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ABSTRACT 
Two dimensional second grade fluid has been considered for analysis. Basic governing 
equation of velocity and temperature are partial differential equation which is converted 
to ordinary differential equation by using transformation variable.  Employing fifth order 
Runge-Kutta-Fehlberg method with shooting to solve momentum equation. The results 
are analysed for the situation when stretching boundary sheet is prescribed by non-
isothermal temperature and variable heat flux, varying quadratically with the flow 
directional coordinate x. 

Corresponding Author 
Emmanuel Sanjayanand, 
emmanuelsanjayanand@gmail.com  
DOI 
10.29121/shodhkosh.v4.i1.2023.404
2   

Funding: This research received no 
specific grant from any funding agency in 
the public, commercial, or not-for-profit 
sectors. 

Copyright: © 2023 The Author(s). 
This work is licensed under a Creative 
Commons Attribution 4.0 
International License. 

With the license CC-BY, authors retain 
the copyright, allowing anyone to 
download, reuse, re-print, modify, 
distribute, and/or copy their 
contribution. The work must be 
properly attributed to its author. 

 

 

Keywords: Viscoelastic Stretching Surface, Viscous Dissipation, Ohmic Dissipation, 
Magnetic Field and Normal Electric Field 
 
  
 

1. INTRODUCTION 
The reason behind opting boundary layer flow problem over a stretching sheet, finds many industrial applications 

such wind-up roll, glass fiber and paper production, drawing of plastic films, liquid films in condensation process etc. 
Taking note of this the studies in the subsequent years  gained momentum  on various aspects of momentum and heat 
transfer characteristics in a viscoelastic boundary layer second order fluid flow over  stretching sheets  (Rajagopal et al. 
[1],  Dandapat et al. [2] , Cortell [3], Varjravelu and Rollins [4] and  Mahapatra and Gupta [5], Pop and  Soundalgekar [6], 
Abel et al. [7]  Very recently  Dandapat et al. [8] have carried out stability analysis of such flow and   has shown that the 
magnetic field, one of the controlling forces, has stabilizing effect on the boundary layer flow. some attempts have been 
made to investigate theoretically the effect of transverse magnetic field on boundary layer flow characteristics 
(Andresson [9], Char [10] and Lawrence and Rao [11]). Andresson [9] presented a systematic mathematical analysis on 
MHD flow of  second order viscoelastic  fluid over an impermeable stretching sheet and showed that magnetic parameter 
has same effect as that of viscoelastic parameter in flow characteristics. Lawrence and Rao [11] discussed the non-
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uniqueness of the MHD flow of viscoelastic fluid and discussed some theoretical aspects of the solution of the momentum 
boundary layer equation. However, all these studies are concerned with flow characteristics only associated with the 
viscoelastic fluid flow over stretching sheet.  CHAMKHA [12] presented an analysis on unsteady state hydromagnetic 
flow and heat transfer from a non-isothermal stretching sheet in a porous medium. HELMY [13] presented a work on 
MHD unsteady free convection flow past a vertical porous plate. The electric field has been excluded from all these 
studies. Moreover, their analyses are confined to the viscous fluid only. Interestingly, CHIAM [14] presented heat transfer 
analysis taking into consideration the variable thermal conductivity for slightly different kind of problem of stagnation-
point flow towards a stretching sheet. 

   
2. RHEOLOGICAL MODEL AND GOVERNING EQUATIONS  

COLEMAN and NOLL [15] derived the constitutive equation of second order incompressible viscoelastic fluid flow 
in the form 

𝑇𝑇 = −𝑝𝑝𝑝𝑝 + 𝜇𝜇𝐴𝐴1 + 𝛼𝛼1𝐴𝐴2 + 𝛼𝛼2𝐴𝐴12                 (2.1) 
 

using the postulates of gradually fading memory. Here, 𝑇𝑇is the stress tensor,𝑝𝑝is the pressure, 𝜇𝜇 is the dynamic 
viscosity, 𝛼𝛼1,𝛼𝛼2are the normal stress moduli. The kinematical tensors 𝐴𝐴1𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴2 are define by 
 

