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ABSTRACT 
Momentum boundary layer of viscoelastic second grade fluid taken into consideration 
with the effect of uniform transverse magnetic field and normal electric field also 
included in the analysis. Thermal boundary layer formed over the non-isothermal 
boundary wall, with viscous dissipation and Ohmic dissipation due to transverse 
magnetic field and electric field has been investigated.  The highly non-linear momentum 
boundary layer equation and thermal boundary layer equation are converted into 
similarity equations and then solved numerically by employing fifth order Runge-Kutta-
Fehlberg method with shooting. 
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1. INTRODUCTION 
After pioneering works of Sakiadis [1964] the study over last few decades on the boundary layer flow problem over 

a stretching sheet as reveal many industrial applications such as polymer sheet or filament extrusion from a dye and 
paper production liquid films in condensation process etc.  Applications are more viscoelastic in nature than viscous the 
studies in the subsequent years gained momentum on various aspects of momentum and heat transfer characteristics in 
a viscoelastic boundary layer second order fluid flow over stretching sheets   Mahapatra and Gupta [2004], Pop and 
Soundalgekar   al. [1997]. However, the these  studies are concerned with  flow characteristics only associated with the 
viscoelastic fluid flow over linearly  stretching sheet.  In view of this some researchers have presented works on MHD 
flow and heat transfer in a electrically conducting viscoelastic boundary layer flow over a linear stretching sheet 
(Dandapat and Gupta [1989], Rollins and Vajravelu [1991],). However, in all these analysis they neglected the important 
controlling force, the electric field,. Ali (1995) investigated thermal boundary layer by considering a power law stretching 
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surface. A new dimension is added to this investigation by Elbashbeshy (2001) who examined the flow and heat transfer 
characteristics by considering exponentially stretching sheet. However, all  the above mentioned existing works on non-
linear stretching  sheet are  confined to the viscous fluid flow  in absence of magnetic field. Hence, keeping all the above 
mentioned works in mind present we formulate problem as follows 

   
2. FORMULATION OF THE PROBLEM 

Governing Equations 
The present study, the flow is to be generated by stretching of an elastic boundary sheet with the application of two 

equal and opposite forces as shown in figure 

 
We take into account the frictional heating due to viscous dissipation as the fluid considered for analysis is of 

viscoelastic type which possesses viscous property too. The flow region is exposed under uniform transverse magnetic 
fields B


 and uniform normal electric field ,E


 . Such application of electric field and magnetic field stabilizes the 

boundary layer flow (Dandapat and Mukhopadhyay [2003]). The electric field E


 and magnetic field 𝐵𝐵�⃗ 0  satisfy the 
following MHD equations:  
  Maxwell’s equations  

 0. =∇ B


  and  0=×∇ E


,        (2.1) 
 When magnetic field is not so strong then electric field and magnetic field obey Ohm’s law. The governing 

boundary layer equations for momentum and heat transfers are the modified version of the equations of Andersson 
[1992], Khan and Sanjayanand [2005] and Cortell [1994] and Temitope E. Akinbobola, Samuel S. Okoya1(2015) and 
those are  
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3. BOUNDARY CONDITIONS ON VELOCITY 
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Solution of the momentum boundary layer equation 
To solve (2.4), we make use of the following stream function,  
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Making use of the equation (3.3) in the   equation (2.4)  
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the local normal  electric parameter   and the subscript η   stands for differentiation with respect to η . 

The boundary conditions on stream function   of the equation (3.1) in view of the transformations take the following 
non-dimensional form.  

 ( ) ( ) ( ) 0,10,00 =∞== ηη fff                                   (3.5) 

here reasonably argued that in case of boundary layer flow of viscoelastic fluid with short memory, the characteristic 
time scale associated with the motion is large compared with the relaxation time of the fluid. Thus terms of order  2k ,

3k ,  and higher orders may be neglected and therefore we may seek the solution of the equation (3.4) in the form   

 ( ) ( ) ( )2*
11

*
10 0 kfkff ++= ηη       (3.6) 

Simplifying the equation (3.4) by using the  series expansion of the equation (3.6)  and equating the constant terms 
and the coefficient of  *

1k  to zero we deduce the following equations for  ( )η0f  and ( )η1f  . 
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Substituting the series expansion of the equation (3.6) in the boundary conditions equation (3.5) we obtain 
boundary conditions for   and   in the following form. 

