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- ABSTRACT
5 Bt Fermented tea leaves emerged as a significant agricultural commodity on the global
updates scene. This type of product experiences segmentation, classification, and optimization
due to the different textures, different stages of fermentation, and environmental
DOI influences. The article reviews the progresses and limitations made by automatic systems

in the realm of image-based analysis of fermented tea leaves, machine learning
algorithms, and optimization methods. The challenges of high segmentation accuracy in
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1. INTRODUCTION

Tea ranks among the most consumed affordable drinks. Over 3 billion cups of tea are consumed daily by people. The
prominence arises from the health benefits, such as helping to prevent breast cancer [1], skin cancer [2], colon cancer
[3] neurodegenerative problems [4], and prostate cancer [5] along with many other ailments. Tea also impacts diabetes
prevention and ramps up metabolism [6]. Due to the manufacturing process that teas are labelled as green, black, oolong,
white, yellow, or compressed tea. Black tea accounts for some 70% of the total tea produced in the world [7]. People
cherish the unique taste and strong aroma and health benefits. Pu-erh Kombucha and Myanmar's Laphet are teas that
vastly different cultural roots and unique ways of fermentation [8]. These teas preserve traditions while satisfying the
rising demand for functional and artisanal beverages.

When fermentation occurs, the chemical structure of tea leaves changes. This increases the levels of active
components in fermented teas, such as antioxidants, probiotics, and flavours [9]. This attracted health-conscious
individuals to prefer fermented tea more often. Maintaining a relatively consistent quality in tea is challenging. Such that
variations in quality of tea may result from factors like environmental conditions, types of microbes, and length of time
of tea fermentation [10].
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One of the most challenging aspects of sorting and categorizing fermented tea on its various varieties [11]. The
chemical structure of the tea leaves varies that undergo fermentation, which in turn creates a significant degree of
variability in the texture and appearance, which adds to the confusion criteria to use and classify them. The other
variables, such as the quality of the soil, the conditions of the weather, and the microbial species involved, further
complicate the categorization process [12]. The traditional way of sorting and categorizing tea leaves is through visual
inspection. This method tends to be highly subjective and often prone to errors [13]. For example, deep learning
techniques, within a very short time, classify tea diseases through RGB and hyperspectral images, boasting remarkable
levels of accuracy. In the same manner, machine vision systems have been developed for judging fermented black tea by
studies examining colour and texture, with some researchers finding the methods to be perfectly accurate [14]. The
flavours and nutritional benefits of the fermented tea leaves entirely down to an intricate balance of fermentation time,
temperature, and various microbial species activity [15].

To overcoming the contemporary challenges of segmentation, classification, and optimization, a possibility
transformation for the fermented tea leaf industry while contributing to sustainable food production and enhancement
of traditional products [16]. Comprehensive reviews prompted research on such topics in tea industries with
applications of computer vision and machine learning in critical stages such as cultivation, harvesting, and processing
[17]. The insights reiterate the importance of encapsulating this upgraded technology for increased productivity and
quality in tea production [18].

During fermentation, tea catechins undergo oxidation catalysed by enzymes like polyphenol oxidase and peroxidase,
thereby giving rise to two primary groups of pigments: Theaflavins (TFs) and Thearubigins (TRs) [19]. TFs are
responsible for the briskness, strength, and brightness of the tea infusion, while TRs give the red colour to both the tea
leaves and infusion. Both TFs and TRs are key indicators of black tea quality [20]. Another group of pigments,
Theabrownins (TBs), forms through the oxidation, polymerization, and coupling of polyphenols, TFs, and TRs. While TBs
contribute to brownish tea, the buildup is associated with over-fermentation leading to dark and turbid infusions [21].

TYPES OF TEA

SHAKING
PARTIAL :
FERMENT ICIHHIIE
= =
- = —
- PAN FRYING FULL FERMENT
ﬁ DRYING DRYING

White Tea Green Tea Oolong Tea Black Tea

Figure 1: Processing pathways for different types of tea

Figure 1 is a presentation of the processing methods for different types of tea based on tea leaves are processed into
white on the one hand, green tea, Oolong tea, and Black tea. The process begins with fresh tea leaves and grey into white
tea processed with certain steps like steaming and drying; green tea cooked pan drying, rolling, and drying; partial
fermentation withering, shaking, and pan-fried; the Black tea is withering, rolling, full fermentation, and then drying.
Each pathway enables researchers to understand the unique combination of steps imparting the flavour, aroma, and
appearance of the tea type.
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Top Tea Producers in 2024
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Figure 2: Global Tea Production by Country in 2024

Figure 2 showcasing the leading tea-producing countries and the relative contributions to global production. China,
represented in blue, holds the largest share, emphasizing its dominance in tea production, followed by india as the
second-largest producer. Kenya, Sri Lanka, and Turkey also make significant contributions, while countries like
Indonesia, Vietnam, Japan, Iran, and Argentina, depicted in green, dark blue, and shades of brown, account for smaller

portions.