𝐴𝐴1 = (𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) + (𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔)𝑇𝑇 
𝐴𝐴2 = 𝑑𝑑𝐴𝐴1

𝑑𝑑𝑑𝑑
+ 𝐴𝐴1(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) + (𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔)𝑇𝑇 .𝐴𝐴1                         (2.2) 

 
The symbol q appearing in the equation above stands for velocity. Using some experimental data verification Fosdick 

and Rajagopal [16] gave the range of values of μ, α_1 andα_2 as 
 
𝜇𝜇 ≥ 0, 𝛼𝛼1 ≤ 0,𝛼𝛼1 + 𝛼𝛼2 ≠ 0. (2.3) 
 
 Making use of the model equation (2.1) and following the works of  BEARD and WALTERS [17] the unsteady state 

two-dimensional boundary layer equation for viscoelastic fluid in Cartesian co-ordinate system my be written as ( 
DANDAPAT et al. [8]) 

𝜌𝜌 �𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝜕𝜕

+ 𝑢𝑢𝑘𝑘
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑘𝑘

� = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜇𝜇 𝜕𝜕2𝑢𝑢𝑖𝑖

𝜕𝜕𝑥𝑥𝑘𝑘𝜕𝜕𝑥𝑥𝑘𝑘
− 𝑘𝑘0 �

𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝜕𝜕3𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑘𝑘𝜕𝜕𝑥𝑥𝑘𝑘

� + 𝑢𝑢𝑚𝑚
𝜕𝜕3𝑢𝑢𝑖𝑖

𝜕𝜕𝑥𝑥𝑘𝑘𝜕𝜕𝑥𝑥𝑘𝑘𝜕𝜕𝑥𝑥𝑘𝑘
− 𝜕𝜕𝑢𝑢𝑖𝑖

𝜕𝜕𝑥𝑥𝑚𝑚

𝜕𝜕2𝑢𝑢𝑚𝑚
𝜕𝜕𝑥𝑥𝑘𝑘𝜕𝜕𝑥𝑥𝑘𝑘

−2 𝜕𝜕2𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑚𝑚𝜕𝜕𝑥𝑥𝑘𝑘

𝜕𝜕𝑢𝑢𝑚𝑚
𝜕𝜕𝑥𝑥𝑘𝑘

�                        (2.4) 

 
where q=𝑢𝑢𝑖𝑖  are the velocity components and  𝜇𝜇 is the dynamic viscosity of the fluid. This equation has been derived 

with the assumption that the normal stress is of same order of magnitude as that of the shear stress, in addition to the 
usual boundary layer approximations.  The constant 𝑘𝑘0 = −𝛼𝛼1

𝜌𝜌
 is the elastic parameter and it takes positive value for 

negative values of material constant α_1 in case of second order fluid.  This equation is valid only for short memory 
liquids having short relaxation time and small values of elastic parameter 𝑘𝑘0 at low shear stress  

 
Governing equations of ANDERSSON [9], and TEMITOPE E. AKINBOBOLA∗, SAMUEL S. OKOYA (18) and those are 

the modified version of the equation (2.4) and also of the  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0          (2.5) 

 𝑢𝑢 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝛾𝛾 𝜕𝜕
2𝑢𝑢

𝜕𝜕𝑦𝑦2
+ 𝑘𝑘0 �𝑢𝑢

𝜕𝜕3𝑢𝑢
𝜕𝜕𝜕𝜕𝜕𝜕𝑦𝑦2

+ 𝑣𝑣 𝜕𝜕3𝑢𝑢
𝜕𝜕𝑦𝑦3

− 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑦𝑦2

� − 𝜎𝜎
𝜌𝜌

(𝐸𝐸0𝐵𝐵0 + 𝐵𝐵02𝑢𝑢) (2.6) 
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𝑢𝑢 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑘𝑘
𝜌𝜌𝑐𝑐𝑝𝑝