  ( ) ( ) ( ) 0,10,00 000 =∞== ηη fff     (3.9) 

  ( ) ( ) ( ) 0,00,00 111 =∞== ηη fff                               (3.10) 

 
The dimensionless local skin-friction coefficient   is expressed as 
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4. SIMILARITY SOLUTION OF THE HEAT TRANSFER EQUATION 
Case A: prescribed surface temperature (PST) 
In order to solve the thermal boundary layer equation (2.5) in PST case we consider non-isothermal temperature 

boundary condition as follows. 
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where 0T   is the parameter of temperature distribution on the stretching surface,  wT  stands for stretching sheet 
temperature and  ∞T  is the temperature far away from the stretching sheet.   

 The thermal boundary layer equation (2.7) we define dimensionless temperature variable 𝜃𝜃(𝜂𝜂)  of the form: 

   𝜃𝜃 = 𝑇𝑇−𝑇𝑇∞
𝑇𝑇𝑤𝑤−𝑇𝑇∞

        (4.2) 

Making use of the equation (4.2) in the dimensional energy equation (2.5) we obtain thermal boundary layer 
equation. 

𝜃𝜃𝜂𝜂𝜂𝜂 + 𝑃𝑃𝑃𝑃�𝑓𝑓𝜃𝜃𝜂𝜂 − 𝜈𝜈0𝑓𝑓𝜂𝜂𝜃𝜃� = −𝑃𝑃𝑃𝑃 𝐸𝐸 �𝑓𝑓𝜂𝜂𝜂𝜂2 + 2𝑀𝑀𝑛𝑛2�𝑓𝑓𝜂𝜂2 + 𝐸𝐸12 + 2𝐸𝐸1𝑓𝑓𝜂𝜂��  (4.3) 
 

where 𝑃𝑃𝑃𝑃 = 𝛾𝛾
𝛼𝛼

 is the Prandtl number and   𝐸𝐸 = 𝑈𝑈02

𝑐𝑐𝑝𝑝𝑇𝑇0
�𝑈𝑈𝑤𝑤
𝑈𝑈0
�
4−𝜈𝜈0
2 is the Eckert number. 

 
 Temperature boundary conditions of the equation (4.1) take the following non-dimensional form.  
   𝜃𝜃(0) = 1,𝜃𝜃(∞) = 0      (4.4) 
The solution of the equation (4.3) subject to the boundary conditions of the equation (4.4) is obtained numerically 

by applying the method of fifth order Runge-Kutta-Fehlberg method with shooting and outline of the numerical solution 
procedure is described in the next section.  
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Case B: prescribed boundary heat flux (PHF) 
In order to solve the thermal boundary layer equation (2.5) in PHF case we consider variable heat flux boundary 

condition of the following form: 

   −𝑘𝑘 �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑤𝑤

= 𝑇𝑇1𝐸𝐸𝐸𝐸𝐸𝐸 �
𝜈𝜈1+1
2𝑙𝑙
� 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 = 0    (4.5) 

𝑇𝑇 → 𝑇𝑇∞𝑎𝑎𝑎𝑎𝑎𝑎 → ∞ 
where   is the parameter of temperature distribution on the stretching surface and  𝑇𝑇∞ is the temperature far away 

from the stretching sheet. We have considered the above form of quadratic power law heat flux   boundary condition on 
stretching sheet in order to obtain local similar solution of the equation (2.5). 

As we look for local similar equation from the thermal boundary layer equation (2.7) we define dimensionless 
temperature variable   of the form: 

  𝑔𝑔(𝜂𝜂) = 𝑇𝑇−𝑇𝑇∞
𝑇𝑇1
𝑘𝑘 �

2𝛾𝛾𝛾𝛾
𝑈𝑈0

𝐸𝐸𝐸𝐸𝐸𝐸�𝜈𝜈1𝑥𝑥2𝑙𝑙 �
       (4.6) 

 
Making use of the equation (4.6) in the dimensional energy equation (2.5) we arrive at the following  form of non-

dimensional thermal boundary layer equation in PHF case. 
 𝑔𝑔𝜂𝜂𝜂𝜂 + 𝑃𝑃𝑃𝑃�𝑓𝑓𝑔𝑔𝜂𝜂 − 𝜈𝜈1𝑓𝑓𝜂𝜂𝑔𝑔� = −𝑃𝑃𝑃𝑃 𝐸𝐸 �𝑓𝑓𝜂𝜂𝜂𝜂2 + 2𝑀𝑀𝑛𝑛2�𝑓𝑓𝜂𝜂2 + 𝐸𝐸12 + 2𝐸𝐸1𝑓𝑓𝜂𝜂�� (4.7) 
 

where  𝑃𝑃𝑃𝑃 = 𝛾𝛾
𝛼𝛼

  is the Prandtl number and  𝐸𝐸 = 𝑈𝑈20𝑘𝑘

𝑐𝑐𝑝𝑝𝑇𝑇1�
2𝛾𝛾𝛾𝛾
𝑈𝑈0

�𝑈𝑈𝑤𝑤
𝑈𝑈0
�
4−𝜈𝜈1
2   is the Eckert number in PHF case. 

