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D

Linear stability analysis of convection in a binary fluid and saturated porous layer

subjected to gravity modulation is performed. Regular perturbation method based on

small amplitude of modulation is employed to compute onset threshold for synchronous

DOI mode, as a function of frequency, . The results of Darcy porous layer and fluid layer form
the limiting cases of Brinkman porous layer. The gravity modulation exhibits both
stabilizing and destabilizing effect in case of fluid layer while inhibits the porous layer
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1. INTRODUCTION

Double diffusive convection (DDC) occurs when two diffusing components (e.g., temperature and dissolved
concentration) contribute to the buoyancy. In a fluid layer, the temperature and concentration diffuse at different rates,
and the process is referred to as DDC. In a porous medium, the system is also double-advective: because heat is shared
between fluid and porous medium while the solute is confined only to the void space, temperature is advected more
slowly than concentration, and this difference in advection rates is crucial to the stability properties of the system.

The problem of DDC in fluid and saturated porous media has received significant interest during the past few decades
because of its wide spread applications, such as convective heat and mass transfer, solidification of binary mixtures to the
migration of solutes in water-saturated soils and the migration of moisture through air contained in fibrous insulation and
so on. Some of the areas where DDC finds exhaustive applications include oceanography, astrophysics, geophysics,
geology, chemistry, and metallurgy. The problem of DDC in fluid and porous media has been extensively investigated both
theoretically and experimentally and the exhaustive research of the same is well reported by Turner [1-3], Huppert and
Turner [4], Platten and Lagros [5], Ingham and Pop [6, 7], Nield and Bejan [8], Vafai [9, 10] and Vadasz [11].

Nield [12] performed linear stability analysis of thermohaline convection in a porous medium. Finite amplitude convection
in a two-component fluid saturated porous layer has been studied by Rudraiah et al. [13]. Further works on double-
diffusive convection in porous media include Brand and Steinberg [14], Murray and Chen [15], and Mamou and Vasseur
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[16]. The problem of DDC in a fluid saturated porous layer was later on investigated by many authors (see e.g., Nield and
Bejan [8] and references therein).

In the recent time, the study of thermal convection induced by oscillating forces resulting from either oscillating wall
temperatures or modulated gravitational forces or a combination of these two has received much attention in the fluid
dynamics research community. A physically important class of problems involves convection in a fluid layer in the
presence of complex body forces. Such forces can arise in number of different ways. For instance, when a system with
density gradient is subjected to vibrations, the resulting buoyancy forces which are produced by the interaction of the
density gradient with the gravitational field, have a complex spatio-temporal structure. Some of the other situations where
the gravity fluctuation becomes predominant include buoyancy-driven convection in microgravity conditions which are
of great interest in space laboratory experiments, crystal growth, petroleum production, and large-scale atmospheric
convection. Many theoretical and experimental studies dealing with materials processing under the micro-gravity
conditions aboard an orbiting spacecraft have been carried out in the past [17]. Owing to several unavoidable sources of
residual acceleration experienced by a spacecraft, the gravity field in an orbiting laboratory is not constant in a micro-
gravity environment, but is a randomly fluctuating field which is referred to as g-jitter. It is reported in the literature [18,
19] that vibrations can either substantially enhance or retard heat transfer and thus drastically affect the convection. The
effect of gravity modulation on a convectively stable configuration can significantly influence the stability of a system by
increasing or decreasing its susceptibility to convection. In general, a distribution of stratifying agency that is convectively
stable under constant gravity conditions can be destabilized when a time-dependent component of the gravity field is
introduced. Certain combinations of thermal gradients, physical properties and modulation parameters may lead to
parametric resonance and, hence, to the instability of the system.