Main stages of
Processing

Figure 3: Key stages in tea processing

Fixation

Figure 3 shows the key stages in tea production. These steps include Plucking, tea leaves are plucked, followed by
Withering to reduce moisture. The leaves are disrupted to release important components, oxidized to develop flavour,
and fixed to keep the desired properties. After rolling and drying, the product is cured to enhance flavour, grading sorts
the product according to quality, guaranteeing a refined and high-quality tea.
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2. OVERVIEW OF FERMENTED TEA LEAF PROCESSING

Fermented tea leaf processing consists of many stages: plucking, withering, rolling, and oxidation. This is important
to bring flavour, aroma, and colour to the tea [22]. Based on enzymatic activity, the fermentation process varies with
black or oolong teas; it varies with temperature, humidity, and quality of leaves [23].

2.1. TEA FERMENTATION PROCESS

Fermentation of tea refers to the complex biochemical and microbial transformation of tea leaves, which acts as a
significant step during the processing of varieties of fermented tea such as Pu-erh, black tea, and Laphet [24].
Fermentation, unlike the enzymatic oxidation of green or partially fermented teas, is mostly dependent on microbial
activity to impart changes in characteristics such as the chemical, physical, and sensory properties of tea leaves. The
unfermented tea leaves are subjected to a controlled environment of temperature, humidity, and time for growth of
microorganisms [25]. Different microorganisms, such as fungi-the Aspergillus spp., Penicillium spp., bacteria-the
Lactobacillus spp., Acetobacter spp., etc., for polyphenols, amino acids, and carbohydrates in the tea leaves-produce
bioactive compounds and flavour-enhancing metabolites [26]. This conversion increases the levels of theaflavins,
thearubigins, and other secondary metabolites responsible for the colour, flavour, and health benefits of tea [27]. During
fermentation, a lot of physical changes happen. Due to microbial action, leaves are usually dark, supple, and have a strong
aroma [28]. The communities of microorganisms, intervals of fermentation, and environmental conditions like the
availability of oxygen determine the quality of the final product [29].

2.2. IMPORTANCE OF SEGMENTATION AND CLASSIFICATION

To ensure high-quality production and consistency in fermented tea products, segmentation and classification play
pivotal roles.

2.2.1. SEGMENTATION FOR UNIFORM PROCESSING

The size and shapes of tea leaves within the same batch vary, and vary in maturity. Segmentation into proper grades
takes into account that leaves of different qualities and characteristics benefit from various processing conditions. Old,
mature leaves perhaps have longer fermentation periods than younger tender leaves-both on the basis of maturity
required for transformation being optimum. Segmentation becomes critical when mass production is employed to
ensure uniformity and avoid waste due to the mixing of batches. One way to accelerate uniform processing is to employ
advanced segmentation tools, such as computer vision systems, that automatically country-leaves according to
dimensions, colour, and texture, leaving them basically clean [31].

2.2.2. CLASSIFICATION FOR QUALITY ASSURANCE

Classification helps categorize tea leaves by variety, grade, and fermentation stage; quality assurance is important
for keeping conformity in batches along production and selling by available market standards. Poorly classified and
arranged leaves, introduce off-flavours or unwanted appearance qualities which considerably decrease the marketability
[32]. Such new classification methods apply machine learning and computer vision for high accuracy. For instance,
hyperspectral imaging and deep learning algorithms is used to classify leaves based on differences in chemical and
physical properties. The greater classification accuracy and real-time quality controlling of manufactured products,
rendering them in large-scale production [33].

2.2.3. ENHANCING PROCESS OPTIMIZATION

Segmentation and classification directly influence the optimization of fermentation conditions. By knowing the
needs of the different categories of leaves, producers able to alter the processes of fermentation to yield a consistent
product. For instance, it has been found in research that segmented leaves would show more desirable compounds like
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theaflavins when more optimally applied parameters for microbial inoculation and fermentation have been used up and
levels of undesirable microbial by-products have been reduced [34].