 In view of the transformation equation (4.6) the temperature boundary conditions of the equation (4.5) take the 
following non-dimensional form.  

 𝑔𝑔𝜂𝜂(0) = −1,𝑔𝑔(∞) = 0.       (4.8) 
 
The solution of the equation (4.7) subject to the boundary conditions of the equation (4.8) is obtained numerically 

by applying the fifth order Runge-Kutta-Fehlberg integration scheme with shooting and outline of the numerical solution 
procedure is described in the next section. 

 
5. RESULTS AND DISCUSSION 

Numerical results are computed and they are presented in the Figs. 2-15 for the case of small viscoelastic parameter  
in order to gain information on the effects of all the physical parameters on heat transfer characteristics. Figs 2-3 
represent the stream function and  velocity profiles, Figs. 4-5 represent skin-friction profiles, Figs 6-9 represent 
temperature profiles in PST case and Figs 10-13 represent temperature profile in PHF case for various values of heat 
transfer controlling parameters. The physical layout of the  boundary layer in presence of electric field which develops 
near the slit is depicted in the   

 

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh


A Study on Second Grade MHD Flow and Heat Transfer with Viscous and Ohmic Dissipations Over an Exponentially Stretching Sheet With 
 

ShodhKosh: Journal of Visual and Performing Arts 1026 
 

Fig. 2.  Analysis of the figure  shows  that  the effect of increasing values of  viscoelastic parameter   and Hartmann 
number  is to shift the position of streamlines towards the   stretching boundary  which signifies that there will be a 
reduction of  thickness of the momentum boundary layer.  The effect of viscoelastic parameter   and Hartmann number    
is seen  to decrease the boundary layer velocity throughout the boundary layer but more significantly little away from 
the stretching sheet. It is to be noted that   this reduction of velocity with the increase of viscoelastic parameter    is more 
significant in absence of magnetic field.  

 
 

Fig. 5 represents the graphs of skin-friction coefficient 𝐶𝐶𝑓𝑓  vs. local viscoelastic parameter 𝑘𝑘1∗, for different values of local 
Reynolds number 𝑅𝑅𝑅𝑅𝑥𝑥  and local normal electric parameter𝐸𝐸1in presence of uniform transverse magnetic field. A 
careful analysis of the graphs shows that the skin-friction coefficient 𝐶𝐶𝑓𝑓would decrease with the increase of the values of 
local Reynolds number𝑅𝑅𝑅𝑅𝑥𝑥 . However the increase of the values of local normal electric parameter𝐸𝐸1would increase 
the values of skin-friction parameter 𝐶𝐶𝑓𝑓 . This is due to the fact that the Lorentz force generated by electric field coupled 
with the reduced magnitude of viscous force decelerates the flow in the down stream direction. It is interesting to 
observe that skin-friction coefficient 𝐶𝐶𝑓𝑓  decreases linearly with the increase of viscoelastic parameter 𝑘𝑘1∗. Separation of 
boundary layer occurs for the value of viscoelastic parameter 𝑘𝑘1∗ = 1

3
 which is independent of the values of local Reynolds 

number 𝑅𝑅𝑅𝑅𝑥𝑥 , Hartmann number 𝑀𝑀𝑀𝑀 and local normal electric parameter 𝐸𝐸1. This clearly demonstrates that the effect 
of inertia force and electromagnetic force will be present only for such flow of fluid having smaller viscoelasticity. 