The effect of gravity modulation on the stability of a heated fluid layer was first examined by Gresho and Sani [20] and
Gershuni et al. [21]. Their results show that the stability of the layer being heated from below is enhanced by gravity
modulation; but for the case of heating from above, the layer is destabilized. Wadih and Roux [18] presented a study of
convection in an infinitely long cylinder with gravity modulation oscillating along the vertical axis. Their analyses
established that the onset of convection is altered under the modulation of constraints. Murray et al. [22] considered the
effect of gravity modulation on the onset of convection for the unidirectional solidification problem. Saunders et al. [23]
studied the effect of gravity modulation on the stability of a horizontal double-diffusive layer. They considered a fluid
layer of stress-free boundaries with linear temperature and solute concentration distributions that would generate
instabilities either in the finger or the diffusive mode. Later, Clever et al. [24] studied the problem of two dimensional
oscillatory convection in a gravitationally modulated fluid layer. Farooq and Homsy [25] investigated linear and
nonlinear convection in a vertical slot in the presence of gravity modulation. Malashetty and Padmavathi [26] studied
the effect of small amplitude gravity modulation on the onset of convection in fluid and porous layers. In general, their
results indicate that the gravity modulation has destabilizing effect. Li [27] performed a stability analysis of modulated-
gravity-induced thermal convection in a heated fluid layer subject to an applied magnetic field. The nearest correction to
the critical Rayleigh number for both single and multiple frequency of oscillating-gravity components is obtained by
solving the linearized equations using the small parameter perturbation technique. Shu et al. [28] examined the effect of
modulation of gravity and thermal gradients on natural convection in a cavity numerically and experimentally. They
found that for low Prandtl number fluids, modulations in gravity and temperature produce the same flow field both in
structure and in magnitude. Experimental study on the response of Rayleigh-Benard convection to gravity modulation
was carried out by Rogers et al. [29]. Yu et al. [30] made an experimental investigation of a horizontal stably stratified
fluid layer being heated from below, including its subsequent nonlinear evolution under steady and modulated gravity,
using two-dimensional numerical simulations. Recently, Dyko and Vafai [31] investigated effect of gravity modulation on
convection in the annulus between two horizontal coaxial cylinders. Their work provides the description of convection
in a cylindrical annulus under microgravity, and practical information on the influence of gravity modulation on heat
transfer in a space environment.

The study of the effect of gravity modulation on the onset of convection in a porous medium is of comparatively recent
origin. Malashetty and Padmavathi [32] studied the effect of small amplitude gravity modulation on the onset of
convection in fluid saturated porous layers. Zenkovskaya and Rogovenko [33] investigated filtration convection subject
to high frequency oscillations in an arbitrary direction using the averaging method. It is found that horizontal oscillation
has a destabilizing effect in the case of zero gravity and microgravity. Bordan and Mojtabi [34] made an analytical and
numerical study of convection in a porous cavity in the presence of vertical vibrations. They found that the vibrations
stabilize the quiescent state. Govender [35] has made stability analysis to investigate the effect of low amplitude gravity
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modulation on convection in a porous layer heated from below. It was shown that increasing the frequency of vibration
stabilizes the convection. More recently, Razi et al. [36] introduced the time averaged governing equations for Darcy-
Brinkman model and they shown that there is a significant deviation from the Darcy model in determining the critical
Rayleigh number. The effect of vertical harmonic vibration on the onset of convection in a porous medium is investigated
by Strong [37] using continued fraction method. Further, Strong [38] has extended the work to binary fluid mixture
saturating a porous medium. Saravanan and Purusothaman [39] carried out an investigation to find the effect of non-
Darcian effects in an anisotropic porous medium and found that non-Darcian effects significantly affect the synchronous
mode of instability. Recently, Saravanan and Sivakumar [40] studied the effect of vibration on the onset of convection in a
horizontal fluid saturated porous layer considering arbitrary amplitude and frequency. It is demonstrated that vibrations
can produce a stabilizing or a destabilizing effect depending on their amplitude and frequency. More recently, Malashetty
and Swamy [41] asymptotically analyzed the linear stability of a rotating horizontal fluid and fluid-saturated porous layer
heated from below for the case of small-amplitude gravity modulation.

Although the study of DDC in both fluid and porous media is exhaustively investigated by many researchers, a
comparatively little attention has been given to its study under the influence of gravity modulation. The main objective
of this article is to analyze the effect of small amplitude gravity modulation on the onset of a binary fluid layer and a
saturated porous layer for a wide range of values of frequency of the modulation, solute Rayleigh number, Lewis number,
Prandtl number, Darcy number, normalized porosity and viscosity ratio. We intend to provide a fundamental
understanding of how the governing parameters would influence natural convection arising from gravity perturbation.
As a first attempt, we present a linear stability analysis of a heated fluid layer and a saturated porous layer to explore the
effect of various parameters on the onset of DDC in the presence of gravity modulation. In the case of porous layer, both
the Darcy and Brinkman models are considered. It may be noted that most of the previous investigators of thermal
convection in Brinkman porous medium have assumed that the fluid viscosity is same as the effective viscosity in their

study. However, Givler and Altobelli [42] have determined experimentally that g, = (50 12 )i where p, is the effective
viscosity and p is the fluid viscosity, for water flowing through high porosity porous media. Therefore, consideration of

the ratio of effective viscosity to the fluid viscosity different from unity is warranted to know its influence on the critical
stability parameters. Another main characteristic of this article is that it deals with fluid layer, Darcy and Brinkman
porous layer, which makes this work more general. It is shown that the results corresponding to the two limiting cases,
namely viscous and Darcy can be recovered from the Brinkman porous layer. It is believed that the results of this study
are useful in the areas of crystal growth in micro-gravity conditions and also in bridging the gap between the results of
Darcy and viscous fluid layer limits.