Table 1: Research gap for the overview of fermented tea leaves processing

Research Gap
Lack of Standardized Segmentation Criteria Across

Varieties

Incomplete Classification Based on Chemical and

Microbial Properties

Suboptimal Process Optimization Due to Limited Real-

Time Adaptation

Limited Understanding of the Interactions Between

Microbial Communities and Leaf Characteristics

3. SEGMENTATION TECHNIQUES

Segmentation is a notable approach to tea-leaf analysis and processing that function toward quality assurance and
optimization for fermentation. Segmentation is the process of further classifying or processing tea leaves based on some
established features like size, shape, colour, or texture, which is applied to partitioning of images or a physical batch of
tea leaves. Advances in segmentation-and-the shift from the original manual approach to be more sophisticated fully
automated systems-have definitely increased analysis efficiency concerning tea leaves.

3.1. TRADITIONAL APPROACHES

Manual & Semi-automatic methods are the only mode of tea leaf segmentation research in the beginning stages.
These methods are based on simple image processing techniques as well as human in order to extract or segment out
regions of interest in images taken from leaf samples.

Solution
Examine standardized segmentation, which takes
dimensions, texture, and maturity into consideration.
Additionally, more sophisticated machine learning
models would increase the accuracy of segmentation.
Development of a classification system that use
hyperspectral imaging integrated with the information
obtained from chemical and microbial profiling to
classify tealeaves according to the chemical composition
and microbial community for improved fermentation
technology.
An introduction of systems for real-time monitoring and
the feedback using IoT sensors, computer vision, and
machine learning algorithms allow dynamically
determining the conditions during fermentation.
Explore the interplay of microbial species along with tea
leaf composition. Microbiome profiling and data
analytics would allow for optimizing fermentation

protocols directed by such interactions.

1) Thresholding: Thresholding, the pixel intensity values separate them from tea leaves and background [37].

2)

3)

Learning one of the global threshold examples that separate light-coloured leaves from dark background. After
that, improve accuracies by using other variants (e.g, Otsu's method for determining thresholds automatically
[38] in order to segment better).

Edges Detection Techniques: Regarding Tea leaf edge detection to extract the edge of the tea leaves by pixel
intensity changes in sharp places. Previously reported techniques are tailored for sharp edged leaves, failed with
overlapping leaves, occlusions, and blur [39].

Region Growing: While region-growing techniques split leaves, which segregated pixels in neighbourhood that
had same colour or texture attributes. This approach is good for uniform things such as tea leaves but
computationally expensive and noisy for anything in real life [40].
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3.2. COMPUTER VISION AND DEEP LEARNING APPROACHES

Computer vision and deep learning have tremendously revolutionized tea leaf segmentation with accurate, strong
robustness & matured scaling. These approaches take advantage of advanced algorithms and models that are able to
extract features directly from data, less human intervention required.

Feature-Based Computer Vision Techniques: In earlier stages of automation [41], segmentation is done through
traditional computer vision methods Scale-Invariant Feature Transform (SIFT) and Histogram of Oriented Gradients
(HOG) widely implemented. These algorithms take primitive features such as edges, corners and gradients in order to
determine regions of interest. SIFT is able to reveal key points on leaves with success, and HOG did extract texture
information to discriminate leaves from background [42]. However, overpowered by dynamic lighting, complex patterns,
and tea leaf classes with significant intra-class variation.

Machine Learning Approaches: Supervised models Support Vector Machines (SVMs) and Random Forests
introduced by machine learning. Manually features [43] are used in classification of pixel or image regions, these models
as machine learning helped improving segmentation accuracy over classical methods feature generation is the biggest
pinpoint of this peripheral and error prone heavy feature engineering [44].

Deep Learning Methods: Deep learning, in particular CNNs, completely altered image segmentation by having a
feature extraction and learning from the raw data automatic with inferenced layers of each input. Effective deep learning
approaches for tea leaf segmentation are:

U-Net: Image segmentation is among the most popular architectures of U-Net particularly for agricultural purposes.
Encoder-decoder design helps in preserving spatial and contextual features from the network to provide very accurate
segmentation. In tea leaf processing, the approach has been leveraged for de-blurring leaves that are overlapping and
separate leaves from stems with accuracy [45].