𝜕𝜕2𝑇𝑇
𝜕𝜕𝑦𝑦2

+ 𝜇𝜇
𝜌𝜌𝑐𝑐𝑝𝑝

�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2

+ (𝑢𝑢𝐵𝐵0+𝐸𝐸0)2𝜎𝜎
𝜌𝜌𝑐𝑐𝑝𝑝

   (2.7) 

 
3.  BOUNDARY CONDITIONS ON VELOCITY 

Employ the following boundary conditions on velocity. 
𝑢𝑢 = 𝑈𝑈𝑤𝑤(𝑥𝑥) = 𝑏𝑏𝑏𝑏, 𝑣𝑣 = 0𝑎𝑎𝑎𝑎𝑎𝑎 = 0 

 
u=0asy→∞.        (3.1) 
  
 Solution of the momentum boundary layer equation 
To solve the governing boundary layer equation (2.6) we use the following transformations. 

𝑢𝑢 = 𝑏𝑏𝑏𝑏𝑓𝑓𝜂𝜂 , 𝑣𝑣 = −�𝑏𝑏𝑏𝑏𝑓𝑓(𝜂𝜂)𝜂𝜂 = �𝑏𝑏
𝛾𝛾
𝑦𝑦.       (3.2) 

Here 𝑓𝑓(𝜂𝜂) is the dimensionless stream function and 𝜂𝜂is the pseudo-similarity variable.  Substitution of the transformations  
equation (3.2) in the equation (2.6) results in a fourth order non-linear quasi-ordinary differential equation of the followin  
form. 

𝑓𝑓𝜂𝜂2 − 𝑓𝑓𝑓𝑓𝜂𝜂𝜂𝜂 = 𝑓𝑓𝜂𝜂𝜂𝜂𝜂𝜂 + 𝑘𝑘1∗�2𝑓𝑓𝜂𝜂𝑓𝑓𝜂𝜂𝜂𝜂𝜂𝜂 − 𝑓𝑓𝑓𝑓𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂 − 𝑓𝑓𝜂𝜂𝜂𝜂2 � − 𝑀𝑀𝑛𝑛2�𝐸𝐸1 + 𝑓𝑓𝜂𝜂�      (3.3) 
 

where 𝑘𝑘1∗ = 𝑘𝑘0𝑏𝑏
𝛾𝛾

 is the dimensionless viscoelastic parameter, 𝑀𝑀𝑀𝑀 = �
𝜎𝜎
𝜌𝜌𝜌𝜌
𝐵𝐵0 is Hartmann number, 𝐸𝐸1 = 𝐸𝐸0

𝐵𝐵0𝑈𝑈𝑤𝑤
 ) is the 

local normal electric parameter   and the subscript η stands for differentiation with respect to η. 
In view of the transformations the boundary conditions on stream function f of equation (3.1) take the following 

non-dimensional form.  
𝑓𝑓(0) = 0, 𝑓𝑓𝜂𝜂(0) = 1,⥂⥂⥂ 𝑓𝑓𝜂𝜂(∞) = 0      (3.4) 
 
 Reasonably argued that in case of boundary layer flow of viscoelastic fluid with short memory, the characteristic 

time scale associated with the motion is large compared with the relaxation time of the fluid. Thus terms of order 𝑘𝑘2,𝑘𝑘3 
and higher orders may be neglected and therefore we may seek the solution of the equation (3.3) in the form   

𝑓𝑓 = 𝑓𝑓0(𝜂𝜂) + 𝑘𝑘1∗𝑓𝑓1(𝜂𝜂) + 0�𝑘𝑘1∗
2�        (3.5) 

 
Substituting the series expansion of the equation (3.5) in the equation (3.3) and equating the constant terms and the 

coefficient of 𝑘𝑘1∗ to zero we deduce the following equations for 𝑓𝑓0(𝜂𝜂) and 𝑓𝑓1(𝜂𝜂). 
 