2. MATHEMATICAL FORMULATION

We consider an infinite horizontal binary fluid layer / saturated porous layer confined between the planes z=0 and z =
d subjected to time-periodically varying gravity force g = (0, 0, — g(t)) acting on it, where g(t) = g, (1 +&cos Et) with

g, the constant gravity in an otherwise unmodulated system, ¢ the small amplitude of modulation, @ the frequency

and t the time. The temperatures 7, and 7, with 7, > 7, and solute concentrations S, and §, with S, > S are imposed

at the bottom and top boundaries respectively. A Cartesian frame of reference is chosen with the origin in the lower
boundary and z-axis vertically upwards. The interaction between heat and mass transfer, known as Soret and Dufour
effects, is supposed to have no influence on the convective flow, so they are ignored. The porous medium is assumed to
be isotropic and is in local thermal equilibrium with fluid phase. Within the Oberbeck-Boussinesq approximation, the
continuity, momentum, energy and the state equations are:

V-q=0, (1)
la_q_f_iz(qV)q_}-in—ﬁg:Al He qu—Aqu, (2)
g ot ¢ Py Py Py PK
ya_TJr(q.v)T: VT, (3)

ot (poc),
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oS 1 ,
5+5(q.v)s_xsv S, (4)
p=p,{1-B(T-T,)+ B (S-S,)}. (5)

where q = (u,v,w) denotes the velocity, p the pressure, p, the reference density, K and ¢ the permeability and porosity
of the porous medium respectively, 1, the effective viscosity, ¢ the viscosity of the fluid, T and S the temperature and
concentration, respectively, y the specific heat ratio, £ the thermal conductivity, x; the solute diffusivity, B, and

the thermal and solutal expansion coefficients. The quantities &, and y,, =(p,¢,), /(p,c,), are defined in terms of the

fluid and solid components of the porous medium, such that e = ¢ef +(1 —¢)e

s’

e, =k, or y . The suffix m and s

refers to the value of the parameter for the porous medium and fluid, respectively. The following table gives the definition
of various parameters for clear fluid layer and porous layer.

Parameters Clear fluid | Darcy porous | Brinkman porous
layer medium medium

(4, 4,) (L0) (0.1) (L1)

¢ 1 ¢ ¢
k k km km
/4 1 Ym Ym

2.1 Basic state
The basic state of the fluid is assumed to be quiescent and is given by,

qb E(O’an)a p:pb(zat)a p:pb(z)a T:T;;(Z)a S :Sb(z)' (6)
Using these into Egs. (2)-(5) one can obtain

0 d’T d’s
% =-p,g(), dzzb =0, dzzb =0, p, =p0[1—ﬂT(Tb—T0)+ﬂS(Sb —SO)]. (7)

Thus Egs. (7) together with boundary conditions possess the following solutions

1 1
Tb(Z):Tz_g(Tz_Tu)Zy Sb(Z):Sl_g(Sl_Su)Z: (8)

1 2
Py(2,1) = pog(t) |:(IBTT} _IBSSZ)Z _E(ﬂT(Tl —T,)=Bs (Sl =S, ))Z } . 9)
2.3 Perturbed state
We study the stability of this basic state using the method of small perturbations. On the basic state we superpose
infinitesimal perturbations of the form

4=9,+9, p=p, )+, p=p,(2)+ P, T=T,(2)+T", S =S, (2)+S", (10)
where prime indicates that the quantities are infinitesimal perturbations. Introducing (10) into Egs. (1)-(5) and using

basic state solutions, and neglecting the nonlinear terms in perturbations, we obtain the linearized equations governing
the perturbations in the form,

V-q'=0, (11)
laq’ 1 ’ ’ ! e ﬂ 2 /Ll !

——=+—Vp' — (BT + B.S l+ecosmt)k=4--<Vq'—4,——¢', (12

s o p P (ﬂT By )go( ) 1100 q Azpqu (12)
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y 887; —W'A?T: K, VT, (13)
%—%W'% =x,V’S'. (14)

Here k denotes the unit vector in the z-direction and «, = k/ ( poc) E the thermal diffusivity with appropriate definition

for fluid layer and porous layer. For the clear fluid layer and Brinkman porous medium, the boundaries are assumed to
be stress-free, isothermal and isohaline. Accordingly, the boundary conditions at z= 0 and z = d are

2.

, 0w
w=——
0z

For Darcy porous medium case,

the boundaries are impermeable, isothermal and isohaline. Therefore, the boundary conditions at z= 0 and z = d are
w=T"=8"=0. (15b)

By operating curl twice on Eq.

