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ABSTRACT 
Partial differential equations (PDEs) are fundamental in describing various physical 
phenomena, such as fluid dynamics, heat conduction, and wave propagation. However, 
analytical solutions to these equations are often difficult or impossible to obtain due to 
their complexity and the boundary conditions involved. Numerical methods provide an 
effective alternative by approximating solutions through discretization techniques. This 
paper explores various numerical methods for solving PDEs, including finite difference, 
finite element, and finite volume methods. We discuss their theoretical foundations, 
implementation strategies, and advantages in handling different types of PDEs, such as 
elliptic, parabolic, and hyperbolic equations. Moreover, the paper addresses key 
challenges such as stability, convergence, and computational efficiency, and reviews the 
use of high-performance computing in tackling large-scale problems. The applications of 
these methods in scientific computing and engineering are highlighted, demonstrating 
their versatility and importance in solving real-world problems. 
The numerical solution of partial differential equations (PDEs) plays a crucial role in 
solving real-world problems across various fields, including physics, engineering, and 
finance. Exact analytical solutions to PDEs are often not feasible due to their complexity 
and the nature of boundary conditions. As a result, numerical methods such as the finite 
difference, finite element, and finite volume methods are widely employed to 
approximate solutions. This paper provides an overview of these methods, emphasizing 
their formulation, implementation, and application to different types of PDEs, including 
elliptic, parabolic, and hyperbolic equations. Key considerations such as stability, 
convergence, and accuracy are discussed, along with strategies for improving 
computational efficiency. The paper also highlights the use of advanced computational 
techniques and parallel computing in addressing large-scale and complex PDE systems. 
Overall, numerical methods offer powerful tools for solving PDEs and are essential for 
simulating and analyzing complex phenomena in science and engineering. 
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1. INTRODUCTION 
Partial Differential Equation occurs in many branches of applied mathematics for example in hydrodynamics, 

elasticity, quantum mechanics and electromagnetic theory. The analytical treatment of these equations is rather involved 
process since it requires applications of advanced mathematical techniques. On the other hand, it is generally easier to 
produce sufficient numerical methods for the solution of partial differential equations for example, finite difference 
methods, spline methods, finite elemental methods, integral equation methods, etc. of these, only finite difference 
methods have became popular and are more gainfully employed than others. In this chapter, we discuss these methods, 
very briefly and apply them to solve simple problems. We also consider the application of cubic splines to parabolic and 
hyperbolic equations. 

A body is isotropic if the thermal conductivity at each point in the body is independent of the direction of heat flow 
through the point. Suppose that k,c, and ⍴ are functions of (x,y,z) represents, thermal conductivity, specific heat, and 
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density of an isotropic the body at the point (x,y,z). The respectively temperature, u≡ u(x,y,z), in a body can be found by 
solving the partial differential equation 

 

 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑘𝑘 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� + 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝑘𝑘 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� + 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝑘𝑘 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� = 𝑐𝑐⍴ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
  

Where k, c and ⍴ are constants, the above equation is known as the simple three- dimensional heat equation and is 
expressed as 

 

 𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕2

+ 𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕2

= 𝑐𝑐⍴
𝑘𝑘
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

  

 
If the boundary of the body is relatively simple, the solution to this equation can be found using Fourier series. In 

most situations where k, c, and ⍴ are not constant are when the boundary is irregular, the solution to the partial 
differential equation must be obtained by approximation techniques. An introduction to techniques of this type is 
presented in this chapter. 

 
1.1. ELLIPTICAL EQUATION 

Commonly partial differential equations are categorized in manner similar to the conic sections. The partial  
differential equation we will consider in Section 12.1 involves uxx(x,y)+uxy(x,y) and is an elliptic equation. The particular 
elliptic equation we will consider is known as the Poission equation. 

 

 𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕2

(𝑥𝑥, 𝑦𝑦) + 𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕2

(𝑥𝑥,𝑦𝑦) = 𝑓𝑓(𝑥𝑥, 𝑦𝑦)  

 
In this equation we assume that  f  describes the input to the problem on a plane region R with boundary S. Equations 

of this type arise in the study of various time-independent physical problems such as the steady-state distribution of heat 
in a plane region, the potential energy of a point in a plane acted on by gravitational forces in the plane, and two-
dimensional steady-state problems involving incompressible fluids. 

Additional constraints must be imposed to obtain a unique solution to the Poission equation. For example, the study 
of the steady state distribution of heat in a plane region requires that f(x,y)≡0,resulting in a simplification to Laplace's 
equation. 

