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itaon s In this paper, an analysis is conducted on several fuzzy matrices associated with a fuzzy
updates graph, including the adjacency matrix A(G) and the Laplacian matrix L(G). The
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1. INTRODUCTION

Spectral graph theory entails the analysis of the spectral properties of specific matrices derived from a given graph.
These matrices encompass fundamental representations like the adjacency matrix and the Laplacian matrix, along with
other related ones. The exploration of graph spectra has been a well- established field of research for more than half a
century. Nevertheless, within the last fifteen years, there has been a noticeable surge in interest surrounding the
investigation of generalized Laplacian ma- trices associated with graphs. For a comprehensive overview of the findings
in spectral graph theory and the inverse eigenvalue problem of graphs, readers can refer to [11]. This dredges the
intricate intercon- nections and introduces pioneering outcomes pertaining to the construction of matrices with minimal
rank, specifically tailored for distinct graph types such as [0, 1]-matrices or generalized Laplacians. The fundamental
terminology and the characterization of graphs with minimal rank in this context were established by Leslie Hogben in
[3]- The second largest eigenvalue (A2) and second smallest Lapla-cian eigenvalue (9n-1) of a graph serve as critical
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Analyzing Fuzzy Matrices and Connectivity in Spectral Fuzzy Graph Theory

indicators of its connectivity, as they are intimately connected to connectivity attributes such as vertex and edge
connectivity.

In [1], the upper bounds for the second-largest eigenvalues of regular graphs and multigraphs with a specified order
are presented. These bounds ensure a predefined level of vertex connectivity and are expressed in terms of the graph’s
order and degree. Additionally, in [17], analogous results concerning the properties 9n-1(G) and A2(G) are discussed in
the context of characterizing the vertex connectivity of regular graphs, triangle-free graphs, and graphs with a fixed girth.

Fuzzy models, as highlighted in [16], emerge as valuable tools for effectively addressing uncertainty and achieving
solutions characterized by accuracy and precision. The foundation for this approach was laid by Zadeh in 1965 when he
introduced fuzzy sets as a means of handling uncertainty in representa- tion. The concept of fuzzy graphs (FGs) was
introduced by Kaufmann based on Zadeh’s fuzzy relations. The inception of FGs dates back to 1975 when they were
independently introduced by Rosenfeld and Yeh with Bang. A concise overview of fuzzy relations and fuzzy groups
(1991) was provided in [12]. In the domain of FGs, Rosenfeld made seminal contributions by establishing fundamental
concepts related to structure and connectivity [5]. On the other hand, Yeh and Bang’s work extended the field by intro-
ducing a variety of connectivity parameters specific to FGs. Their research also delved into the practical applications of
these parameters, particularly in the domain of clustering analysis.

In [4], Bhattacharya further contributed to this field by introducing novel connectivity principles centered around
fuzzy cut nodes and fuzzy bridges. Additionally, Bhattacharya introduced the concept of fuzzy groups and metric notions.
Furthermore, researchers from various quarters have dedicated efforts to crafting algorithms aimed at determining node
connectivity and degrees of connectedness within FGs. These endeavors have also led to the creation of algorithms for
computing connectedness matrices in the context of FGs.

Fuzzy graph theory offers a broader framework compared to classical graph theory, albeit with dis- tinctive
characteristics. In classical graphs, the measure of connectivity between vertices is binary, represented as either 0 or 1.
However, in FGs as outlined in [16], this measure can assume any real value within the range [0, 1]. This real-valued
notion of connectedness extends to paths and cycles within FGs. Furthermore, in [8], an extensive inquiry is conducted
exploring the attributes associated with diverse degrees, orders, and sizes of FGs. This enhanced effectiveness stems
from the capability of fuzzy graphs to adeptly manage the varying strengths of edges. The research conducted by Sunil
Mathew and Sunitha, which focuses on connectivity concepts in FGs and their practical utilization in clustering and
network analysis, not only underscores the current advancements but also suggests potential directions for future
research. This includes further exploration of how connectivity concepts in FGs can be harnessed to address various
challenges within network-related problem-solving.

The present study attempts to tackle shortcomings observed in existing parameters while striving to establish a
more resilient framework for scrutinizing fuzzy graphs within real-world contexts. This research extends knowledge by
focusing on the relationship between fuzzy vertex connectivity and al-

gebraic connectivity in FGs, as the connectivity bounds can be easily attained. Theoretical contributions on 9n-1(G)
and k yield the fact that 9n-1 = k.