(12) we eliminate p’ from it, and then render the resulting equation and the Egs. (11)-(14)

dimensionless using the following transformations

=T'=S§"=0. (15a)

(x',),2") = d(x*,y*,z*), t'= (d2 /K‘T)t*, (u' v, W)= (¢KT/d)(u*,v*,w*),
p'=(u,¢/d* ) p", T'=(AT)T", §'=(AS)S",

to obtain non-dimensional

equations as (on dropping the asterisks for simplicity),

1 0

P_E_MAIVZ + AzDa'ljvzw =(1+¢&coswt)V; (Ra,T - RayS), (17)
,

(16)

l%—vzjrzw, (18)
X

0 ~1y72

E—Le \% jS:w, (19)

where Pr = ¢u/ p,i , the Prandtl number, Ra, = p,B,gATd’ / UK, the thermal Rayleigh number,
Rag = pO,BSgASdS/IUKT, the solute Rayleigh number, Da = K/d2 , the Darcy number, o= a_)a’z/KT , the
nondimensional frequency of modulation, Le = K’T/K'S , the Lewis number, M = ,ue/y, the ratio of effective viscosity
and fluid viscosity, and y = ¢/, the normalized porosity.

The boundary conditions (15a,b) in the non-dimensional form are given by

w:ézw/ézzszS:O at z=0, 1 and (20a)

w=T=8=0 at z=0, 1 (20b)

After eliminating the coupling between the equations (17)-(19) we obtain the single equation for vertical component of
velocity in the form
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(LQ—MA1 Vi + 4, Dalj lQ—VZ (E—Lelvzjvz
Pr ot y Ot ot

—Ra, (E—Lelvzj(lhecos wt)V; + Ray (lﬁ—vzl(lhecosa)t)vlz}w: 0.
ot x Ot

(21)
The boundary conditions (20a,b) in terms of the vertical component of velocity become

0’ o0 0° 0"

VZV: ZV: ZV: ZV:O, at z=0, 1. (22)
0z 0z 0z 0z
Now the disturbances in the normal modes can be expressed as
W= W(Z t)ei(lx+my)+0't (23)

w=

where W(z,t) is a periodic function of time with the same period as the gravity modulation, /, m are the wavenumbers

of the disturbances in the x,y directions, respectively, o = o, +i0o; is the growth rate of the disturbances. Let o be
the eigenvalue with greatest real part. The basic state, with respect to the infinitesimal disturbances, is unstable if the
real part a: is greater than zero or stable if a: is less than zero. Here, unstable means that a disturbance experiences
net growth over each modulation cycle, or grows during part of the cycle, but ultimately decays, while stable means that
every disturbance decay at every instant. At the neutral stable state a: is zero. If the imaginary part al.* is also zero

simultaneously, the disturbance is synchronous with the periodic basic state. We consider in the present paper only
synchronous mode.

Substituting the normal modes (23) into the disturbance equation (21), we obtain

1 0 22 -1 ig_ 2 2 g_ 12 2 22
KEE_MAI(D a )+ A, Da j(;{@t (D a)j(@t Le (D a)J(D a)

+{RaT (%—Lel(D2 —az)j—RaS [%%—(Dz —az)j}(l+gcosa)t)a2}W =0.

(24)

0
with D = 8_ and @’ = 1> + m*. The associated boundary conditions are
Z

W=DW=DW=DW=DW=0at z=0, 1. (25)
Equations (24) with boundary conditions (25), is homogeneous system and thus constitute an eigenvalue problem.

3. METHOD OF SOLUTION
We seek the eigenfunctions W and the eigenvalues Ra, associated with the system of Eqgs. (24)-(25) for a modulated

gravity field that is different from the constant gravity field by a small quantity of order ¢. The eigenfunction # and
eigenvalue Ra, should be a function of ¢ and they should be obtained for a given Darcy number Da, Prandtl number
Pr, solute Rayleigh number Rag, Lewis number Le and frequency @. Since ¢ is very small for the problem under

consideration, we expand these eigenfunctions and eigenvalues in a power series of & in accordance with the theory of
small parameter perturbation, in the form
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(W, Ra,)=W,, R)+e(W,, R)+& (W,, R))+-- (26) Here W, and R, are the
eigenfunctions and eigenvalues respectively of the unmodulated system and W, and R, (1' > 1) are the corrections to

W, and R, in the presence of gravity modulation.