𝑓𝑓0𝜂𝜂2 − 𝑓𝑓0𝑓𝑓0𝜂𝜂𝜂𝜂 = 𝑓𝑓0𝜂𝜂𝜂𝜂𝜂𝜂 − 𝑀𝑀𝑛𝑛2�𝐸𝐸1 + 𝑓𝑓0𝜂𝜂�       (3.6) 

𝑓𝑓1𝜂𝜂𝜂𝜂𝜂𝜂 − 𝑀𝑀𝑛𝑛2𝑓𝑓1𝜂𝜂 − 2𝑓𝑓0𝜂𝜂𝑓𝑓1𝜂𝜂 + 𝑓𝑓0𝑓𝑓1𝜂𝜂𝜂𝜂 + 𝑓𝑓1𝑓𝑓0𝜂𝜂𝜂𝜂 = 2𝑓𝑓0𝜂𝜂𝑓𝑓0𝜂𝜂𝜂𝜂𝜂𝜂 − 𝑓𝑓0𝑓𝑓0𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂 − 𝑓𝑓0𝜂𝜂𝜂𝜂2   (3.7) 

 
Making use of the series expansion of the equation (3.5) in the boundary conditions (3.4) we obtain boundary 

conditions for 𝑓𝑓0(𝜂𝜂) and 𝑓𝑓1(𝜂𝜂) in the following form. 
𝑓𝑓0(0) = 0, 𝑓𝑓0𝜂𝜂(0) = 1, 𝑓𝑓0𝜂𝜂(∞) = 0       (3.8) 
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𝑓𝑓1(0) = 0, 𝑓𝑓1𝜂𝜂(0) = 0, 𝑓𝑓1𝜂𝜂(∞) = 0       (3.9) 
 

Now we find the zeroth order stream function equation (3.6) as a third order equation of 𝑓𝑓0(𝜂𝜂) for which three boundary 
conditions are prescribed by equation (3.8). The first order stream function equation (3.7) is also a third order equation 
of 𝑓𝑓1(𝜂𝜂) for which three boundary conditions are prescribed by equation (3.9). Since the order of the differential 
equations (3.6) and (3.7) matches well with  the number of boundary conditions prescribed by the  equations (3.8) and 
(3.9) respectively, the equations (3.6) and (3.7)  would  produce unique solutions. 

It is to be mentioned that expansion of 𝑓𝑓(𝜂𝜂) in a series (3.5) does not constitute a singular perturbation expansion 
as no boundary condition is ignored   in obtaining two well posed boundary values problem by equations (3.6) and (3.8) 
and equations (3.7) and (3.9). In fact, in a single perturbation problem, apart from expansion of the form (3.5) an 
asymptotic expansion is also needed and then matching of the two expansion is done. No such things are being done in 
the procedure adopted in this paper. 

 The dimensionless local skin-friction coefficient 𝐶𝐶𝑓𝑓  is expressed as 

𝐶𝐶𝑓𝑓 = −
�𝛾𝛾𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕+𝑘𝑘0�𝑢𝑢

𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕+𝑣𝑣

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑦𝑦2

−2𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕��

(𝑏𝑏𝑏𝑏)2 𝑎𝑎𝑎𝑎𝑎𝑎 = 0           (3.10) 

= −
1

�𝑅𝑅𝑅𝑅𝑥𝑥
𝑓𝑓𝜂𝜂𝜂𝜂

(0)(1 + 3𝑘𝑘1∗) 

 

where 𝑅𝑅𝑅𝑅𝑥𝑥 = 𝑏𝑏𝑥𝑥2

𝛾𝛾
is the local Reynolds number and𝑓𝑓𝜂𝜂𝜂𝜂

(0) = 𝑓𝑓0𝜂𝜂𝜂𝜂
(0) + 𝑘𝑘1∗𝑓𝑓1𝜂𝜂𝜂𝜂

(0). 

  
4. SIMILARITY SOLUTION OF THE HEAT TRANSFER EQUATION 

Case A: prescribed surface temperature (PST) 
 
To solve the thermal boundary layer  equation (2.7)  in PST case we take  non-isothermal temperature boundary 

condition as follows. 