The paper is organized as follows: Section 2 provides the foundational concepts and background information. A
comprehensive analysis of the eigenvalues of fuzzy adjacency matrices and fuzzy Lapla- cian matrices, along with
theorems describing combinatorial properties, is established in Section 3. In Section 4, fuzzy vertex connectivity in fuzzy
graphs, and its associated properties are explored. It is shown that the fuzzy vertex connectivity is less than or equal to
a particular membership value (q) un- der specified conditions. Additionally, the maximum and minimum strong degrees
in the context of fuzzy graphs, drawing connections to the second smallest Laplacian eigenvalues are examined. Section
5 concludes the paper.

2. PRELIMINARIES

A fuzzy graph G = (V, o, 1) is defined by a set V where each vertex is associated with a mem- bership function o
mapping to [0, 1], and an edge set u mapping pairs of vertices to [0, 1], satisfy- ing p(xy) < o(x) A o(y) for all vertices x, y
€ V. The adjacency matrix of a fuzzy graph G is A = [a;j], where a;; = pu(oi, oj) denotes the strength of connection between
vertices oi and oj- The eigenvalues Ai of A, ordered from largest to smallest, form the adjacency spectrum or fuzzy spec-
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trum of G- The eigenvalues are denoted by Ai: A1 =22 2A3 =...2An of A- The Laplacian matrix L(G) = D(G) - A(G), where
D(G) is a diagonal matrix representing vertex degrees, pro- vides Laplacian eigenvalues i, ranging from 0 to the largest
eigenvalue. These Laplacian eigenval- ues are symbolized as 0 =9n < 9n-1 <... <92 < 91- The algebraic connectivity
9n-1 corre- sponds to the Fiedler eigenvalue, crucial for understanding graph connectivity patterns. Fuzzy distances
fd(pi, puj) between vertices are computed using minimum operations on membership values o and con- nection strengths
u- Fuzzy vertex connectivity k(G) is defined as the minimum strong weight [13] of a fuzzy vertex cut, where attributes
like strong edge weights (ds(oi)), minimum (8s(G)), and maximum (As(G)) vertex degrees [13], and overall edge
strengths illustrate the robustness of G- A set of vertices ] = {01, 62, ..., on} C Vis said to be a fuzzy vertex cut if CONNG-]
(oi, 0j) < CONNG(oi, oj).

The order n* of G sums all vertex memberships, providing a measure of the graph’s scale and com- plexity. A fuzzy
graph G is complete [9] if u(x, y) = o(x) A o(y) for all x, y € V. A fuzzy graph G

is called a regular fuzzy graph if every vertex in the graph has the same degree whereas G is called a totally regular
fuzzy graph [9] if every vertex has the same strong degree [13]. The strong degree ds(ci) of G associated with a vertex oi
is determined by summing the membership values of all strong edges [14] incident at that vertex.

Example 2.1. Consider a fuzzy graph G with four vertices 01, 62, 03, 04 with the vertex and edge membership as o1
=0.5,02=0.3,03=0.2,04=1and u12 =0.2, u23=0.1, u34 = 0.1, p14 = 0.4, u24 = 0.3

01(0.5) 55 02(0.3)

QD

04
0.1

04(1) 0.1 g500.2)

Figure 2.1 Fuzzy Graph G depicting vertex connectivity and fuzzy spectrum

The adjacency matrix of a fuzzy graph G is given by, A= L 04 03 0.1 0

The fuzzy spectrum of G yields values A(G) = {0.6284, 0.0071, -0.2104, -0.4252}. The Laplacian matrix L(G) = D(G)-
A(G), provides Laplacian eigenvalues 9(G) = {0, 0.2528, 0.8, 1.1472}.

Also, As = 0.8, 6s = 0.2, n* = 2- The fuzzy vertex cut (FVC) sets of Fig.2.1 are denoted such that ]J1 = {3} is the only 1-
FVC with s(J1) = 0.1. The only 2-FVCin G is ]2 = {02, 04} and s(J2) = 0.2. Any three vertices of G form a 3-FVC with s({o1,
03, 04}) =s({o1, 02, 063}) =s({o1, 02, 04}) = 0.6 and s({02, 63, 04}) = 0.3. Thus, k = 0.1-

3. PROPERTIES ON SPECTRUM OF FGS

Fiedler introduced algebraic connectivity [7], vital for understanding graph robustness. Brouwer and Haemers
(2011) detailed the spectral properties of graphs [6], while Jiang offerred an accessible introduction to spectral graph
theory [10]. In this section, the theorems presented and proven articulate the spectral properties of simple connected,
and regular fuzzy graphs with n vertices.
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The theorem below relates the eigenvalues of the subgraph induced by the cut vertex and arranged in a non-
increasing order.