Substituting Eq. (26) into Eq. (24) and equating the corresponding terms, we obtain the following system of equations
Lw,=0, (27)

LW, =—a’R,L, cosotW, —a’R/L,sin 7z +a’Ra,L, cos otW,), (28)
LW, =—a’R L,coswtW,—a’R,LW,—a’R,L, cos otW,—a’R LW,

(29)
+a’RagL, cos wtW,,

Where the operators L and L;’s are as given in Appendix through Eqgs. (A.1)-(A.4).  Each of W are required to satisfy

the boundary conditions (25). Equation (27) which is obtained at 0(80) is the one used in the study of thermal

convection in a horizontal fluid layer/ fluid-saturated porous layer subject to the constant gravitational field. The
marginally stable solutions for that problem are

WO(") =sinnrz, (30)

with the corresponding eigenvalues

3 2
() (1127r2 +a2) » (1127r2 +a2)
Ry’ =MA p + A4, Da p +RagLe. (31)
For a fixed wavenumber the least eigenvalue occurs for n = 1, and is given by
2, 2} 2, 2)?
(7°+a) (7" +a’) |
R, = MA4, e + 4, e Da™ +RagLe, (32)

correspondingto W, =sinrz.

3.1 Fluid layer
For a fluid layer, 4, =1, 4, =0 and then Eq. (32) yields

2 2\?
(v +a)
R, :T—i—RaSLe, (33)

which assumes the minimum value R, for a = a_, where a_ satisfies the equation
2( 2, 2)? 2, 2\
3a; (7[ +ac) —(7[ +ac) =0. (34)

We observe that Eqs. (33) and (34) are the classical results obtained for DDC in binary fluid layer without gravity
modulation (see e.g,, Turner [1]). Further, these equations yield the values R, = 2772'4/4 =657.5 anda, = n/ﬁ, which

are associated with the classical Rayleigh-Benard problem.

3.2 Darcy model
For Darcy porous medium, i.e. for a densely packed porous layer, 4, =0, 4, =1, then Eq. (32) reads
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( 2, 2)\?
T°+a ) »
Ry=———"Da +RaglLe. (35)
a
When both sides of Eq. (35) are multiplied by Da one can obtain the expression for Darcy-Rayleigh number
2

(7[2 +a’ )

R, = 5 +Rag,Le, (36)
a

with modified solute Rayleigh number, Rag, = p,8;gASdK / uic,. for the Darcy porous layer. The corresponding critical
values of Darcy-Rayleigh number and wavenumber are, respectively, given by
R,.=4r’and a,=1. (37)

which are the classical results of Horton and Rogers [43] and Lapwood [44] for convection in a porous layer.

3.3 Brinkman model
For a Brinkman porous medium, i.e. for a sparsely packed porous layer, 4, =1, 4, =1, so that Eq. (32) reduces

to
3 2
(7 +d’) (7 +a) 1
Ry, =M 5 + 5 Da™ +RaglLe. (38)
a a

The minimum value of the Rayleigh number R,,. occurs at the critical wavenumber a =a_, where a_ satisfies the
equation

(7r2+af)(2af—ﬁ2){MDa(ﬂ2+af)+1}=O, (39)

The above results (38) and (39) are obtained by Poulikakos for DDC in a horizontal sparsely packed porous layer in the
absence of modulation [45].

The equation for W, then reads

LW, =-d’ [(R053 ~RagL,)Re{e™ | + R152Le’1]sin z, (40)

where Zz, Z3 and o7 are as given in the Appendix through Egs. (A.5)-(A.7).

The above equation is inhomogeneous and its solution poses a problem, because of the presence of resonance term. The
mathematical properties and solvability conditions of the differential equations with time periodic coefficients have
been extensively discussed by Yakubovich and Starzhinskii [46]. If this equation is to have a solution, the right-hand side
must be orthogonal to the null space of the operator L. This requires that the time-independent part of the right-hand

side should be orthogonal to its steady state solution /¥, i.e. sin 7 z. Since cos @t varies sinusoidally with time, the only

steady term is —a’R,0°Le”' sinzz, so that R, is zero. It follows that all the odd coefficients R, R;,..., in Eq. (26) are

zero because a change of the sign of ¢ shifts the time origin by half period but does not change the physical problem.

Now we solve Eq. (40) by inverting the operator L term-by-term and obtain the expression for /¥, in the form

) —iwt
VVI =—a2 (ROL~3 —Rasiz)Re{Zm}Sin nrz, (41)
n=1 s

where L (a), n) = B, +iB,,with B, and B, as given in the Appendix through the Egs. (A.8)-(A.9).

Equation (29) now takes the form
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LW, =-a’5"Le 'R, sinrz—a’ (ROZ3 - RaS]:2 ) Re {e”"‘”} /% (42)
where L~2 and L~3 are as given in the Appendix through the equations (A.10)-(A.11).
We shall not require the solution of this equation, but we use it to determine R,, the first non-zero correction to Ra.