Mask R-CNN

Mask R-CNN object detection model which inherits segmentation as a segment. This helps with instance
segmentation individual leaves even in the overlapping cases are separated. Mask R-CNN showed state-of-the-art results
on tough tea leaf datasets with classification and segmentation output back-to-back [46].

Fully Convolutional Networks (FCNs):

FCNs is a popular deep learning approach for semantic segmentation. FCNs, by replacing fully-connected layers with

convolutional layers makes the model do pixel-wise classifications which is useful in tea leaf segmentation with fine
details [47].

3.3. COMPARATIVE INSIGHTS

Although traditional methods such as thresholding and edge detection are basic and low computation, that cannot
deal with the complexities including leaf overlap, variable illumination and leaf textures etc [48,49]. In contrast, deep
learning methods such as U-Net and Mask R-CNN reach state-of-the-art performance with very high computational
power due to large data sets. Coming from different environments these are more general and able to drop human
segmentation with minimum intervention in an industrial setting [50,51].

Tea industries take an initiative to step towards automation and optimization of the quality control as well as
fermentation process by segmenting in real-time with true precision using cutting edge computer vision and deep
learning.

Table 2: Research gap for the segmentation techniques

Research Gap Solution
Traditional segmentation methods are not very effective in =~ Use deep learning models, such as Mask R-CNN and U-Net,
dealing with overlapping leaves and occlusions. to segment instances accurately, even when there are

complicated structures and overlapping leaves.
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Large-scale datasets cannot be efficiently processed using

manual and traditional methods.

Traditional techniques are sensitive to changes in the

environment, such as changes in illumination.

Machine learning techniques' reliance on human feature

extraction, which results in inefficiencies.

Difficulty recognizing individual leaves in intricate patterns

or differentiating leaves from stems.

For pixel-level segmentation, use completely automated
deep learning techniques like FCNs and DeepLab to handle

big datasets with little assistance from humans.

In order to ensure consistent segmentation performance
under a range of environmental variables, use robust deep
learning models, like DeepLab, that extract multi-scale
features.

Use CNN-based architectures, such as U-Net, to increase
accuracy and efficiency by automating feature extraction
and learning straight from raw data.

To accurately separate individual leaves and differentiate

leaves from stems in complex or overlapping patterns, use

Mask R-CNN for instance segmentation.

The major research gaps in tea leaf segmentation as tabulated in table 2 include the inefficiencies of conventional
methods used to handle overlapping leaves, large datasets, and environmental variations. Suggested solutions comprise
the use of sophisticated deep learning methods like U-Net and Mask R-CNN, FCNs to automatically integrated feature
extraction, segmentation accuracy improvement and the provision of robust performance in challenging scenarios and
commercial settings.

4. CLASSIFICATION TECHNIQUES

Tea leaf fermentation is an essential step in the production of various types of tea, particularly in the processing of
black and oolong teas [51]. During this stage, enzymatic and microbial actions lead to the transformation of the chemical
composition and flavour profile of the tea leaves. The detailed explanation of the classification techniques in the context
of tea leaf fermentation:

4.1. TRADITIONAL CLASSIFICATION METHODS

Traditional methods are historical in practice and have refined with the test of time. These methods are largely
empirical and rely heavily on visual, sensory, and physical cues to decide the extent and quality of fermentation.

o Visual Classification: Tea leaves are grouped according to appearance after fermentation. Colour changes of
the leaves from green to reddish-brown or dark brown reflect the level of fermentation [52].

e Sensory Classification: Tasting is the traditional method the experts use to test the flavour profile of tea using
the sense perception after the fermentation process [53]. Completely fermented black tea generally tends to
possess rich, full-bodied flavour characteristics while a more minimally fermented oolong has more floral or
fruity profiles.

e Oxidation and Moisture Content: The level of oxidation and moisture contents are also used in the
classification of tea fermentation. More robust flavour obtained from over-fermented leaves, while under-
fermented leaves result in lighter teas with more vegetal notes [54].

4.2. ADVANCED MACHINE LEARNING TECHNIQUES

Machine learning techniques have indeed revolutionized tea leaf fermentation classification for a more objective
and efficient method. Through algorithms, different features, ranging from chemical to visual and then fermentation
conditions [55], define the patterns required for classification in tea.
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Image Recognition: Computer vision techniques, like CNNs, analyse images of tea leaves at various stages of
fermentation to classify the level of fermentation by detecting the minor changes in colour, texture, and shape of the leaf
[56].