Theorem 3.1. Let Ai,i =1, 2, ..., n be the spectrum of a fuzzy graph G. If a cut vertex of a fuzzy graph induces a
subgraph, then the spectrum of the resultant fuzzy graph GA are Ax,i=1, 2,...,n -1, then

" * - - #® - *
)‘l :'—))"2 Z :—})\?1—2;—} n—1

Proof. Let G = (o, 1) be a fuzzy graph with n vertices and m edges. The adjacency matrix A of a fuzzy graph G is a
matrix where each entry Aij represents the weight (or membership value) of the edge between vertices i and j. The
eigenvalues of the adjacency matrix Aare A1 2A2=...2An.

Removing a cut vertex v from G results in a subgraph GA with adjacency matrix AA, which is a prin- cipal submatrix
of A. Let A+ be the eigenvalues of AA. By the properties of principal submatrices, the eigenvalues of AA interlace with the
eigenvalues of A.

The Interlacing Theorem states that if AA is a principal submatrix of A, then the eigenvalues of AA
interlace with those of A.

MMzl A*x 2. .24 =2,
1 2 n—1

This means that each Ai* lies between A; and Ai+1. Since the eigenvalues Ai* of Aa interlace with those of A, the

E . = *
. . . . . o . /\13)\21-"}1/\:1—1
ordering of A#; is preserved in a non-increasing manner. Specifically, for AA, the eigenvalues are

bounded by A; and A;., of A ensuring

AIZ A > ... =2

n

£ 3
5>

n—1*

The eigenvalues of AA (the adjacency matrix of the subgraph) are not only interlaced but also ordered non-
increasingly due to the inherent properties of the adjacency matrix and the interlacing theorem.

Thus the removal of a cut vertex results in a subgraph whose spectrum interlace with those of the original graph,
preserving their non-increasing order.

Corollary. Let G = (o, i) be a fuzzy graph and suppose Vc is a cut vertex of G. If the largest component of G - {V}
contains r vertices, then

r—12= Aa(G).
Proof. It is known that A,(G — {V.}) < r. By theorem 3.1, there exists A>(G) < r — 1.

The following example illustrates this concept.

Example 3.2. Consider the subgraph GA as given below of graph G as depicted in Fig.2.1.
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02(0.3)

04(1.0) 03(0.2)
Figure 3.1 Fuzzy Subgraph GA obtained from Graph G

The subgraph GA has eigenvalues Ax = {0.4113, -0.0911, -0.3202} that satisfiesA* 2 A2 2 ... 2 Ax =2 An-1.

Following theorems depicts that, if the graph is totally regular, the largest eigenvalue equals the degree. Otherwise,
the largest eigenvalue is between the average degree and the maximum strong degree, and also between the minimum
strong degree and the square root of the maximum strong degree.

Theorem 3.3. Let G be a fuzzy graph with largest spectrum A1. If G is a totally regular fuzzy graph of degree d, then
Al = d. Otherwise, &s < dg < A1 < As where §;, A, dg denotes minimum strong, maximum strong, and average degrees of
fuzzy graphs.

Proof. Assume G is a totally regular fuzzy graph with degree d. This means every vertex in G has the same degree d.
LetAn, (n =1, 2,...) be the sum of absolute eigenvalues with adjacency matrix A. Given that, A1 has the largest spectrum
for any G that is regular, then A1 = d.

By Perron-Frobenius theorem [6], for a non-negative, irreducible matrix A, the largest eigenvalue (spec- tral radius)
is real and positive. For each eigenvalue A of G, we have |A| < A1. If G is primitive, then |A] = A1 == A = A1

For a totally regular fuzzy graph, the eigenvector corresponding to A1 = d is a constant vector. Since G is totally
regular, A1 =d.

For a non-regular fuzzy graph, the degrees of vertices are not all equal. Since G is connected and undi- rected, the
largest eigenvalue A1 of the adjacency matrix A satisfies: 6s <A1 < As.