The solvability condition requires that the steady part of right-hand side must be orthogonal sin 7 z. Thus,

2Le(, = N |
R, = _5—2e(ROL3 —RaSLz)Re{je‘”‘”VV1 sin 7z dZ}, (43)
0

where the over bar indicates the time average. Now, from Eq. (41), one can obtain

Re{e’””Wl sinﬂz} - WLW,. (44)

a’*(R,L, — RagL,)

Using Eq. (41) and (40) in Eq. (44) and finding the time average, substituting the resulting expression in Eq. (43) we
obtain

dLe i B, (B - @B} )+2wB,B,B,
20° “~ B! +B;
with the values of B; and B, as given in Appendix through the Egs. (A.12)-(A.14).

RZ

: (45)

Eq. (42) could now be solved for W, if desired, and the procedure may be continued to obtain further corrections
to W and Ra,.However we shall stop at this step. The value of thermal Rayleigh number Ra, obtained by this procedure
is the eigenvalue corresponding to the eigenfunctions W', which, though oscillating, remains bounded in time. Ra, is a
function of horizontal wavenumber a and the amplitude of modulation &, accordingly we expand

Ra, (a, 5):R0 (a)+82R2 (a)+84R4(a)+~~, (46)

a=a0+62a2+~--, 47
where R, and g, are the Rayleigh number and wavenumber, respectively for the unmodulated system. The thermal

Rayleigh number Ra; as a function of wavenumber a has a least value Ra;, which occurs at a =a, and the critical

R
wavenumber occurs when 8aaT =0.Inview of Eq. (46) we have
a
OR OR
204270 42, (48)
oa oa
Eq. (48) in view of Eq. (47) takes the form
OR O*R 1( R O*R R
—Lte| =L |+ o] =2 |af +| — a2+8_2 +---=0, (49)
oa, Oay, 2\ Oay oa Oa,
Equating the coefficients of like powers of £ on both sides of Eq. (49) we get
0
GTRGZO, a=0, a=—(0R, /8ay)/ (2R, /0a3 ). (50)
0

The critical thermal Rayleigh number is then given by
Ray.(a,e)=Ry, +&° Ry, +&*R,, +---

=Ry(ay)+&(0Ry/day)a, + & B(azRo / 0ag )i +(0R, / 8ay ), +R2(ao)}_...

(51
In view of Eq. (50), the above equation reduces to

Rag(a,e)=Ry(a,)+& Ry(ay, )+ (52)
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The critical value of the thermal Rayleigh number Ra;, isthus computed up to O (82 ) by evaluating R,and R, at a =q,

. It is only when one wishes to evaluate R,, a, must be taken into account (see also Venezian [47]). In that case the
gravity modulation affects the critical wavenumber. If R, is positive, the effect of modulation is to stabilize the system

as compared to the unmodulated system. When R,_ is negative, the effect of modulation is to destabilize the system as
compared to the unmodulated system.

To the order of 0(82 ), R, is obtained for the three cases, viz,, (i) fluid layer, (ii) Darcy porous layer and (iii) Brinkman

porous layer. The variation of R, with @ for different values of Rag, Le, Pr, Da, y and M is depicted in Figs. 1-14 and
the results are discussed in the next section.

4. RESULTS AND DISCUSSION

The onset of binary convection in a horizontal fluid layer and fluid saturated porous layer, under the influence of time-
periodically varying gravitational force, is investigated analytically using the linear stability theory. Due to gravity
modulation there is a shift in the onset criteria. The critical Rayleigh number and the wavenumber are computed using
regular perturbation technique based on the assumption that amplitude of imposed modulation is very small. Because

of this we have restricted our analysis only for the first order correction to the critical Rayleigh number, viz,, R, . The
critical correction Rayleigh number is evaluated as a function of the frequency of modulation @, the solute Rayleigh
number Ra,, the Lewis number Le, the Prandtl number Pr, the Darcy number Da, the viscosity ratio M and the normalized
porosity ¥ . The influence of these governing parameters on the onset of DDC is displayed through the Figs. 1-14.

The value of frequency of modulation plays an important role in validating the results obtained in this analysis. When @
is very small the period of modulation becomes sufficiently large and the disturbances grow to a large extent and
therefore, the entire system under consideration becomes unstable. This is justified by the magnitude of R,_, which is

found to be sufficiently small or even negative in some cases. On the other-hand when @ is very large the effect of gravity
modulation is confined only to a narrow boundary layer near the boundary. This is due to the fact that the high
frequencies correspond to renormalization of the static gravity field. Thus, outside this thickness the buoyancy force
takes a mean value tending towards the equilibrium sate value of the unmodulated case. The effect of gravity modulation
is therefore significant only for the moderate values of . Further, due to the assumption that the amplitude of
modulation is small and Darcy resistance dampens the convection currents, the nonlinear effects may be neglected.