Spectroscopic Analysis: Machine learning algorithms analyse spectroscopic data acquired using techniques like
near-infrared and UV-VIS in order to categorize tea leaves according to the chemical composition. Spectroscopic analysis
detects any variation in content related to key compounds, and polyphenol content that indicate fermentation [57].

Data Fusion: Data fusion achieved with the integration of data from a multivariate source: image data, chemical
analysis, environmental conditions for the fermentation process. This enhances the accuracy level of classification from
machine learning models. Techniques in these lines include the use of Random Forest, SVM, and neural networks [58].

4.3. HYBRID APPROACHES

Hybrid approaches tend to take on the benefits of traditional techniques while incorporating newer techniques of
machine learning to obtain more accurate classifications with robustness. Hybrid approach is helpful to combine
strengths to analyse better about tea leaf fermentation [59].

e Sensory-Machine Learning Hybrid: Human specialists occasionally combine machine learning algorithms
with sensory techniques. For instance, machine learning algorithms use sensory information, like flavour
characteristics, as input features to more accurately classify the type of tea or forecast the degree of
fermentation [60].

e Feature Fusion: A hybrid approach could be combining visual features of image recognition with chemical
features from spectroscopy. The combination of these data types offers a better understanding of the
fermentation process and gives a better classification performance [61].

e Ensemble Methods: Applying ensemble learning techniques such as boosting or bagging, multiple classifiers
like decision trees or support vector machines are used to make predictions, the results are combined to boost
accuracy. These methods assist in the reduction of bias levels of individual classifiers and also improve
robustness [62].

4.4. CURRENT CHALLENGES IN CLASSIFICATION

While improvements in classification techniques have enhanced the accuracy and efficiency of tea leaf fermentation
classification, there are still a number of challenges:

e Data Quality and Labelling: Accurate and labelled data is necessary for machine learning model training.
Obtaining a complete dataset containing a variety of tea kinds, fermentation conditions, and expert-labelled
data is challenging when it comes to tea leaf fermentation.

e Complexity of Fermentation Process: Some of the variables that determine the dynamic course of
fermentation are temperature, humidity, and enzyme activity. Large data sets and careful feature selection
are required to successfully model such complexity by applying machine learning techniques.

e Environmental Variability: Environmental factors are those that differ from batch to batch, from season
to season, and from area to region. This generally affects the fermentation process. Environmental viability
is hard to develop models that generalize effectively under a number of circumstances considering this
heterogeneity.

e Interpretability of Models: Though very accurate, most machine learning models are black boxes. In tea
production, the interpretability is important to understand the underlying factors that influence
fermentation and for explaining the classification results to people who are not experts.

o Real-Time Classification: The challenge in the classification of real-time tea leaf fermentation, particularly
in production, lies in acquiring data, processing, and decision-making in the shortest time possible.
Therefore, real-time classification challenging to develop a machine learning model that is effective and
efficient for real-time operation in the production environment.
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Table 3: Research gap for the classification techniques

Research Gap
Insufficiently complete and standardized datasets for

machine learning model training.

The difficulty of simulating dynamic fermentation

processes that are impacted by several variables.

Variability in the environment has an impact on the
generalizability of the model and fermentation results.
Machine

learning algorithms for classifying tea

fermentation lack clarity.

Real-time classification throughout the tea-making

process presents difficulties.

Solution
To enhance the training of models, create and manage a
variety of well-labelled datasets that include different
tea types, processing settings, and opinions of experts.
Use cutting-edge machine learning methods, such as
deep learning combined with feature development, to
model and depict the intricacy of the methods of
fermentation.
Create reliable models of machine learning using
domain adaption strategies to take batch-specific,
seasonal, and regional variances into consideration.
Develop explainable Al (XAI) frameworks to identify key
features influencing fermentation and provide insights
to the tea production experts.
To ensure real-time monitoring and classification, use

edge computing and Internet of Things devices to

provide quick data collection and processing.

Table 3 presents common obstacles in the application of machine learning on Fermenting Tea. Some of them are
limited data, high-model complexity, shift in environmental states, complexity of the model, and issues with real-time
classification. Explainable Al, advanced Al tools, curating of data diversity, strong model robustness, and IoT supported
by edge computing for real-time analysis.