By the properties of the average degree, s < dg < As. Because A1 is the largest eigenvalue, it will be greater than the
average degree dg but less than the maximum strong degree As. Since G is connected, the minimum strong degree 6s will
be less than the average degree dg. Combining these inequalities, we get 6s < dg <A; < Ag,

Theorem 3.4. Let G be any fuzzy graph with n vertices. Then,
1) dgsAi<A
2) 8s<sh <VAs

Proof. Let G = (o, 1) be a fuzzy graph with n vertices. For any G with /IV /I = n where V is a vertex set and E = {1, p,
.., Um} denotes the edge set having the eigenvalues of A with A1 =, ... 2 A,. We know that the adjacency matrix of the
fuzzy graph G is a non-negative, symmetric matrix. By the Perron-Frobenius theorem for fuzzy matrices,

e There exists a unique non-negative eigenvector v corresponding to the largest eigenvalue A;.

o All other eigenvalues of the adjacency matrix have modulus strictly less than A;.

Since v is non-negative and vT v = 1, it follows that A1 is greater than or equal to the minimum degree dg of vertices
in G. Hence, d¢ < A1. Similarly, since all entries of the adjacency matrix are atmost 1, it follows that A1 is less than or equal
to the maximum degree As of vertices in G. Hence, A1 < As.
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Therefore, the inequality dg < A1 < As holds.

Similarly, we can establish that 8s < A; < VAs. Since the strength of vertices in G are analogous to the degrees of
vertices in a crisp graph, the proof follows similar lines as in property i), applying the Perron-Frobenius theorem for
fuzzy matrices.

Theorem 3.5. For any fuzzy graph G on n vertices, the following conditions hold:

L
o ;A < with equality holding iff G has no isolated vertices and loops
e Forn =2 A; <, with equality holding iff G is a complete fuzzy graph on n vertices

e For a fuzzy graph G which is not complete implies Ai < 1

L
Proof. Let G be a fuzzy graph with n vertices.  i4 follows from considering the trace of a Laplacian fuzzy graph L(G).
Assumingi=1, as A; yields the largest eigenvalue of G, A1 < n.

/11S

Also, the sum of absolute eigenvalues Ai of A is zero. The inequality for n =2 n=1 follows from S

Li /11' <n that
L n. .
If G has no isolated vertices and loops, i* =" For n = 3, the fuzzy graph holds the eigenvalue lesser than #—t" .
Suppose G has two non-adjacent vertices x and y. Let W be the diagonal matrix (v, v)th entry value dv
defined by,

dy fv==x
W=4¢ —d, fo=y
0 ifv#ury

Then

infriw Y., (fw) — f(v))?

o= > f0Pd,

The dirichlet sum of overall unordered pairs {u, v} to the sum of the squares of f (v) equals the largest eigenvalue in
G. Therefore, for any non-complete fuzzy graph G, A < 1.

The relationship between the determinant, Laplacian and adjacency eigenvalues are discussed here.

Theorem 3.6. Let G be a regular fuzzy graph with n vertices. Suppose that the eigenvalues of L(G) are
'81, 192, sy 1911_1, 191'1 With 191'1 = O. Then

1
-:'JIGf-(L@) < E[ﬁl . .,'l'?n_l]

where LO is the fuzzy laplacian matrix with ith row and ith column deleted foralli=1, 2,..., n.
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Proof. G is a regular fuzzy graph whenever there exists a walk with membership degree between any two vertices.
For any Laplacian matrix L(G), Let Lo be a matrix obtained by deleting the row and columniin G. Let 91, 92, ..., 9n—1, On
be the eigenvalues of L(G) with 9, = 0. The determinant of L is related to the determinant of L(G) as follows:

det(Lo) = det(L(G)) x (9;)"! foranyi=1,2,...,n— 1.

We know that 9, = 0 is an eigenvalue of L(G), implying that det(L(G)) = 0. Removing the it row and ith column of L(G)

det(Lo) # 0. det(Lo) # 0

to obtain Lo affects the fact that its determinant is non-zero. Therefore, . since,

1
. —[ .y
expression 0102 O]

the given

is also non-zero. Therefore,
1.,
dei{Lo) < E[t‘}l ... 'ﬂﬂ_l]

Theorem 3.7. Suppose that G is a regular fuzzy graph of degree ds and the eigenvalues of A(G) are
AL, Ao, ..., An_1, An With A, = ds. Then, .Then

det(Lo) £ T{(d = 2) - (d = Xa) ... (d = Xu_1)

where Lo is the fuzzy laplacian matrix with it row and ith column deleted foralli=1, 2, ..., n.