In Figs. 1-3 the variation of critical correction Rayleigh number R,. with the frequency of modulation @ is revealed, for
the case of fluid layer. It is observed that R,, is negative for small @ while for moderate values of ®, there is a
considerable increase in the value of R, . Thus, the low frequency gravity modulation destabilizes the system where as
the convection is delayed when @ is quite large. The system becomes most stable when R, attains a maximum value

corresponding to a specific frequency @ = @ . If @ is increased beyond @  we notice that R, goes on decreasing and

becomes independent of @ for large values of frequency. Thus, critical Rayleigh number tends to its equilibrium value
of unmodulated state.

The variation of R,. with @ for different values of Ra is displayed in Fig. 1. When Rag = 0 a curve similar to that of a
single component case is obtained. In this case R, is positive over the entire range of values of @. This indicates the

stabilizing effect of gravity modulation on the onset of thermal convection in a viscous fluid layer. However, when
Rag #0, R, is negative for small values of . Thus the presence of second diffusing agent namely the solute

concentration leads the gravity modulation to advance the convection as compared to the unmodulated case. For
moderate frequency the stabilizing effect is noticed and at @ = o, the system becomes most stable due to both gravity
modulation and solute gradient. Further it is found that @" increase with Ra.
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In Fig. 2 the effect of Le on the stability of the binary fluid layer is exhibited. The role of Le is to stabilize the system. The
frequency @ at which the system is most stable is independent of Le. When Le = 0, we observed that R, is negatively
very small over the entire domain of @ . Thus in this case the gravity modulation shows a very weak destabilizing effect.
The Fig. 3 depicts the variation of R, with @ for different values of Pr. It is reported that the influence Pr is to enhance

the stabilizing effect of Ra; and Le. This figure also indicates that @ increases with Pr.
For the case of a densely packed porous layer saturated with a binary fluid the variation of R, with @ for various

governing parameters is exposed through the Figs. 4-8. We detect that R, is positive over the entire realm of .

Therefore, the onset of DDC is delayed as compared to the unmodulated system. It is important to note that the range
of values of @ over which the effect of gravity modulation is significant is comparatively larger than the cases of viscous
fluid layer and the Brinkman porous layer.

In Fig. 4 the influence of Da is revealed. It is found that with the increasing values of Da, there is a decrease in R, .
Further the range of values of frequency for which R, becomesindependent of @ is reduced considerably for the larger
Da. Thus when Da is very small the effect of gravity modulation is more pronounced and is sustained for larger range of

frequency. It is also noticed from this figure that @ decreases with Da. Thus the Da retards the stabilizing effect of
gravity modulation.
It is important to note from Fig. 5 that R,  decreases significantly with Rag. Thus the increasing solute gradient shifts

R,. towards the lower value. Therefore, there is a net decrease in the value of critical Rayleigh number. This shows a

destabilizing effect of Rag, which is in contrast to the case of onset of DDC in Darcy porous layer in the absence of gravity

modulation. This figure also shows that @ is almost independent of Ra.

Fig. 6 indicates the stabilizing effect of Le. When Le = 0, R,, decreases monotonically with @, where as when Le # 0,

the stabilizing effect of gravity modulation attains maximum at @ = @ and beyond " the reverse trend is reported.
The effect of Pr on the stability of the system is revealed in Fig. 7. When Pr > 50, the effect of gravity modulation is
prevailed over a larger range of frequency, where as for small @ the modulation effect is constrained to a comparatively

lower frequency range. This figure also shows that Prleads R, to increase and thus inhibits the DDC.

Fig. 8 reports the influence of normalized porosity y onthe onset criterion. The increasing y enhances the value of R,,

. Thus the normalized porosity reinforces the stabilizing effect of gravity modulation, the Darcy number Da and Prandtl
number Pr towards the onset of convection in a Darcy porous layer saturated with a binary fluid.
The effect of gravity modulation on the onset of DDC in a sparsely packed porous layer is exhibited through the Figs. 9-

14. From these figures it is clear that R, is positive over the entire domain of @. Thus the onset of binary convection is
suppressed due to the gravity modulation. Similar to the case of clear binary fluid layer the range of @ over which the

effect of gravity modulation is significant is comparatively smaller than that for the Darcy porous layer.
The Darcy number which characterizes the porous matrix is considered with a wide range of values, to encompass the

limits of Darcy porous layer and the binary fluid layer. From this figure we observe that R,  decreases with Da.
Therefore, the Darcy number retards the stabilizing effect of gravity modulation. It is important to note that when Da is

very small (i.e., Da << 1073) the curve corresponding to the Darcy case is recovered while for large Da (i.e.,, Da — o),
we recover the result of viscous fluid layer case. The curves characterizing the Brinkman porous layer are confined
between those representing the cases of viscous fluid layer and the Darcy porous layer.