𝑇𝑇 = 𝑇𝑇𝑤𝑤 = 𝑇𝑇∞ + 𝐴𝐴0 �
𝑥𝑥
𝑙𝑙
�
2
𝑎𝑎𝑎𝑎𝑎𝑎 = 0 

 
𝑇𝑇 → 𝑇𝑇∞𝑎𝑎𝑎𝑎𝑎𝑎 → ∞      (4.1) 
 

Here 𝐴𝐴0 is the parameter of temperature distribution on the stretching surface, 𝑇𝑇𝑤𝑤 stands for stretching sheet 
temperature and   𝑇𝑇∞  is the temperature far away from the stretching sheet.  We have considered the above form of 
quadratic power law temperature   boundary condition on stretching sheet in order to obtain local similar solution of 
the equation (2.7). 

Similarity equation from the thermal boundary layer equation (2.7)  we define dimensionless temperature variable 
θ(η) of the form: 

𝜃𝜃 = 𝑇𝑇−𝑇𝑇∞
𝑇𝑇𝑤𝑤−𝑇𝑇∞

          (4.2) 

 
 we arrive at the following form of non-dimensional thermal boundary layer equation. 
𝜃𝜃𝜂𝜂𝜂𝜂 + 𝑃𝑃𝑃𝑃�𝑓𝑓𝜃𝜃𝜂𝜂 − 2𝑓𝑓𝜂𝜂𝜃𝜃� = −𝑃𝑃𝑃𝑃 𝐸𝐸 �𝑓𝑓𝜂𝜂𝜂𝜂2 + 𝑀𝑀𝑛𝑛2�𝑓𝑓𝜂𝜂2 + 𝐸𝐸12 + 2𝐸𝐸1𝑓𝑓𝜂𝜂�� (4.3) 

here 𝑃𝑃𝑃𝑃 = 𝛾𝛾
𝛼𝛼

 is the Prandtl number and   𝐸𝐸 = 𝑏𝑏2𝑙𝑙2

𝐴𝐴0𝑐𝑐𝑝𝑝
is the Eckert number.  
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 Temperature boundary conditions of the equation (4.1) take the following non-dimensional form.  
𝜃𝜃(0) = 1,𝜃𝜃(∞) = 0        (4.4) 
 
The solution of the equation (4.3) subject to the boundary conditions of the equation (4.4) is obtained numerically 

by applying the method of fifth order Runge-Kutta-Fehlberg method with shooting and outline of the numerical solution 
procedure is described in the next section.  

Case B: prescribed boundary heat flux (PHF) 
 
 To solve the thermal boundary layer equation (2.7) in PHF case we consider variable heat flux boundary condition 

of the following form: 

𝑘𝑘 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑤𝑤

= 𝐴𝐴1 �
𝑥𝑥
𝑙𝑙
�
2

 

T→T_∞         (4.5) 
 

Here 𝐴𝐴1 is the parameter of temperature distribution on the stretching surface and   𝑇𝑇∞  is the temperature far away from 
the stretching sheet. We have considered the above form of quadratic power law heat flux   boundary condition on 
stretching sheet in order to obtain local similar solution of the equation (2.7). 

As we look for local similar equation from the thermal boundary layer equation (2.7) we define dimensionless 
temperature variable 𝑔𝑔(𝜂𝜂) of the form: 

𝑔𝑔(𝜂𝜂) = 𝑇𝑇−𝑇𝑇∞

𝐴𝐴1�
𝑥𝑥
𝑙𝑙�
21
𝑘𝑘�

𝛾𝛾
𝑏𝑏

         (4.6) 

 
Making use of the equation (4.6) in the dimensional energy equation (2.7) we arrive at the following form of non-

dimensional thermal boundary layer equation in PHF case. 
𝑔𝑔𝜂𝜂𝜂𝜂 + 𝑃𝑃𝑃𝑃�𝑓𝑓𝑔𝑔𝜂𝜂 − 2𝑓𝑓𝜂𝜂𝑔𝑔� = −𝑃𝑃𝑃𝑃 𝐸𝐸 �𝑓𝑓𝜂𝜂𝜂𝜂2 + 𝑀𝑀𝑛𝑛2�𝑓𝑓𝜂𝜂2 + 𝐸𝐸12 + 2𝐸𝐸1𝑓𝑓𝜂𝜂��                          (4.7) 
 

where 𝑃𝑃𝑃𝑃 = 𝛾𝛾
𝛼𝛼

 is the Prandtl number and   𝐸𝐸 = 𝑏𝑏2𝑙𝑙2𝑘𝑘

𝐴𝐴1𝑐𝑐𝑝𝑝�
𝛾𝛾
𝑏𝑏

is the Eckert number in PHF case. 