Proof. Let G be a regular fuzzy graph of degree ds with n vertices. Let A(G) be the adjacency matrix obtained from G
with eigenvalues A4, A, . . ., Ax—1, An with A, = ds. Lo denotes the Laplacian matrix obtained by deleting the ith row and iith
column fori=1,2,...,n. To prove the statement, utilize the fact that the determinant of a matrix changes upon deletion
of arow and a column from it. The determinant of LO is related to the determinant of L(G) as follows:

det(Lg) = det(L(G)) x (d— X;) ! foranyi =1,2,...,n—1
Let us prove this theorem by contradiction. Assume that the given statement holds true, i.e.,

det(Lo) = ~[(d = A).(d = Xa) .- (d = An1)]. (3.1)

From the relationship between determinants, we see that

Multiplying both sides by n, we get

n x det(L(G)) = [(d — Ap).(d— A2)...(d— An_1)] H?:_ll(d— M)t
Simplifying, we have:
n x det(L(G)) = [(d— A1) - (d — X2) ... (d — An_1)] (3.2)

Since det(L(G)) is a constant, this would imply that the right-hand side is also a constant. However, this contradicts
the fact that the eigenvalues Ai can vary, and thus the right-hand side is not constant.
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1
“l@ _
Therefore, our assumption that the statement holds true leads to a contradiction. Therefore, *»

A - (d—A2)...(d — An)]

not equals the determinant of the reduced Laplacian matrix provided G is regular.
The following example illustrates this concept.

Example 3.8. Consider the regular fuzzy graph G as depicted in Fig.3.2.

71(0.5)

< “’X
[=]

T5(0.7) oa 02(0.5)
s 2
05(0.5) 03(0.6)

0.2
[\

040 4)

Fig.3.2 Regular fuzzy graph G with det(L0) = 0.17 and As=ds = 0.9

Here, det(Lo) = 0.17 and 9; = {1.573, 1.4558, 1.0732, 0.7268, 0.5712, 0} ; Ai = {0.9, 0.3288, 0.1732, -0.1732, -0.5558,
-0.6730} with A; = ds = 0.9. This makes clear that

1 1
(d— ) - (d—J2).. (d — )] 1= det(Lo) < {918z 9]

Next theorem guarantees a unique non-negative eigenvector for the largest eigenvalue of symmetric fuzzy matrices
for connected FGs.

Theorem 3.9. Let G be a fuzzy graph. For any irreducible, aperiodic, and symmetric fuzzy matrix A, there exists a
unique non-negative eigenvector v1 corresponding to its largest eigenvalue A1. Further- more, all other eigenvalues of A
have moduli strictly less than A;.

Proof. Let G be a fuzzy graph. Let A = [a;] be the symmetric fuzzy matrix representing the fuzzy graph. First, Let us
show the existence of a non-negative eigenvector v1 corresponding to the largest eigenvalue A;.

Since A is symmetric, it has real eigenvalues. By the properties of fuzzy matrices, A is non-negative, irreducible, and
aperiodic. By the Perron-Frobenius theorem for non-negative matrices [6], there exists atleast one non-negative
eigenvector v1 corresponding to the largest eigenvalue A;.

Parti]: Let us prove the uniqueness of eigenvector.

Assume there are two non-negative eigenvectors v; and v, corresponding to the largest eigenvalue A;. Because A is
symmetric, vy is orthogonal to v, as distinct eigenvectors of a symmetric matrix are orthogonal. Now, Let x = vq + v». Since
v1 and v, are both non-negative and orthogonal, x is also non-negative and Ax = Avy + Avy = A1vi + AV = AiX.

By the Perron-Frobenius theorem for non-negative matrices, x must be a positive scalar multiple of vi. Thus, v, =
avi, where o is a positive scalar. As v; is non-negative, a must be positive. Therefore, v1 = v2. Hence, the eigenvector v1
corresponding to A; is unique.

Part ii]: All other eigenvalues have moduli strictly less than A;.
Let A2 be another eigenvalue of A. Consider the corresponding eigenvector w. Because A is symmetric, choose w to

T Au v1, vl Aw = wT Ay

w.
be orthogonal to vi. Now, consider . Since w is orthogonal to . But A is symmetric,

sow! Avy = Mw! vy,
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rT,' )] —= A ‘T" . /\..T,, . :
If A2 have larger magnitude than A1, then vy Au Ml vy would be strictly greater than 21 which contradicts

the orthogonality of vl and w. Thus, all other eigenvalues of A have moduli strictly less than A;. Therefore, A1 dominates
over all other eigenvalues.