Table 1      Table 2 
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The effects of various values of viscoelastic parameter 𝑘𝑘1∗, Hartmann number 𝑀𝑀𝑀𝑀, Prandtl number 𝑃𝑃𝑃𝑃, local normal 
electric parameter 𝐸𝐸1 and Eckert number 𝐸𝐸 on temperature profile are tabulated in table 1 to 3   for PST case.  Table 1 is 
tabulated for   different combination of the values of viscoelastic parameter 𝑘𝑘1∗, Hartmann number 𝑀𝑀𝑀𝑀 and Prandtl 
number 𝑃𝑃𝑃𝑃.  in absence of viscous dissipation and local normal electric field, the effect of Prandtl number 𝑃𝑃𝑃𝑃 is to decrease 
temperature in the boundary layer region. Whereas, the effect of increasing values of Hartmann number 𝑀𝑀𝑀𝑀 is to increase 
temperature in the boundary layer region. The boundary layer fluid would attain maximum temperature if the fluid flow 
is viscoelastic with low Prandtl number and it is exposed under the influence of a transverse  magnetic  

Table 2 tabulated for when viscous dissipation is accounted but electric field is absent (𝐸𝐸 = 0). In presence of viscous 
dissipation there would be higher   temperature throughout the boundary layer in case of a viscoelastic fluid compared 
to viscous fluid. It is also noticed that the effect of Prandtl number is to decrease temperature throughout the boundary 
layer in both the cases of viscous and viscoelastic fluid in absence of magnetic field. However, in presence of magnetic of 
magnetic field, the effect of increasing values of Prandtl number is to increase temperature near the stretching sheet and 
to decrease the same away from the same. The combined effect of increasing values of Prandtl number 𝑃𝑃𝑃𝑃 and Hartmann 
number 𝑀𝑀𝑀𝑀 is to increase temperature near the stretching sheet significantly. 

Table 3      Table 4 

 
Table 3 represents the variation of temperature with the change of Hartmann number Mn, Prandtl number Pr for 

different values of viscoelastic parameter k_1^* when both viscous dissipation and electric field are taken into 
consideration.  This figure is plotted for the same set of data as that of table 2 except for local normal electric field 
parameter E_1=0.3. this reveals the similar feature of temperature profile with the change of Hartmann number, Prandtl 
number and local viscoelastic parameter. But the region, for which temperature increases, near stretching sheet for 
increasing Prandtl number in presence of magnetic field, enhances. The combined effect of increasing values of Prandtl 
number Pr and Hartmann number Mn is to increase temperature near stretching sheet largely in presence of local normal 
electric field. This is owing to the reason that local normal electric field acts as a heat source in presence of magnetic field 
near the boundary sheet whose strength increases with the reduction of values of Prandtl number and decreases with 
increase of distance from the sheet. 

Table 3 shows for different values of local normal electric parameterE_1, Prandtl number Pr and viscoelastic 
parameter k_1^* when the effects of viscous dissipation and magnetic field are taken into account. A careful analysis 
table reveals that heat transfer will take place from the adjacent fluid layer to the  boundary wall with lower  rate  when 
the electric field is not accounted. When the local normal electric field is accounted then  the heat transfer process will 
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take place with faster rate. Temperature would attain maximum value in the boundary layer region near stretching sheet. 
This is because Ohmic dissipation due to electric as well as magnetic field is generated heat in the fluid layer near 
stretching sheet. 

in PHF case. The analysis is carried out found the similar qualitative effects of   Hartmann number Mn, Prandtl 
number 𝑃𝑃𝑃𝑃, viscoelastic parameter k_1^*, Eckert number E and local normal electric parameter E_1 on temperature 
profile, but with different magnitudes.  

 
6.  CONCLUSION 

1) In presence of viscous dissipation, it is seen that   there would be higher   temperature throughout the boundary 
layer in case of a viscoelastic fluid compared to viscous fluid. The effect of Prandtl number 𝑃𝑃𝑃𝑃 is to decrease 
temperature throughout the boundary layer in absence of magnetic field. However, in presence of magnetic of 
magnetic field, the effect of increasing values of Prandtl number is to increase temperature near the stretching 
sheet and to decrease the same away from the same.  

2) The combined effect of increasing values of Prandtl number 𝑃𝑃𝑃𝑃 and Hartmann number Mn is to increase 
temperature near stretching sheet largely in presence of local normal electric field 

3) When the local normal electric field is accounted then the heat transfer takes  place from the adjacent fluid layer 
to the  boundary wall  with faster rate. 

4) In PHF cases, heat transfer from stretching sheet to the adjacent boundary layer region takes place for any values 
of all the heat controlling physical parameters. 

5) Magnetic field and viscous dissipation can reverse the direction of heat transfer across the stretching sheet. 
6) The effect of viscoelastic parameter k_1^*, in presence of local electric parameter E_1, is  to increase  the rate of 

heat transfer across the stretching sheet. 
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