5. OPTIMIZATION TECHNIQUES

One of the key steps in tea processing especially for black tea and all oolong teas is the fermentation of tea leaves.
The oxidation of polyphenols like catechins happens which affects the flavour, aroma and colour of the tea. The
fermentation process of optimization and Al help with the optimization are given below,

5.1. TEA LEAF FERMENTATION PROCESS
The fermentation process involves:
Plucking and Initial Processing
e Plucking: Fresh tea leaves are picked from the tea plants.
e Withering: Leaves are spread out and left to wither under controlled temperature and humidity.
Rolling or Crushing

e After withering, the leaves are rolled or crushed to break open the cells, release the enzymes and juice that
react with oxygen during fermentation. This step also helps in shaping the leaves.

Fermentation (Oxidation)

e The rolled leaves are left in a controlled environment for fermentation [64]. The main biochemical change
during fermentation is the oxidation of polyphenolic compounds like catechins.

e Oxidation Mechanism: The enzyme polyphenol oxidase (PPO) catalyses the oxidation of catechins into
theaflavins and thearubigins which contribute to the colour, flavour and aroma of the tea [65].

e Black tea is fully fermented so that is darker and stronger with more flavour.

e Oolong tea is partially fermented between black and green tea.
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Drying
e Once the desired level of oxidation is reached the tea is dried to stop the fermentation and preserve the flavour
and aroma. The drying process is done by hot air or pan firing [66].

5.2. OPTIMIZATION IN TEA PROCESSING

Fermenting the tea result in better tea with more flavour, aroma and colour. There are many factors that affect the
fermentation process and optimization is to control these factors for consistency [67].

Factors to Optimize

e Temperature: The temperature of the fermentation room is key to controlling the enzymatic oxidation. 25°C
to 30°C is ideal for fermentation.

e Humidity: Humidity also affects the fermentation process. High humidity means unwanted microbe growth,
low humidity means slow oxidation.

e Time: The length of the fermentation process is another factor. Longer fermentation means stronger flavour
and darker colour, shorter fermentation means more of the fresh floral character of the tea.

e Leaf Quality: The quality of the plucked leaves, size, maturity and integrity affects the fermentation process.
Larger mature leaves oxidise slower [68].

e Enzyme Activity: The polyphenol oxidase enzyme is the key to the fermentation process. Enzyme activity is
affected by leaf bruising, rolling and overall tea leaf quality [69].

Optimization Techniques

Traditional methods such as trial and error are used to optimize these factors. But modern technology offers a more
accurate and efficient approach.

e Data-driven approach: By monitoring temperature, humidity and enzyme activity throughout the fermentation
process. Operators adjust the environment in real time to maintain optimum conditions.

* Advanced sensors and automation: Sensors installed in the fermentation chamber monitor key parameters such
as temperature, humidity, and oxygen levels. Automated systems

adjust these variables to maintain desired conditions [71].

5.3. ARTIFICIAL INTELLIGENCE (AI) IN TEA PROCESSING OPTIMIZATION

Al increase the efficiency of tea fermentation by using advanced algorithms and machine learning techniques to
monitor, predict, and optimize the fermentation process.

Application of Al in tea fermentation

« Predictive Modelling: Al uses historical data and real-time sensor inputs to build predictive models that predict
optimal fermentation times, temperatures, and humidity levels. This model helps operators achieve consistent products
with minimal trial and error [73].

¢ Machine Learning for Quality Control: Al algorithms that analyse chemical composition, colour changes, and
sensory data to predict the final quality of tea before drying. These insights help adjust the process during fermentation
to ensure that tea meets the desired specifications [74].

e Automation control system: Al integrates with automation systems in tea factories to automatically adjust
environmental conditions (e.g. temperature, humidity) during fermentation based on real-time data. This reduces
human error and ensures that the fermentation process is as efficient and consistent as possible [75].

« Pattern recognition: Al analyses patterns in fermentation data using machine learning models. To find out the
relationship between environmental factors and the final quality of tea. This increases process efficiency without the
need for extensive intervention [76].

e Al-powered sensory analysis: Al is used to analyse sensory data such as taste, smell, and texture. By training a
machine learning algorithm with a large dataset of tea properties, the Al learned to predict the sensory properties of tea
based on fermentation conditions [77].
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Table 4: Research gap for the optimization techniques

Research Gap
Inadequate knowledge of the ideal fermentation

environment.

Absence of accurate and timely fermentation factor

monitoring.