4. FUZZY VERTEX CONNECTIVITY

Vertex connectivity in fuzzy graphs extends classical connectivity concepts by incorporating vertex and edge
membership values. Key contributions from Kaufmann and Gupta (1991), Rosenfeld [5], and Akram and Dudek (2010),
Mathew and Sunitha [13], focuses on robust algorithms and applications shaping theoretical advancements and practical
applications. In this section, the relationship between fuzzy vertex connectivity k and second smallest Laplacian
eigenvalue 9,1 is established and it is proved that k < q under specified conditions on & (As, 85, q) and &2(As, s, q). Also,

th

the upper bounds for V-1 and lower bounds for 9,-1 are presented to show 9 -1 = k.

Theorem 4.1. Let q be any real number with 0 < q <1 and G denote a fuzzy graph of order n* with §; as minimum
strong degree. If A;(G) < |8s — q|, then 9n-1(G) < q.

Proof. Let A, L and D be the adjacency matrix, Laplacian matrix and diagonal matrix of G respectively. Since L. = D-A,
An(D)-22(A) < An—1(L) = &s. Hence, 9n-1(G) = 85—-A2(G). If A2(G) < |8s—q]| for any q € (0, 1] (consider q = 0.5), 9n-1(G) = & -
A2(G) < g. Therefore, for any fuzzy graph G with n* and &, 9n-1<q.

Conditions on &1(As, 85, q) and &(As, 8s, q) are defined to find the lower bounds and upper bounds of fuzzy graphs
and regular fuzzy graphs as below.

Definition 4.1. For any q € (0, 1], n*, As, §;, ds with §; < q and ds = q define,

(I —=q)(n* —q+1)A,

(1) &1(Ag d5.q) = 4(0s —qg+2)(n* — o0, — 1)

(1 —q)(n")A,

() L0 05:0) = (e T T = g) 1 40 — g £ 2) (7 — 8, — 1)

The following lemmas (Lemma 4.2, 4.3, 4.4) helps in deriving the relationship between fuzzy vertex connectivity k
and second smallest Laplacian eigenvalue 9p-1.

Lemma 4.2. Let G = (V, o, i) be a fuzzy graph of order n*. Let M, N be two disjoint fuzzy subsets of o such that each
vertex of M has a fuzzy distance atleast 1 to each vertex of N. Let py, un be the set of edges in G in M and N respectively.
Then,

1 1 1
Uy 1(G) € 5 | == = — |\HNM| — [N
902(6) < o (3 + ) Qo = sl = b

Lemma 4.3. Let G represent a fuzzy graph of order n*. For all « € Rn we have,
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: 2
n* Zp-;;je;l("-lm — (_\(‘uj)

T)n—l - /\ Z

— 2
,Lq.yjécr:pi<pj(ﬂ,u-i “,uj)

Proof. Since 9,(G) = 0 and 9,(G) is positive semidefinite, zero is the smallest Laplacian eigenvalue of G. Since G is

(Vs i) = Z i C n’* ("—_lpq — Oy -)2 L. . . . . .
connected, Hig Ep 77 . This implies that zero is a simple eigen- value and eigenvalues {94, 92, ...,
On-1} are positive and the corresponding eigenvectors are orthogonal to 9,. Thus 9,-1(G) satisfies,

A Lyij ep n* (ap — ap )2

2
o - =
W | = /\ Z[_JU'E,U n (Qﬁfi o “#3)
n—1 — 2
170 ZM s

and the minimum is attained for the eigenvectors corresponding to 9n(G). By the Lagrangian identity,

2

I 2 i _ . 2
n o, — E au | = E ((.l;#_i—(}.ﬂj)

Hi fri (pispg)

Lemma 4.4. Let G be a fuzzy graph of order n* with minimum strong degree &s. Let R be the minimum fuzzy vertex-
cut with x vertices and M denote the set of all vertices having minimal components of G-R and N =V - (R U M). Then,

M|.|N

> (0s—k+1)(n* =0, — 1)

Proof. Given that each vertex in the set M is connected to a maximum of |M | - 1 vertices within M
and k vertices within the setR,

ds

M| <D dy(o) <
aceM
This implies that the cardinality of set M, denoted as |M |, must satisfy the inequality |M | = §;—k+1. It is important
to note that |[M | is also bounded by |N | and together, they satisfy the equation |[M | +|N | = n* — k. Thus, §s -k + 1< [M |
<|N|<n*-06s-1.
The following theorems relate to the order of the fuzzy graph, the constraints on the strong degrees, the specific
eigenvalue conditions, and the implications for the connectivity of the fuzzy graph.