In view of the transformation equation (4.6) the temperature boundary conditions of the equation (4.5) take the 
following non-dimensional form.  

𝑔𝑔𝜂𝜂(0) = −1,𝑔𝑔(∞) = 0.        (4.8) 
 
The solution of the equation (4.7) subject to the boundary conditions of the equation (4.8) is obtained numerically 

by applying the fifth order Runge-Kutta-Fehlberg integration scheme with shooting and outline of the numerical solution 
procedure is described in the next section. 

  
5. NUMERICAL SOLUTION 

The equations (3.6)-(3.7) are highly nonlinear ordinary differential equations  and (4.3) is a  non-homogeneous 
quasi-ordinary differential equation with variable coefficient. In order to solve these equations numerically we follow 
most efficient numerical shooting technique with fifth order Runge-Kutta-Fehlberg integration scheme.  In this method 
it is most important to choose the appropriate finite values of 𝜂𝜂 → ∞. To select 𝜂𝜂∞ for the boundary value problem of 
Eqs. (3.6) and (3.8) we begin with some initial guess value and solve the  problem with some particular set of parameters 
to obtain 𝑓𝑓0𝜂𝜂𝜂𝜂(0). The solution process is repeated with another large values of 𝜂𝜂∞ until two successive values of 𝑓𝑓0𝜂𝜂𝜂𝜂(0) 
differ only after desired significant digit. The last value of 𝜂𝜂∞ is chosen as appropriate finite value of the limit 𝜂𝜂 → ∞ for 
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that  particular set of parameters to solve the  unknown 𝑓𝑓0(𝜂𝜂).  Similar procedure is applied to obtain the finite value of  
𝜂𝜂∞ for  the problems of Eqs. (3.7) and (3.9) and Eqs. (4.3)-(4.4) involving  unknowns 𝑓𝑓1(𝜂𝜂) and 𝜃𝜃(𝜂𝜂) respectively. For 
different set of parameters the appropriate  finite values of 𝜂𝜂∞ are different. The coupled boundary value problems of (i) 
Eqs. (3.6) and (3.8), (ii) Eqs. (3.7) and (3.9) and (iii) Eqs. (4.3) and (4.4) or Eqs. (4.7-4.8) are solved numerically following 
the method of superposition (Na [32]). In this method  the third order non-linear  equations (3.6) and (3.7) and second 
order equation (4.3) have been reduced to a system of  eight simultaneous ordinary differential equations  for which five 
initial conditions  (Eqs. (3.8), (3.9) and (4.4) or (4.8)) are prescribed. In order to convert this system into a system of 
initial value problem we employ numerical shooting technique with fifth order Runge-Kutta- Fehlberg integration 
scheme where three infinity boundary conditions have been   utilized to generate three more initial conditions. After 
knowing all the eight initial  conditions we solve this system of simultaneous equations by employing  fifth order Runge-
Kutta-Fehlberg integration scheme applicable  to the system of eight simultaneous first order differential equations. For 
better approximation of the solutions we employ Newton’s linear interpolation. 