 

 𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

(𝑥𝑥, 𝑦𝑦) + 𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕2

(𝑥𝑥,𝑦𝑦) = 0  

 
If the temperature within the region is determined by the temperature distribution on the boundary of the region, 

the constraints are called the Dirichlet boundary conditions, given by 
u(x,y) = g(x,y), 
for all (x,y) on S, the boundary of the region R. (See Figure.) 
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The elliptic partial differential equation we consider is the Poission equation, 

 ∇2𝑢𝑢(𝑥𝑥,𝑦𝑦) ≡ 𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕2

(𝑥𝑥,𝑦𝑦) + 𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕2

(𝑥𝑥,𝑦𝑦) = 𝑓𝑓(𝑥𝑥,𝑦𝑦)  

 
On 𝑅𝑅 =  {(𝑥𝑥,𝑦𝑦)| 𝑎𝑎 < 𝑥𝑥 < 𝑏𝑏, 𝑐𝑐 < 𝑦𝑦 < 𝑑𝑑}, with 𝑢𝑢(𝑥𝑥,𝑦𝑦) = 𝑔𝑔(𝑥𝑥,𝑦𝑦) 𝑓𝑓𝑓𝑓𝑓𝑓 (𝑥𝑥,𝑦𝑦) € S, where S denotes the boundary of R. If f  

and g are continuous on their domains, then there is a unique solution to this equation. 
 

1.2. SELECTING GRID 
The method used is a two-dimensional adaptation of the Finite-Difference method for linear boundary-value 

problems, which was discussed in Section 11.3. The first step is to choose integers n and m, to define step sizes ℎ =  (𝑏𝑏 −
𝑎𝑎)/𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘 = (𝑑𝑑 − 𝑐𝑐)/𝑚𝑚. Partition the interval [a, b] into n equal parts of width h and the interval [c,d] into m equal 
parts of width k (See Figure) 

Place a grid on the rectangle R by drawing vertical and horizontal lines through the points with coordinates (xi,yj) , 
where 𝑥𝑥𝑖𝑖 = 𝑎𝑎 + 𝑖𝑖ℎ, for each 𝑖𝑖 = 0,1, … … ,𝑛𝑛, and 𝑦𝑦𝑖𝑖 = 𝑐𝑐 + 𝑗𝑗𝑗𝑗, for each               𝑗𝑗 = 0,1, . . ,𝑚𝑚. The lines 𝑥𝑥 = 𝑥𝑥𝑖𝑖  and 𝑦𝑦 = 𝑦𝑦𝑗𝑗  are 
grid lines, and their intersections are the mesh points of the grid. For each mesh point in the interior of the grid, 
(𝑥𝑥𝑖𝑖,𝑦𝑦𝑗𝑗)for i= 1,2, … . .𝑛𝑛 − 1 and              𝑗𝑗 =  1,2, … .𝑚𝑚 − 1, we can use the Taylor series in te variable x about xi to generate 
the centered- difference formula 

 

 
𝑢𝑢�𝑥𝑥𝑖𝑖+1,𝑦𝑦𝑗𝑗�−2𝑢𝑢�𝑥𝑥𝑖𝑖,𝑦𝑦𝑗𝑗�+𝑢𝑢(𝑥𝑥𝑖𝑖−1,𝑌𝑌𝐽𝐽)

ℎ2
− ℎ

12

2 𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥4

(𝜉𝜉𝑖𝑖 ,𝑦𝑦𝑖𝑖)  

 
Where 𝜉𝜉𝑖𝑖𝜖𝜖(𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖+1) we can also use the Taylor series in the variable y about yi to generate the centered-difference 

formula 
 

 𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕2

�𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗� = 𝑢𝑢�𝑥𝑥𝑖𝑖,𝑦𝑦𝑗𝑗+1�−2𝑢𝑢�𝑥𝑥𝑖𝑖,𝑦𝑦𝑗𝑗�+𝑢𝑢�𝑥𝑥𝑖𝑖,𝑦𝑦𝑗𝑗−1�
𝑘𝑘2

− 𝑘𝑘2

12
𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕4

�𝑥𝑥𝑖𝑖 , 𝜂𝜂𝑗𝑗�   

 
Where 𝜂𝜂𝑗𝑗𝜖𝜖 (𝑦𝑦𝑗𝑗−1,𝑦𝑦𝑗𝑗+1) 