Theorem 4.5. Let G be a fuzzy graph of order n* with maximum strong degree A;, minimum strong degree §;, strong
degree ds(v) with As = q,n+ 2 2qgand ds 2 q. If 9n-1(G) > §1(4s, 85, q), then k(G) < q.

Proof. Let us prove this theorem by contradiction. Assume that 1 - q < ¥(G) < 1. Let R be the mini- mum fuzzy vertex-
cut with k vertices and M denote the set of all vertices having minimal components of G- Rand N=V - (RU M ). By
Lemma 4.4, it follows
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bs—k+ 1< |M| <N <n*—§—1 “.1

|M[.|IN| > (8s — k+ 1)(n" — ds — 1) 4.2

|M|.IN| > (ds — 6 +2)(n" — ds — 1) (4.3)

IM[IN|> (0s =k +1)(n* —0s— 1) > (6s — K +2)(n" — 65 — 1) 4.4

Every edge in u — (um U un) is adjacent to atleast n* — |M| — |N| vertices in R. Thus,

il = lpar| = | < (0" = [M] = [N[)As = wA 4.5)

*

n .
Asl—g<rn<1< 7,(c0n31der g = 0.5) we have

(n*— k) <(1—qg)n"—q+1) (4.6)

From Lemma 4.2,

0o (G) < M+ IN

——————(|pt| = [peas] = | 4.7
< TN (|pe| = |penr] = [pen]) 4.7

Substituting equations (4.4) and (4.5) in (4.7) by (4.6),

| M|+ |N|)rA
Un-1(G) < 100. E q _5_ 2)|(;.-g_‘|")— o — 1)
(n* — k)RA
40s —q+2)(n* —ds—1)
(1 —=q)(n* —q+1)A,
<~ g+ D —5.= 1

This is a contradiction and k(G) < q.

Theorem 4.6. Let G be a fuzzy graph of order n* with maximum strong degree As, minimum strong degree §s, strong
degree ds(v) with §; = q and ds 2 q. If 9,-1(G) > &2(4s, &5, q), then k(G) < q.

Proof. Let us prove this theorem by contradiction. Assume that 1 < x(G) <1 - q. Let R be the minimum fuzzy vertex-
cut with x and M denote the vertex set having minimal components of G-Rand N=V - (RU M ). By Lemma 4.4,
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de—h+1< N|l<n*—ds—1 (4.8)

M| <

IM||N| > (65 —k+ 1)(n* — s — 1) (4.9

i‘é M,sayo; = L;ifi € N,a; =051 € R, o; = 0,

For any real vector @i- i €0, anq i Denote

ps = p\(par U pn) ). From Lemma (4.3), the equation holds for every a and applying to entries of a, it follows that

Do —ap) = > (o —ap)’ < Y 1< [RIA < (1-g)A,

Hij € HijE1R HijEHR
. 2 2 2 2
E (o — o) = E (p —ay;)* + E (o —apy ) + E (s — apy)
iy G €T <ftj icM, pjeR ieN, ujeR ieM, pjeN

= |M||R| + |N||R| + 4|M||N|
= (n" —r)k +4|M||N|

< (N —R)E+4(6, —r+ 1) (0" =6 —1)

This implies,

i 2 }
n’* Z,Ltijé,u(“'.“i — ayy) (1 —g)n*Ag

1917.71 < 5 < PR - - p
D iy <y (O — gy 2T (n*—q+1)(1—q)+4(0s —qg+2)(n* — 05— 1)

which is a contradiction to our assumption and so, k < q.

0, 1

0<qg< s If

Theorem 4.7. Let G be a fuzzy graph of order n* with minimum strong degree

. <
'1)?1— 1

r 4+ Vr2 —1, then k(G) < q, where

4(0s —q+2)(n* —0dos—1) )
"= m*( L DN _|_ )
Proof. Let us prove this theorem by contradiction. Assume that 1 - q < k(G) < 1. Let R be the mini- mum fuzzy vertex-
cut with k vertices and M denote the set of all vertices having minimal components of G- Rand N=V - (RU M ). By

Lemma 4.4,

ds—k+1<|M|<|N|<n"=d,—1 4.10)

|M[.|N| > (0 =k +1)(n" — s — 1) 4.11)

|[M|.IN| > (0, =k +2)(n* — 6, — 1) 4.12)

MLIN| > (8, — 5+ 1)(n* =6, — 1) = (5, — & +2)(n* — 5, — 1) “.13)
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Combining these results withnx — [M | - [N | =k < 1 - q, (consider q = 0.5) it implies that
|M||N| < (9 —Vp1)?
n*(n* —|M|—=|N[) = 4U1.9n-1 ifthere is no such edge between M and N in G.

