provided G is regular. 
The following example illustrates this concept. 
 
Example 3.8. Consider the regular fuzzy graph G as depicted in Fig.3.2. 

 
Fig.3.2 Regular fuzzy graph G with det(L0) = 0.17 and λs = ds = 0.9 

 
Here, det(L0) = 0.17 and ϑi = {1.573, 1.4558, 1.0732, 0.7268, 0.5712, 0} ; λi = {0.9, 0.3288, 0.1732, −0.1732, −0.5558, 

−0.6730} with λs = ds = 0.9. This makes clear that 

 
Next theorem guarantees a unique non-negative eigenvector for the largest eigenvalue of symmetric fuzzy matrices 

for connected FGs. 
Theorem 3.9. Let G be a fuzzy graph. For any irreducible, aperiodic, and symmetric fuzzy matrix A, there exists a 

unique non-negative eigenvector v1 corresponding to its largest eigenvalue λ1. Further- more, all other eigenvalues of A 
have moduli strictly less than λ1. 

Proof. Let G be a fuzzy graph. Let A = [aij] be the symmetric fuzzy matrix representing the fuzzy graph. First, Let us 
show the existence of a non-negative eigenvector v1 corresponding to the largest eigenvalue λ1. 

Since A is symmetric, it has real eigenvalues. By the properties of fuzzy matrices, A is non-negative, irreducible, and 
aperiodic. By the Perron-Frobenius theorem for non-negative matrices [6], there exists atleast one non-negative 
eigenvector v1 corresponding to the largest eigenvalue λ1. 

Part i]: Let us prove the uniqueness of eigenvector. 
Assume there are two non-negative eigenvectors v1 and v2 corresponding to the largest eigenvalue λ1. Because A is 

symmetric, v1 is orthogonal to v2, as distinct eigenvectors of a symmetric matrix are orthogonal. Now, Let x = v1 + v2. Since 
v1 and v2 are both non-negative and orthogonal, x is also non-negative and Ax = Av1 + Av2 = λ1v1 + λ1v2 = λ1x. 

By the Perron-Frobenius theorem for non-negative matrices, x must be a positive scalar multiple of v1. Thus, v2 = 
αv1, where α is a positive scalar. As v2 is non-negative, α must be positive. Therefore, v1 = v2. Hence, the eigenvector v1 
corresponding to λ1 is unique. 
Part ii]: All other eigenvalues have moduli strictly less than λ1. 

Let λ2 be another eigenvalue of A. Consider the corresponding eigenvector w. Because A is symmetric, choose w to 

be orthogonal to v1. Now, consider . Since w is orthogonal to . But A is symmetric, 

. 
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If λ2 have larger magnitude than λ1, then  would be strictly greater than , which contradicts 
the orthogonality of v1 and w. Thus, all other eigenvalues of A have moduli strictly less than λ1. Therefore, λ1 dominates 
over all other eigenvalues. 

 
4. FUZZY VERTEX CONNECTIVITY 

Vertex connectivity in fuzzy graphs extends classical connectivity concepts by incorporating vertex and edge 
membership values. Key contributions from Kaufmann and Gupta (1991), Rosenfeld [5], and Akram and Dudek (2010), 
Mathew and Sunitha [13], focuses on robust algorithms and applications shaping theoretical advancements and practical 
applications. In this section, the relationship between fuzzy vertex connectivity κ and second smallest Laplacian 
eigenvalue ϑn−1 is established and it is proved that κ ≤ q under specified conditions on ξ1(∆s, δs, q) and ξ2(∆s, δs, q). Also, 

the upper bounds for   and lower bounds for ϑn−1 are presented to show ϑ n−1 ≃ κ. 
  
Theorem 4.1. Let q be any real number with 0 < q ≤ 1 and G denote a fuzzy graph of order n∗ with δs as minimum 

strong degree. If λ2(G) ≤ |δs − q|, then ϑn−1(G) < q. 
 
Proof. Let A, L and D be the adjacency matrix, Laplacian matrix and diagonal matrix of G respectively. Since L = D−A, 

λn(D)−λ2(A) ≤ λn−1(L) = δs. Hence, ϑn−1(G) ≥ δs−λ2(G). If λ2(G) ≤ |δs−q| for any q ∈ (0, 1] (consider q = 0.5), ϑn−1(G) ≥ δs − 
λ2(G) < q. Therefore, for any fuzzy graph G with n∗ and δs, ϑn−1 < q. 

 
Conditions on ξ1(∆s, δs, q) and ξ2(∆s, δs, q) are defined to find the lower bounds and upper bounds of fuzzy graphs 

and regular fuzzy graphs as below. 
Definition 4.1. For any q ∈ (0, 1], n∗, ∆s, δs, ds with δs ≤ q and ds ≥ q define, 
 

  
 
The following lemmas (Lemma 4.2, 4.3, 4.4) helps in deriving the relationship between fuzzy vertex connectivity κ 

and second smallest Laplacian eigenvalue ϑn−1. 
  
