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Momentum boundary layer of viscoelastic second grade fluid taken into consideration
Check for . . - A
updates with the effect of uniform transverse magnetic field and normal electric field also

included in the analysis. Thermal boundary layer formed over the non-isothermal

boundary wall, with viscous dissipation and Ohmic dissipation due to transverse
Corresponding Author magnetic field and electric field has been investigated. The highly non-linear momentum
boundary layer equation and thermal boundary layer equation are converted into
similarity equations and then solved numerically by employing fifth order Runge-Kutta-
Fehlberg method with shooting.
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1. INTRODUCTION

After pioneering works of Sakiadis [1964] the study over last few decades on the boundary layer flow problem over
a stretching sheet as reveal many industrial applications such as polymer sheet or filament extrusion from a dye and
paper production liquid films in condensation process etc. Applications are more viscoelastic in nature than viscous the
studies in the subsequent years gained momentum on various aspects of momentum and heat transfer characteristics in
a viscoelastic boundary layer second order fluid flow over stretching sheets Mahapatra and Gupta [2004], Pop and
Soundalgekar al. [1997]. However, the these studies are concerned with flow characteristics only associated with the
viscoelastic fluid flow over linearly stretching sheet. In view of this some researchers have presented works on MHD
flow and heat transfer in a electrically conducting viscoelastic boundary layer flow over a linear stretching sheet
(Dandapat and Gupta [1989], Rollins and Vajravelu [1991],). However, in all these analysis they neglected the important
controlling force, the electric field,. Ali (1995) investigated thermal boundary layer by considering a power law stretching
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surface. A new dimension is added to this investigation by Elbashbeshy (2001) who examined the flow and heat transfer
characteristics by considering exponentially stretching sheet. However, all the above mentioned existing works on non-
linear stretching sheet are confined to the viscous fluid flow in absence of magnetic field. Hence, keeping all the above
mentioned works in mind present we formulate problem as follows

2. FORMULATION OF THE PROBLEM
Governing Equations

The present study, the flow is to be generated by stretching of an elastic boundary sheet with the application of two
equal and opposite forces as shown in figure

y

Boundary Layer
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/ T | > x
| z Impermeable stretching Sheet
n

We take into account the frictional heating due to viscous dissipation as the fluid considered for analysis is of
viscoelastic type which possesses viscous property too. The flow region is exposed under uniform transverse magnetic

fields B and uniform normal electric field E, . Such application of electric field and magnetic field stabilizes the

boundary layer flow (Dandapat and Mukhopadhyay [2003]). The electric field E and magnetic field §0 satisfy the
following MHD equations:

Maxwell’s equations
VB=0 and VxE=0, (2.1)

When magnetic field is not so strong then electric field and magnetic field obey Ohm’s law. The governing
boundary layer equations for momentum and heat transfers are the modified version of the equations of Andersson
[1992], Khan and Sanjayanand [2005] and Cortell [1994] and Temitope E. Akinbobola, Samuel S. Okoya1(2015) and
those are
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3. BOUNDARY CONDITIONS ON VELOCITY

u:Uw(x):UOeXp(§),v:O at y=0

(3.1)
u=0 as y—o.
Solution of the momentum boundary layer equation
To solve (2.4), we make use of the following stream function,
u:a—l//,v:—a—l// (3.2)
oy ox
Stream function l//(x,y) is defined as follows
=/271U, f Exp( J
U, X
=y |— Exp| —
n=y / T E)
Making use of the equation (3.3) in the equation (2.4)
: - k|3 : S 2 | omn(E, + 1) 3.4
f,, _ﬂfm_fmm—i_ 1 fnfmm_zﬁpfmnn_gfnn a n 1+fr7 (34)
. kU, E,
Here k; = o i i i i , Mn = iB0 is Hartmann number, E, = —%—is
}/l IOb BOUw

the local normal electric parameter and the subscript 77 stands for differentiation with respect to 7.