  
6. RESULTS AND DISCUSSION 

We have depicted numerical results in the forms 

 
 
 Fig. 2. is plotted to represent graphically the velocity profile 𝑓𝑓𝜂𝜂(𝜂𝜂) and stream function 𝑓𝑓(𝜂𝜂) for various values of 

viscoelastic parameter  𝑘𝑘1∗ and local normal electric parameter 𝐸𝐸1. Analysis of the graphical behavior of the stream 
function 𝑓𝑓(𝜂𝜂) shows that the effect of local normal electric parameter 𝐸𝐸1 is to shift the streamlines towards boundary 
stretching boundary in both the cases of viscous and viscoelastic fluids flows. The magnitude shifting of streamlines 
asymptotically increases with the distance from the stretching sheet. This is quite consistent with the boundary layer 
behaviour. The effect of local normal electric parameter 𝐸𝐸1 on velocity is to decrease its value throughout the boundary 
layer, more significantly little away from the stretching sheet in the both cases of viscous and viscoelastic fluid flows. 
This is because Lorentz force arising due to electric field acts as a decelerating force and thereby increases frictional 
resistance.  The combined effect of local normal electric parameter 𝐸𝐸1 and viscoelastic parameter 𝑘𝑘1∗ is to reduce velocity 
significantly little away from the boundary layer sheet. 

 Fig. 3 demonstrates the graphs of skin-friction coefficient 𝐶𝐶𝑓𝑓  vs. viscoelastic parameter 𝑘𝑘1∗, for different values of 
local Reynolds number 𝑅𝑅𝑅𝑅𝑥𝑥  and local normal electric parameter𝐸𝐸1. Analysis of the graphs reveals the fact that the skin-
friction coefficient 𝐶𝐶𝑓𝑓would decrease with the increase of local Reynolds number𝑅𝑅𝑅𝑅𝑥𝑥 . Whereas, increase of the values 
of local normal electric parameter𝐸𝐸1would increase the values of skin-friction parameter 𝐶𝐶𝑓𝑓 . This is because the Lorentz 
force arising due to electric field coupled with the reduced magnitude of viscous force decelerates the flow in the down 
stream direction. It is interesting to observe that skin-friction coefficient 𝐶𝐶𝑓𝑓  decreases linearly with the increase of 
viscoelastic parameter 𝑘𝑘1∗. Separation of boundary layer occurs for the value of viscoelastic parameter 𝑘𝑘1∗ = 1

3
 which is 

independent of the values of local Reynolds number 𝑅𝑅𝑅𝑅𝑥𝑥 , Hartmann number 𝑀𝑀𝑀𝑀 and local normal electric parameter 
𝐸𝐸1. 
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Temperature profiles for various values of viscoelastic parameter 𝑘𝑘1∗, Hartmann number 𝑀𝑀𝑀𝑀, Prandtl number 𝑃𝑃𝑃𝑃, 
local normal electric parameter 𝐸𝐸1 and Eckert number 𝐸𝐸  are depicted in the tables 

Table 1                                                                                                       Table 2 

 
Table 1 depicts of non-dimensional temperature profile 𝜃𝜃(𝜂𝜂) for different combination of the values of viscoelastic 

parameter 𝑘𝑘1∗, Hartmann number 𝑀𝑀𝑀𝑀 and Prandtl number 𝑃𝑃𝑃𝑃. From this graph, in absence of viscous dissipation and 
electric field, it is seen that the effect of Prandtl number 𝑃𝑃𝑃𝑃 is to decrease temperature in the boundary layer region in 
PST case. However, the effect of increasing values of Hartmann number magnetic 𝑀𝑀𝑀𝑀 is to increase temperature in the 
boundary layer region. The boundary layer fluid would attain maximum temperature at any point if the fluid flow is 
viscoelastic with low Prandtl number and in presence of a transverse magnetic field.  
Table 2 depicts the temperature profile in the situation when viscous dissipation is accounted. From table, in presence 
of viscous dissipation, we analyse that there would be higher   temperature throughout the boundary layer in the case of 
viscoelastic fluid in comparison with the viscous fluid. It is seen that the effect of Prandtl number is to decrease 
temperature throughout the boundary layer in both the cases of viscous and viscoelastic fluid in absence and also in 
presence of magnetic field. The combined effect of increasing values of Prandtl number 𝑃𝑃𝑃𝑃 and Hartmann number 𝑀𝑀𝑀𝑀  is 
to increase temperature near the stretching sheet largely and decrease the same away from the stretching sheet in 
absence of normal electric field. 
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  When both viscous dissipation and electric field are accounted in heat transfer, 
                                          Table3                                                           Table 4 