Lemma 4.2. Let G = (V, σ, µ) be a fuzzy graph of order n∗. Let M, N be two disjoint fuzzy subsets of σ such that each 

vertex of M has a fuzzy distance atleast η to each vertex of N. Let µM, µN be the set of edges in G in M and N respectively. 
Then, 

 
 
Lemma 4.3. Let G represent a fuzzy graph of order n∗. For all α ∈ Rn we have, 
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Proof. Since ϑn(G) = 0 and ϑn(G) is positive semidefinite, zero is the smallest Laplacian eigenvalue of G. Since G is 

connected, . This implies that zero is a simple eigen- value and eigenvalues {ϑ1, ϑ2, ..., 
ϑn−1} are positive and the corresponding eigenvectors are orthogonal to ϑn. Thus ϑn−1(G) satisfies, 

^ Lµij ∈µ n∗ (αµ − αµ )2 
  

 
 

and the minimum is attained for the eigenvectors corresponding to ϑn(G). By the Lagrangian identity, 
 

 
 

Lemma 4.4. Let G be a fuzzy graph of order n∗ with minimum strong degree δs. Let R be the minimum fuzzy vertex-
cut with κ vertices and M denote the set of all vertices having minimal components of G−R and N = V − (R ∪ M). Then, 

 

 
 

Proof. Given that each vertex in the set M is connected to a maximum of |M | − 1 vertices within M 
and κ vertices within the set R, 

 
This implies that the cardinality of set M, denoted as |M |, must satisfy the inequality |M | ≥ δs−κ+1. It is important 

to note that |M | is also bounded by |N | and together, they satisfy the equation |M | +|N | = n∗ − κ. Thus, δs − κ + 1 ≤ |M | 
≤ |N | ≤ n∗ − δs − 1. 

The following theorems relate to the order of the fuzzy graph, the constraints on the strong degrees, the specific 
eigenvalue conditions, and the implications for the connectivity of the fuzzy graph. 

Theorem 4.5. Let G be a fuzzy graph of order n∗ with maximum strong degree ∆s, minimum strong degree δs, strong 
degree ds(v) with ∆s ≥ q, n∗ ≥ 2q and ds ≥ q. If ϑn−1(G) > ξ1(∆s, δs, q), then κ(G) ≤ q. 

Proof. Let us prove this theorem by contradiction. Assume that 1 − q ≤ κ(G) ≤ 1. Let R be the mini- mum fuzzy vertex-
cut with κ vertices and M denote the set of all vertices having minimal components of G − R and N = V − (R ∪ M ). By 
Lemma 4.4, it follows 
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Every edge in µ − (µM ∪ µN ) is adjacent to atleast n∗ − |M | − |N | vertices in R. Thus, 

 
 
From Lemma 4.2, 

 
 
 

 
Substituting equations (4.4) and (4.5) in (4.7) by (4.6), 

 
This is a contradiction and κ(G) ≤ q. 

 
Theorem 4.6. Let G be a fuzzy graph of order n∗ with maximum strong degree ∆s, minimum strong degree δs, strong 

degree ds(v) with δs ≥ q and ds ≥ q. If ϑn−1(G) > ξ2(∆s, δs, q), then κ(G) ≤ q. 
Proof. Let us prove this theorem by contradiction. Assume that 1 ≤ κ(G) ≤ 1 − q. Let R be the minimum fuzzy vertex-

cut with κ and M denote the vertex set having minimal components of G − R and N = V − (R ∪ M ). By Lemma 4.4, 
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For any real vector and if Denote 

 ). From Lemma (4.3), the equation holds for every α and applying to entries of α, it follows that 

  
This implies, 
 

 
 
which is a contradiction to our assumption and so, κ ≤ q. 
  

Theorem 4.7. Let G be a fuzzy graph of order n∗ with minimum strong degree  
  

 
Proof. Let us prove this theorem by contradiction. Assume that 1 − q ≤ κ(G) ≤ 1. Let R be the mini- mum fuzzy vertex-

cut with κ vertices and M denote the set of all vertices having minimal components of G − R and N = V − (R ∪ M ). By 
Lemma 4.4, 
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Combining these results with n∗ − |M | − |N | = κ ≤ 1 − q, (consider q = 0.5) it implies that 

  if there is no such edge between M and N in G. 
  
Therefore, 

 
 
 

  
 

 

 
 

Fig.4.1 Fuzzy graph G to show the bounds with κ = ϑn−1 = 0.2 
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5. CONCLUSION 
The concept of eigenvalues represented through adjacency matrices and Laplacian matrices of a fuzzy graph is 

discussed. The properties of the spectrum of fuzzy graphs and regular fuzzy graphs are analyzed. This study delves into 
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the mathematical relationships between the fuzzy vertex connectivity of a fuzzy graph and its algebraic, adjacency, and 
Laplacian eigenvalues. These investigations yield conditions under which the fuzzy vertex connectivity is assured to be 
less than or equal to q. These findings make valuable contributions to the domain of spectral fuzzy graph theory, 
enhancing its practical applications in identifying side chain clusters within 3D protein structures, which will be 
discussed in forthcoming papers. This research lays the foundational knowledge for fuzzy graph theory, emphasizing 
spectral methods as a means to address the challenges in networks.  
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