The boundary conditions on stream function of the equation (3.1) in view of the transformations take the following
non-dimensional form.

r0)=0,  £,0)=1, f,(2)=0 (3.5)
here reasonably argued that in case of boundary layer flow of viscoelastic fluid with short memory, the characteristic

time scale associated with the motion is large compared with the relaxation time of the fluid. Thus terms of order k?,
k*, and higher orders may be neglected and therefore we may seek the solution of the equation (3.4) in the form

7= fo)+ kg G+ ole?) (3:6)

Simplifying the equation (3.4) by using the series expansion of the equation (3.6) and equating the constant terms
and the coefficient of k; to zero we deduce the following equations for fo(n) and f1(77) :

212 = fofor = form —2Mn*(E, + 1) (3.7)

1 3
flrmn - ZManln - 4'f0nf117 + fOflm] + flfOnn = 3f0nf0171717 - Efofm]mm - Efoznn (3-8)
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Substituting the series expansion of the equation (3.6) in the boundary conditions equation (3.5) we obtain
boundary conditions for and in the following form.

£0)=0, f£,0)=1, f,()=0 (3.9)
£0)=0, £,(0)=0, f,()=0 (3.10)

The dimensionless local skin-friction coefficient is expressed as

(76”+k {uazu +v82”—28“av}j

oy | oxo o’ oy o

c, = S V) at y=0 (3.11)
| (bx)

U,l .
where Re, = —= is the local Reynolds number and fq(,(;) = fo(f;,)] +k fls;)ﬂ) :
/4

4. SIMILARITY SOLUTION OF THE HEAT TRANSFER EQUATION

Case A: prescribed surface temperature (PST)

In order to solve the thermal boundary layer equation (2.5) in PST case we consider non-isothermal temperature
boundary condition as follows.

T=T :Tw+T0Exp[Mj at y=0
21 (4.1)
T'—>T, as y-—> o
where 7|, is the parameter of temperature distribution on the stretching surface, 7, stands for stretching sheet
temperature and 7 is the temperature far away from the stretching sheet.
The thermal boundary layer equation (2.7) we define dimensionless temperature variable 8(n) of the form:
6= % (4.2)

Making use of the equation (4.2) in the dimensional energy equation (2.5) we obtain thermal boundary layer
equation.

Oy + Pr(f6, —vofy0) = — PrE{f% + 2Mn?(f;? + Ef + 2E:f)} (4.3)
4-vq
Y. Uz (Uy\" 2z .
where Pr =-=isthe Prandtl numberand E = —— (—) is the Eckert number.
a CpTO UO

Temperature boundary conditions of the equation (4.1) take the following non-dimensional form.
6(0) =1,6(c0) =0 (4.4)
The solution of the equation (4.3) subject to the boundary conditions of the equation (4.4) is obtained numerically

by applying the method of fifth order Runge-Kutta-Fehlberg method with shooting and outline of the numerical solution
procedure is described in the next section.
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Case B: prescribed boundary heat flux (PHF)

In order to solve the thermal boundary layer equation (2.5) in PHF case we consider variable heat flux boundary

condition of the following form:
oT _ V1+1 _
—k (E)w =T Exp (_21 )xaty =0 (4.5)

T - Teasy — o0

where is the parameter of temperature distribution on the stretching surface and T, is the temperature far away
from the stretching sheet. We have considered the above form of quadratic power law heat flux boundary condition on
stretching sheet in order to obtain local similar solution of the equation (2.5).

As we look for local similar equation from the thermal boundary layer equation (2.7) we define dimensionless
temperature variable of the form:
T—Teo

(4.6)

Making use of the equation (4.6) in the dimensional energy equation (2.5) we arrive at the following form of non-
dimensional thermal boundary layer equation in PHF case.

Gnn + Pr(fgy —vifyg) = — PrE{f3 + 2Mn*(f;? + EZ + 2E;f,)} (4.7)

4-vq

)T is the Eckert number in PHF case.

y . U%0k (U
where Pr == is the Prandtl number and E = (—
a CpTl 2_'yl Uo

In view of the transformation equation (4.6) the temperature boundary conditions of the equation (4.5) take the
following non-dimensional form.

9n(0) = —1,g(e0) = 0. (4.8)

The solution of the equation (4.7) subject to the boundary conditions of the equation (4.8) is obtained numerically
by applying the fifth order Runge-Kutta-Fehlberg integration scheme with shooting and outline of the numerical solution
procedure is described in the next section.