 
 
Table 3 represents the variation of temperature with the change of Hartmann number 𝑀𝑀𝑀𝑀, Prandtl number  𝑃𝑃𝑃𝑃 and 

viscoelastic parameter 𝑘𝑘1∗. These table as tabulated for the same set of data as that of table 2 except for local normal 
electric field parameter 𝐸𝐸1=0.2. From these graphs interestingly we observe that, in presence of magnetic field, the effect 
of increasing values of Prandtl number 𝑃𝑃𝑃𝑃 is to increase temperature near the stretching sheet very slightly and decrease 
the same largely away from the stretching sheet. The combined effect of decreasing values of Prandtl number 𝑃𝑃𝑃𝑃 and 
increasing values of Hartmann number 𝑀𝑀𝑀𝑀  is to increase temperature throughout the boundary layer in presence of 
local normal electric field. This is owing to the reason that local normal electric field acts as a heat source near the 
boundary sheet with reduction of magnitude with distance from the sheet. 

Table 4 represents temperature profile for different values of local normal electric parameter𝐸𝐸1, Prandtl number 𝑃𝑃𝑃𝑃 
and viscoelastic parameter 𝑘𝑘1∗ when the effects of viscous dissipation and magnetic field are accounted. Analysis of the 
figure shows that temperature would attain maximum value on the boundary sheet when the electric field is not 
accounted and then heat transfer will take place from boundary wall to the adjacent fluid layer.  When the local normal 
electric field is accounted in the heat transfer process then heat transfer will take place in reverse direction from adjacent 
fluid layer to the boundary sheet and temperature would attain maximum value in the boundary layer region little away 
from the stretching sheet. This is because Ohmic dissipation generated heat in the fluid layer near stretching sheet. 

Same process is done for the PHF case. The Resulted similar qualitative effects of   Hartmann number 𝑀𝑀𝑀𝑀, Prandtl 
number 𝑃𝑃𝑃𝑃, viscoelastic parameter 𝑘𝑘1∗, Eckert number 𝐸𝐸 and local normal electric parameter 𝐸𝐸1 on temperature profile, 
but with different magnitudes. However, interestingly we notice that boundary sheet would always attain higher 
temperature in presence of magnetic and electric fields.  
The effect of viscoelastic parameter  𝑘𝑘1∗ , in absence of local normal electric parameter 𝐸𝐸1, is to reduce the rate of heat 
transfer. Whereas, effect of viscoelastic parameter 𝑘𝑘1∗, in presence of local electric parameter 𝐸𝐸1, is also to decrease the 
rate of heat transfer across the stretching sheet for small values of local normal electric parameter𝐸𝐸1. For higher values 
of Prandtl number 𝑃𝑃𝑃𝑃 and local normal electric parameter 𝐸𝐸1, the effect of increasing values of viscoelastic parameter 𝑘𝑘1∗ 
is to reverse the direction of heat transfer across the stretching sheet. 
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7.  CONCLUSION 
1) The combined effect of viscoelastic parameter k_1^* and local normal electric parameter E_1 is seen to decrease 

the boundary layer velocity throughout the boundary layer but more significantly little away from the stretching 
sheet. 

2) The skin-friction coefficient C_fdecreases with the increase of local Reynolds number〖Re〗_x⁡and viscoelastic 
parameter k_1^*  and it  increases  with  the increase of  local normal electric parameterE_1 and Hartmann 
number Mn.  

3) When the electric field is accounted in the heat transfer process then heat transfer will take place from adjacent 
fluid layer to the boundary sheet and temperature would attain maximum value in the boundary layer region 
little away from the stretching sheet. 

4) In presence of local normal electric parameter E_1, the effect of increasing values of Prandtl number Pr is to 
decrease the rate of heat transfer for smaller values of local normal electric parameter, but for larger values of 
local normal E_1the direction of heat transfer would be changed in case of viscoelastic fluid. 
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