Figs. 10-14 respectively exhibit the stabilizing effect of Rag, Le, Pr, y and M. The frequency @ at which the system
becomes most stable is independent of Rag, Leand y, where as it increases with Prand M. It is interesting to note from

the Fig. 11 that when Le = 0, the gravity modulation shows a very weak destabilizing effect. Further Fig. 12 indicates that
when Pr > 50 there is a considerable increase in the range of @ over which the influence of gravity modulation is

significant. From the Fig. 14 it is worth reporting that for the small values of @ (< o ), R,. decreases with M and the
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maximum value of R,, which occurs at @" decreases with M. Thus M shows a dual effect on the onset of thermohaline

convection in a sparsely packed porous layer under the influence of gravity modulation.

5. CONCLUSIONS
The analytical study of the effect of gravity modulation on the onset of DDC in a binary fluid layer and a saturated porous
layer is carried out. The critical correction Rayleigh number is computed using regular perturbation method and the
variation of the same with frequency of the imposed modulation is shown graphically and the following conclusions are
drawn:

e Due to imposed gravity modulation there is a shift in the onset criteria.

e Forsmall o, R,, issufficiently small or even negative therefore the low frequency gravity modulation advances
the convection in a binary fluid / saturated porous layer.

e When o is very large the effect of gravity modulation is confined only to a narrow boundary layer. Outside this
thickness the buoyancy force takes a mean value tending towards the equilibrium sate value of the unmodulated
case.

e The effect of gravity modulation is significant only for the moderate values of w.

e The nonlinear effects are neglected due to the assumption that the amplitude of modulation is small and Darcy
resistance dampens the convection currents.

e The system becomes most stable when R,  attains a maximum value corresponding to a specific frequency

*
w=aw .

For the case of binary fluid layer
e WhenRay =0, R,, is positive over the entire range of values of @ this is in agreement to the result of single

component case.
e When Ra, # 0, R, isnegative for small values of @ and for moderate frequency the stabilizing effect is noticed.
e Leand Pr enhance the stabilizing effect of gravity modulation and Rag.
e When Le = 0, gravity modulation shows a very weak destabilizing effect.
e @ increase with Ragand Pr while it is independent of Le.

For the case of binary fluid-saturated densely packed porous layer

e R, is positive over the entire realm of ®, indicating the inhibition of onset of DDC as compared to the
unmodulated system.

e The range of values of @ over which the effect of gravity modulation is significant is comparatively larger than
the cases of viscous fluid layer and the Brinkman porous layer.

e Daretards while Le, ¥ and Pr reinforce the stabilizing effect of gravity modulation.

e Therange of values of frequency for which R, becomesindependentof @ isreduced considerably for the larger
Da.

e When Da is very small the effect of gravity modulation is more pronounced and is sustained for larger range of
frequency.

e ® decreases with Da, while increases with Prand it is almost independent of Ra,, Leand y .

e R, decreases significantly with Ra. This shows a destabilizing effect of Ra, which is in disparity with the case

of onset of DDC in Darcy porous layer in the absence of gravity modulation.
e  When Pr > 50, the effect of gravity modulation is prevailed over a larger range of frequency.

For the case of binary fluid-saturated sparsely packed porous layer
e R, ispositive over the entire domain of @.
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e Da destabilizes the two component system while Rag, Le, Pr, ¥ and M supplement to the stabilizing effect of

gravity modulation.
e The cases of Darcy porous layer and viscous fluid layer are recovered respectively for very small Da (i.e.,

Da <<107°) and very large Da (i.e., Da — ©).
e o is independent of Rag, Leand y, where as it increases with Prand M.

e  When Le = 0, the gravity modulation shows a very weak destabilizing effect.
e M shows a dual effect ie., for small values of @ (<@ ),R,, decreases while for moderate frequencies R,,
increases with M.
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Fig. 7. Variation of R, with e for different values of Pr for the Darcy porous layer.
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Fig. 8. Variation of R, with e for different values of y for the Darcy porous layer
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Fig. 10. Variation of R, with @ for different values of Ra, for the Brinkman porous layer.
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Fig. 11. Variation of R, with e for different values of Le for the Brinkman porous layer
(4,=A4,=1, Ra;=100, Da=0.05, Pr=5, y=0.6, M=6).
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Fig. 12. Variation of R, with  for different values of Pr for the Brinkman porous layer.
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Fig. 13. Variation of R, with  for different values of y for the Brinkman porous layer.
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Fig. 14. Variation of R,  with e for different values of M for the Brinkman porous layer.
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