5. RESULTS AND DISCUSSION

Numerical results are computed and they are presented in the Figs. 2-15 for the case of small viscoelastic parameter
in order to gain information on the effects of all the physical parameters on heat transfer characteristics. Figs 2-3
represent the stream function and velocity profiles, Figs. 4-5 represent skin-friction profiles, Figs 6-9 represent
temperature profiles in PST case and Figs 10-13 represent temperature profile in PHF case for various values of heat
transfer controlling parameters. The physical layout of the boundary layer in presence of electric field which develops
near the slit is depicted in the
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Fig.2. Graph of stream function (1) and velocity function £ (1) vs. 1 for different values of

scoelastic parameter k* and Hartmann number Mn when E=0.4
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Fig. 2. Analysis of the figure shows that the effect of increasing values of viscoelastic parameter and Hartmann
number is to shift the position of streamlines towards the stretching boundary which signifies that there will be a
reduction of thickness of the momentum boundary layer. The effect of viscoelastic parameter and Hartmann number
is seen to decrease the boundary layer velocity throughout the boundary layer but more significantly little away from
the stretching sheet. It is to be noted that this reduction of velocity with the increase of viscoelastic parameter is more
significant in absence of magnetic field.

0.40 —

Fig. 5 represents the graphs of skin-friction coefficient Cr vs. local viscoelastic parameter kj, for different values of local
Reynolds number Re,  and local normal electric parameterE;in presence of uniform transverse magnetic field. A
careful analysis of the graphs shows that the skin-friction coefficient Crwould decrease with the increase of the values of

local Reynolds numberRe, . However the increase of the values of local normal electric parameterE; would increase
the values of skin-friction parameter Cy. This is due to the fact that the Lorentz force generated by electric field coupled
with the reduced magnitude of viscous force decelerates the flow in the down stream direction. It is interesting to
observe that skin-friction coefficient C; decreases linearly with the increase of viscoelastic parameter k;. Separation of
boundary layer occurs for the value of viscoelastic parameter k; = %Which is independent of the values of local Reynolds

number Re,, , Hartmann number Mn and local normal electric parameter E;. This clearly demonstrates that the effect
of inertia force and electromagnetic force will be present only for such flow of fluid having smaller viscoelasticity.

Table 1 Table 2
n |k | Pr My | EE | 6() n |k | PrM [ EE |60
00 |2 00 [00 [00 [099 00 2 00 11T oo o099
0.3 0.99 0.3 0.996
00 15 0981 00 |5 0.994
0 0.3 0.981 0 0.3 0.995
00 |5 1 0.983 00 |5 1 1.006
00 |2 0.991 00 2 1003
03 0.991 03 1.004
00 |2 0.0 03 00 |2 0.0 0511
03 0.306 03 0519
00 |5 0.192 00 |3 0.458
00 |5 1 0.224 00 3 1 0714
0.3 0.237 03 0.716
00 |2 0337 00 2 0T
0.3 0.35 0.3 0.725
00 |2 0.0 0.3 00 |2 0.0 03
00 |5 0.192 00 3 0.192
1 03 0.198 1 0.3 0.198
00 15 I 0.224 00 |5 1 0.224
03 0.237 0.3 0.237
00 |2 0337 00 2 0337
03 035 0.3 0.35
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The effects of various values of viscoelastic parameter kj, Hartmann number Mn, Prandtl number Pr, local normal
electric parameter E; and Eckert number E on temperature profile are tabulated in table 1 to 3 for PST case. Table 1 is
tabulated for different combination of the values of viscoelastic parameter kj, Hartmann number Mn and Prandtl
number Pr. in absence of viscous dissipation and local normal electric field, the effect of Prandtl number Pr is to decrease
temperature in the boundary layer region. Whereas, the effect of increasing values of Hartmann number Mn is to increase
temperature in the boundary layer region. The boundary layer fluid would attain maximum temperature if the fluid flow
is viscoelastic with low Prandtl number and it is exposed under the influence of a transverse magnetic

Table 2 tabulated for when viscous dissipation is accounted but electric field is absent (E = 0). In presence of viscous
dissipation there would be higher temperature throughout the boundary layer in case of a viscoelastic fluid compared
to viscous fluid. It is also noticed that the effect of Prandtl number is to decrease temperature throughout the boundary
layer in both the cases of viscous and viscoelastic fluid in absence of magnetic field. However, in presence of magnetic of
magnetic field, the effect of increasing values of Prandtl number is to increase temperature near the stretching sheet and
to decrease the same away from the same. The combined effect of increasing values of Prandtl number Pr and Hartmann
number Mn is to increase temperature near the stretching sheet significantly.