Therefore,
(91 — n_1)? |M||N]| (05 — q +2)(n* — 8, — 1)
> > 4.14
dh W1 T n(nt—|M|—|N|) — n*(qg—1) (4-14)
. 4(6¢ — 2)(n* —ds—1) , .
Setting h = - L andr = 0s =g+ 2)(n — ) + 1. Thus, equation (4.14) results in . + h~! >
-1 n*(q + 2)
2rand h > 1, r > 1 = h > r + v/r? — 1 which is a contradiction. Thus, #(G) < q. O

Example 4.8. Let G be a fuzzy graph with vertices v, v, v, v, Us, v With 01 = 0.5,02 = 0.3,03 =

0.7, a4 = 0.4, ar = 0.6 and H12 = 0.2.}_123 = 0.2.#34 = 0.3.,&145 = 0.1.,(1-51 = 04,&125 = 0.1

Here, A; = 0.6, 0, = 0.3, v = 0.2, n* = O(G) = 2.5. The fuzzy vertex cut (FVC) sets of
Fig.4.1 are denoted such that ./; = {vy} is the only 1-FVC with s(./;) = 0.2. The only 2-FVC in G is

J2 = {va.v5} and s(J2) = 0.6. Thus, K = 0.2.

a5(0.6 2(0.3)

0.1
0

Fig.4.1 Fuzzy graph G to show the bounds with x = 9n-1 =0.2

ShodhKosh: Journal of Visual and Performing Arts 827


https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh

Analyzing Fuzzy Matrices and Connectivity in Spectral Fuzzy Graph Theory

J
Table 4.1 : Fuzzy graph G to show the bounds on 7/,,_;(G) and .; L
Un—1
. - 9
F-graph Un—1(H) &1(As, s, q) E2(Ng, 0s.q) w(H) 5 ! rvr2—1
Un—1
G 0.2132 0.1041 0.0739 0.2 4.2767 4.5447

Table 4.1 shows the lower bounds on v,,_1(G) of Theorems 4.5, 4.6 and the upper bound on l)l L of
Un—1

Theorem 4.7.

Example 4.9. Let H be a regular fuzzy graph with vertices vy, vg, Us, vy, Us, Vg with 01 = 0.5,09 =
0.5,09 = 0.6,04 = 04,05 = 0.5,06 = 0.7 and p119 = 0.3, j1o3 = 0.4, pizg = 0.3, prgs = 0.4, pisg =
0.3, g1 = 0.4, 114 = prgo = sz = 0.2,

Here, Ag = 6 = ds = 0.7, k = 0.3, n* = O(H) = 3.2. The fuzzy vertex cut (FVC) sets of
Fig.4.2 are denoted such that .J; = {vg} 1s the only 1-FVC with s(.J;) = 0.3. The only 2-FVC in &' is

Jy = {va,vg} and s(J2) = 0.6. Thus, K = 0.3.

[251 (0.5)

05(0.7) 62(0,5)
S 3
5(0.5) 3(0.6)

Fig.4.2 Regular fuzzy graph H withx =1, _1 = 0.3

7
Table 4.2 : Regular fuzzy graph H to show the bounds on v/, 1(H ) and }l !
Un—1
- ) - i .
F-graph 0, 1(H) &1(Ag. 0s,q) Ea(Ag, 05, q) K(H) 5 ! r4yr? —1
n—1
H 0.3298 0.0981 0.0745 0.3 4.647 5.104

of

Table 4.2 shows the lower bounds on 1/, _1(H ) of Theorems 4.5, 4.6 and the upper bound on
Vn—1

Theorem 4.7.

5. CONCLUSION

The concept of eigenvalues represented through adjacency matrices and Laplacian matrices of a fuzzy graph is
discussed. The properties of the spectrum of fuzzy graphs and regular fuzzy graphs are analyzed. This study delves into
828
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the mathematical relationships between the fuzzy vertex connectivity of a fuzzy graph and its algebraic, adjacency, and
Laplacian eigenvalues. These investigations yield conditions under which the fuzzy vertex connectivity is assured to be
less than or equal to q. These findings make valuable contributions to the domain of spectral fuzzy graph theory,
enhancing its practical applications in identifying side chain clusters within 3D protein structures, which will be
discussed in forthcoming papers. This research lays the foundational knowledge for fuzzy graph theory, emphasizing
spectral methods as a means to address the challenges in networks.
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