Predicting the ultimate level of tea according to

fermenting circumstances is challenging.

Reliance on iterative techniques to optimize processes.

Failure to effectively relate sensory characteristics to

fermented conditions.

Solution
Optimize humidity, temperature, and fermenting time
for quality consistency with real-time sensory
information and Al-based forecasting.
During fermentation, use sophisticated sensors and
automated systems to continuously check and modify
important parameters including temperature, humidity,
and oxygen levels.
To forecast and modify fermentation for the desired tea
quality, teach machine learning algorithms to evaluate
chemical, visual, and sensory data.
Utilizing both historical and current data, create data-
driven strategies to maximize fermentation conditions
with the least amount of physical labour.
Enhance overall quality control by mapping the

conditions of fermentation to sensory characteristics

including flavour, fragrance, and texture using Al-driven

sensory analysis.

Table 4 lists the main problems with the fermentation process. and offers automation and fixation using artificial
intelligence. By using data-driven methods and state-of-the-art sensors These solutions attempt to improve quality
control and efficiency by optimizing fermentation conditions. Improved real-time monitoring predict tea quality and
reduce reliance on trial and error.

6. COMPARATIVE ANALYSIS

A comparative analysis of tea leaf fermentation methods highlights the pros and cons between manual, biochemical
and Al methods, although manual methods depend on skilled sensory discrimination. But biochemical methods are
highly accurate but resource intensive, and Al models have better scalability and real-time analysis. Although it requires
a lot of computational resources and data quality.

6.1. MANUAL METHOD

Expert operators use the senses of sight, smell, taste, and touch to analyse and ferment hand tea. As tea experts,
professionals usually evaluate the fermentation process [78]. The professional’s talent and experience have a big impact
on the precision of this method. Due to the lack of an automated method is subjective and is likely to vary from operator
to operator [79]. For this reason, the computing efficiency is extremely low. Labour-intensive manual procedures are
time-consuming and, because of reliance on human labour, have limited scalability. Because of this, production on an
industrial scale is not feasible. Manual method is suitable for crafts or small operations [80] in terms of durability. Manual
methods are inconsistent due to environmental factors and human fatigue, but experienced operators easily adapt to
changes, such as unexpected changes in the appearance of leaves.

6.2. BIOCHEMICAL METHODS

Biochemical analysis uses scientific techniques such as high-performance liquid chromatography (HPLC), gas
chromatography (GC) or mass spectrometry to track chemical changes (e.g. oxidation of polyphenols) during tea
fermentation. This method provides high accuracy by providing accurate and unbiased chemical measurements. profile
and reliable for quality control [81]. However, the computational efficiency is moderate. This is because analytics
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involves collecting, processing, and interpreting large amounts of data. This requires significant time and specialized
equipment [82]. Scalability is suitable for processing into small to medium sized production batches. But there are
limitations on costs and resources for continuous management. Real-time monitoring in large-scale operations poses
difficulties in the robustness of biochemical methods in controlled laboratory environments that affected by sample
contamination. Improper measurement or equipment malfunctioning in an industrial setting.

6.3. MACHINE LEARNING/AI METHODOLOGIES

Machine Learning (ML) and Artificial Intelligence (Al) algorithms to analyse data from sensors among fermentation
monitoring parameters such as temperature, humidity, colour, odour, chemical changes, etc. After training a model that
combines sensory and biochemical data to predict fermentation results. Computational performance is also excellent.
Machine learning make possible to analyse and take the decisions in real time. A key advantage of ML/AI systems is the
scalability. This is because multiple fermentation units that are easily monitored simultaneously and adapted to
industrial-scale operations. Robustly trained models reliably even under environmental changes. Although it may face
challenges on a regular basis in addition to updating training data.

Table 5: Comparison of tea quality assessment methods

Criteria Manual Method Biochemical Method Machine Learning/Al
Method
Accuracy Moderate; depends on High; precise | Very high; integrates

measurement of chemical

practitioner  skill and
prone to subjectivity.
Computational Efficiency | Very low; time-intensive

and labor-dependent.

Scalability Low; suitable only for
small-scale, artisanal
production.

Robustness Low; inconsistent due to
environmental factors and

human variability.

profiles.

Moderate; requires time
and specialized equipment
for processing data.
Moderate; suited for batch
processes but not
continuous large-scale
operations.

High in controlled lab
environments but
sensitive to contamination

or errors.

sensory and chemical data
with sufficient training.
High; real-time or near-
real-time analysis after
training.