Table 3 Table 4
+
;
N |k | Pr|Ma | E | E | 6() n |k |[Pr[Ma [ E[E | 6@
00 |2 00 |1 103 |0995 0.0 |2 10 |1 |00 |1.003
0.3 0.996 0.3 1.004
00 |5 0.994 00 |5 0.0 |1.006
0 03 0.995 0 03 1.076
00 |5 1 1.013 00 |5 0.4 |2021
0.3 1014 0.3 1023
0.0 |2 1.007 0.0
0.3 1.008 03
0.0 |2 0.0 0511 00 12 00 o7z
0.3 0517 0.3 0.725
00 |5 0.458 00 |5 0.0 [0714
0.5 0.3 0.463 0.5 03 0.72
00 |5 1 0.992 00 |5 0.4 | 1411
03 0.998 03 1411
0.0 |2 0.93 0.0
03 0935 03
00 |2 0.0 0.214 00 |2 0.0 [0.288
0.3 0214 0.3 0.287
00 |5 0.178 00 |5 0.0 024
1 0.3 0.176 1 03 0.24
00 |5 1 0.385 0.0 |5 0.4 | 0.695
03 0397 03 0.691
0.0 |2 0.422 0.0
0.3 0.426 03

Table 3 represents the variation of temperature with the change of Hartmann number Mn, Prandtl number Pr for
different values of viscoelastic parameter k_1** when both viscous dissipation and electric field are taken into
consideration. This figure is plotted for the same set of data as that of table 2 except for local normal electric field
parameter E_1=0.3. this reveals the similar feature of temperature profile with the change of Hartmann number, Prandtl
number and local viscoelastic parameter. But the region, for which temperature increases, near stretching sheet for
increasing Prandtl number in presence of magnetic field, enhances. The combined effect of increasing values of Prandtl
number Pr and Hartmann number Mn is to increase temperature near stretching sheet largely in presence of local normal
electric field. This is owing to the reason that local normal electric field acts as a heat source in presence of magnetic field
near the boundary sheet whose strength increases with the reduction of values of Prandtl number and decreases with
increase of distance from the sheet.

Table 3 shows for different values of local normal electric parameterE_1, Prandtl number Pr and viscoelastic
parameter k_17* when the effects of viscous dissipation and magnetic field are taken into account. A careful analysis
table reveals that heat transfer will take place from the adjacent fluid layer to the boundary wall with lower rate when
the electric field is not accounted. When the local normal electric field is accounted then the heat transfer process will

ShodhKosh: Journal of Visual and Performing Arts 1027


https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh

A Study on Second Grade MHD Flow and Heat Transfer with Viscous and Ohmic Dissipations Over an Exponentially Stretching Sheet With

take place with faster rate. Temperature would attain maximum value in the boundary layer region near stretching sheet.
This is because Ohmic dissipation due to electric as well as magnetic field is generated heat in the fluid layer near
stretching sheet.

in PHF case. The analysis is carried out found the similar qualitative effects of Hartmann number Mn, Prandtl
number Pr, viscoelastic parameter k_1"*, Eckert number E and local normal electric parameter E_1 on temperature
profile, but with different magnitudes.

6. CONCLUSION

1) In presence of viscous dissipation, it is seen that there would be higher temperature throughout the boundary
layer in case of a viscoelastic fluid compared to viscous fluid. The effect of Prandtl number Pr is to decrease
temperature throughout the boundary layer in absence of magnetic field. However, in presence of magnetic of
magnetic field, the effect of increasing values of Prandtl number is to increase temperature near the stretching
sheet and to decrease the same away from the same.

2) The combined effect of increasing values of Prandtl number Pr and Hartmann number Mn is to increase
temperature near stretching sheet largely in presence of local normal electric field

3) When the local normal electric field is accounted then the heat transfer takes place from the adjacent fluid layer
to the boundary wall with faster rate.

4) In PHF cases, heat transfer from stretching sheet to the adjacent boundary layer region takes place for any values
of all the heat controlling physical parameters.

5) Magnetic field and viscous dissipation can reverse the direction of heat transfer across the stretching sheet.

6) The effect of viscoelastic parameter k_17*, in presence of local electric parameter E_1, is to increase the rate of
heat transfer across the stretching sheet.
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