High; suitable for large-

scale and  industrial
production.
High; adaptable to

variability but depends on
data quality and regular

updates.

Table 5 contrasts three methods manual, biochemical, and machine learning/artificial intelligence based on
robustness, scalability, accuracy, and computational economy. It emphasizes machine learning and Al are superior to
manual approaches in terms of accuracy, scalability, and flexibility, whereas biochemical processes strike a balance
between accuracy and moderate scalability.

Table 6: Research gap for the comparative analysis of fermented tea

Research Gap
Limited scalability and consistency of manual tea

fermentation methods.

Resource-intensive and slow biochemical analysis for

monitoring fermentation.

Solution
Develop Al-based systems to enhance scalability and
real-time  monitoring while reducing human
dependency and variability.
Integrate Al and sensor-based technologies for efficient,

real-time analysis and decision-making.
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Lack of robust methods to handle variability in Use ML algorithms trained on diverse datasets to

fermentation conditions across scales. improve adaptability and accuracy in industrial-scale

operations.

The main obstacles to tea fermentation are listed in table 6 and include unpredictability between scales, scalability
constraints, and inefficiencies in biochemical analysis. To increase scalability, efficiency, and adaptability in
manufacturing processes, it suggests Al-based solutions such as machine learning, sensor integration, and real-time
monitoring.

7. CHALLENGES IN CURRENT RESEARCH

Current research into tea leaf fermentation faces challenges such as fluctuating environmental conditions and the
complexity of real-world variables such as raw material diversity. This complicates process standardization. Including
high computational requirements for advanced models and limited access to the resources.

1) Complexity in Real Situation: Tea fermentation research faces significant challenges when transitioning from
controlled laboratory settings to real-world applications. This is due to dynamic environmental factors such as
fluctuating temperatures, humidity, oxygen levels and biochemical changes that affect complex process
standardization [83]. Raw material variability Including differences in the composition of tea leaves. Growth,
species and growing conditions This makes the development of universal methods or models more complex.
This is because the interaction between these parts is difficult to fully capture [84].

2) Computational resource limitations: Computational tools used in tea fermentation research such as
biochemical modelling and machine learning. This is often hampered by the high computational demands of
advanced models such as deep learning. This requires significant computing power and large datasets in real-
world situations. Relies on complex sensors and imaging systems Data mining creates enormous amounts of
data that exceed the capabilities of traditional computer systems. The high costs associated with high
performance computing (HPC), cloud services in developing. This is especially true when computational tasks
are not supported by green energy sources. This creates an increased demand for more efficient and sustainable
solutions.

Table 7: Research gap for the challenges in current research

Research Gap
Difficulty in standardizing tea fermentation processes
due to fluctuating environmental conditions, raw

material diversity, and interdisciplinary complexity.

High computational demands and resource limitations
for advanced models, hindering scalability and

accessibility in developing regions.

Solution
Develop Al-driven adaptive systems and models that
account for dynamic variables and integrate
biochemistry, microbiology, and sensory data for real-
world applications.
Design lightweight, energy-efficient algorithms and
promote the wuse of cost-effective computing

infrastructure to enable broader adoption and

sustainability.

Table 7 highlights challenges in standardizing tea fermentation due to environmental variability and resource-
intensive computational models. It proposes Al-driven adaptive systems and energy-efficient algorithms to improve
scalability, accessibility, and sustainability.

8. CONCLUSION

The segmentation, classification, and optimization of fermented tea leaves present a complex yet promising area of
research and application. Current challenges, such as variability in raw materials, dynamic environmental conditions,
computational resource limitations, and the interdisciplinary nature of fermentation processes, highlight the need for
innovative solutions. Advances in technologies such as loT-enabled monitoring, machine learning, and biochemical
analysis provide significant opportunities for relief against these issues in terms of accuracy in control, real-time analysis
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of data, and models adapting to variability. Region-specific consumer preferences are embedded into optimization
processes to improve market conformity and quality of the product. Future attempts should be toward making the
algorithms more efficient, capturing data economically using cost-effective systems, and creating conditions that
minimize the energy requirements of computations. The collaboration across various scientific disciplines, in addition
to access to scalable technologies, that lead to the development of robust, efficient, and universally applicable solutions.
With these challenges addressed, the field is well prepared to unlock new possibilities for improving the consistency,
quality, and scalability of fermented tea production.
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