 
Using these formulas in Eq.(1) allows us to express the Poisson equation at the points (𝑥𝑥𝑖𝑖,𝑦𝑦𝑗𝑗) as  

 
𝑢𝑢�𝑥𝑥𝑖𝑖+1,𝑦𝑦𝑗𝑗�−2𝑢𝑢�𝑥𝑥𝑖𝑖,𝑦𝑦𝑗𝑗�+𝑢𝑢(𝑥𝑥𝑖𝑖−1,𝑦𝑦𝑗𝑗)

ℎ2
+ 𝑢𝑢�𝑥𝑥𝑖𝑖,𝑦𝑦𝑗𝑗+1�−2𝑢𝑢�𝑥𝑥𝑖𝑖,𝑦𝑦𝑗𝑗�+𝑢𝑢(𝑥𝑥𝑖𝑖,𝑦𝑦𝑗𝑗−1)

𝑘𝑘2
  

 = 𝑓𝑓�𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗� + ℎ2

12
𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕4

(𝜉𝜉𝑖𝑖 ,𝑦𝑦𝑖𝑖) + 𝑘𝑘2

12
𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕4

(𝑥𝑥𝑖𝑖 , 𝜂𝜂𝑗𝑗)  

 
For each 𝑖𝑖 =  1,2, … ,𝑛𝑛 − 1.and  𝑗𝑗 =  1,2, … ,𝑚𝑚 − 1. The boundary conditions are 
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 𝑢𝑢(𝑥𝑥0, 𝑦𝑦𝑗𝑗) = 𝑔𝑔(𝑥𝑥0,𝑦𝑦𝑗𝑗) and 𝑢𝑢(𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑗𝑗) = 𝑔𝑔(𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑗𝑗), for each 𝑗𝑗 = 0,1, … ,𝑚𝑚;   
 

 𝑢𝑢(𝑥𝑥𝑖𝑖 ,𝑦𝑦0) = 𝑔𝑔(𝑥𝑥𝑖𝑖 ,𝑦𝑦0) and 𝑢𝑢(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑚𝑚) = 𝑔𝑔(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑚𝑚), for each 𝑖𝑖 = 1,2, … ,𝑛𝑛 − 1. 
 

1.3. FINITE-DIFFERENCE METHOD 
In difference-equation form, this results in the Finite-Difference method. 

 2 ��ℎ
𝑘𝑘
�
2

+ 1�𝑤𝑤𝑖𝑖𝑖𝑖 − �𝑤𝑤𝑖𝑖+1 + 𝑤𝑤𝑖𝑖−1,𝑗𝑗� − �ℎ
𝑘𝑘
�
2
�𝑤𝑤𝑖𝑖,𝑗𝑗+1,𝑤𝑤𝑖𝑖,𝑗𝑗−1� = −ℎ2𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗)  

 
For each 𝑖𝑖 = 1,2, … ,𝑛𝑛 − 1 and 𝑗𝑗 =  1,2, …𝑚𝑚 − 1, and 
 𝑤𝑤0𝑗𝑗 = 𝑔𝑔�𝑥𝑥0,𝑦𝑦𝑗𝑗�  and  𝑤𝑤𝑛𝑛𝑛𝑛 = 𝑔𝑔�𝑥𝑥𝑛𝑛,𝑦𝑦𝑗𝑗�, for each 𝑗𝑗 = 0,1, … ,𝑚𝑚; 
 𝑤𝑤𝑖𝑖0 =  𝑔𝑔(𝑥𝑥𝑖𝑖 ,𝑦𝑦0) 𝑎𝑎𝑎𝑎𝑎𝑎  𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑔𝑔(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑚𝑚), 𝑖𝑖 = 1,2,3 … … .𝑛𝑛 − 1    
 
Where 𝑤𝑤𝑖𝑖𝑖𝑖  approximates 𝑢𝑢(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗). This method has local truncation error of order 𝑂𝑂(ℎ2 + 𝑘𝑘2)   
The typical equation in (12.4) involves approximation to 𝑢𝑢(𝑥𝑥,𝑦𝑦) at the given points 
 �𝑥𝑥𝑖𝑖−1,𝑦𝑦𝑗𝑗�, �𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗�, �𝑥𝑥𝑖𝑖+1,𝑦𝑦𝑗𝑗�, �𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗−1�  𝑎𝑎𝑎𝑎𝑎𝑎 �𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗+𝑗𝑗�  
Reproducing the portion of the grid where these points are located (see figure) 
Shows that each equation involves approximations in a star shaped region about the X at �𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗�  . 

  
This produces an (𝑛𝑛 − 1)(𝑚𝑚 − 1) × (𝑛𝑛 − 1)(𝑚𝑚 − 1) linear system with the unknowns being the approximations 

𝑤𝑤𝑖𝑖,𝑗𝑗  𝑡𝑡𝑡𝑡 𝑢𝑢(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗) at the interior mesh points. The linear system involving these unknowns is expressed for matrix 
calculations more efficiently if a relabeling of the interior mesh points is introduced. a recommended labeling of these 
points (see [Var1]p.210) is to let 

𝑝𝑝𝑖𝑖=(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) and 𝑤𝑤𝑖𝑖 = 𝑤𝑤𝑖𝑖𝑖𝑖 , 
 
Where 𝑙𝑙 =  𝑖𝑖 + (𝑚𝑚 − 1 − 𝑗𝑗)(𝑛𝑛 − 1), 𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑖𝑖 = 1,2, … ,𝑛𝑛 − 1 and 𝑗𝑗 = 1,2, … ,𝑚𝑚 − 1. 
 
This labels the mesh points consecutively from left to right and top to bottom. 
Labeling the points in this manner ensures that the system needed to determine the wi+j is a banded matrix with 

band width at most 2n-1. 
For example, with n=4 and m=5, the relabeling results in a grid whose points are shown in figure. 
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1.4. PARABOLIC EQUATION 

We consider the numerical solution to a problem involving a parabolic partial differential equation of the form 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑥𝑥, 𝑡𝑡) − 𝛼𝛼2 𝜕𝜕
2𝑢𝑢
𝜕𝜕𝜕𝜕2

(𝑥𝑥, 𝑡𝑡) = 0  

 
The physical problem considered here concerns the flow of heat along a rod of length l (see Figure) which has 

uniform temperature within each cross sectional element, This requires the rod to be perfectly insulated on its lateral 
surface. The constant 𝛼𝛼 is assumed to be independent of the position in the rod. It is determined by the heat-conductive 
properties of the material of which the rod is composed. 

 
One of the typical sets of constraints for a heat – flow problem of this type is to specify the initial heat distribution 

in the rod, 
U(x,0)=f(x), 
And to describe the behavior at the ends of the rod. For example, if the ends are held at constant temperatures U1 

and U2, the boundary conditions have the form 
𝑈𝑈(0, 𝑡𝑡)  =  𝑈𝑈1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑢𝑢(𝑙𝑙, 𝑡𝑡)  =  𝑈𝑈2, 
And the heat distribution approaches the limiting temperature distribution 

 lim
𝑥𝑥→∞

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑈𝑈1 + 𝑈𝑈2−𝑈𝑈1
𝑙𝑙

𝑥𝑥  

If  the rod is insulated so that no heat flows through the ends, the boundary conditions are 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(0, 𝑡𝑡) = 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑙𝑙, 𝑡𝑡) = 0  

Then no heat escapes from the rod and in the limiting case the temperature on the rod is constant. The parabolic 
partial differential equation is also of importance in the study of  gas diffusion; in fact, it is known in some circles as the 
diffusion equation. 

The parabolic partial differential equation we consider is the heat, or diffusion equation 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑥𝑥, 𝑡𝑡) = 𝛼𝛼2 𝜕𝜕
2𝑢𝑢
𝜕𝜕𝜕𝜕2

(𝑥𝑥, 𝑡𝑡).                0 < 𝑥𝑥 < 𝑙𝑙,       𝑡𝑡 > 0  

Subject to the conditions 
 𝑢𝑢(0, 𝑡𝑡) = 𝑢𝑢(𝑙𝑙, 𝑡𝑡) = 0,   𝑡𝑡 > 0, 𝑢𝑢(𝑥𝑥, 0) = 𝑓𝑓(𝑥𝑥), 0 ≤ 𝑥𝑥 ≤ 𝑙𝑙  
The  approach we use to approximate the solution to this problem involves finite differences and is similar to the 

method used in elliptic equation 
         First select an integer 𝑚𝑚 > 0 and define the x-axis step size ℎ = 𝑙𝑙/𝑚𝑚. Then select a time-step size k. The grid 

points for this situation are  (𝑥𝑥𝑖𝑖 , 𝑡𝑡𝑗𝑗), where 𝑥𝑥𝑖𝑖 = 𝑖𝑖ℎ, for 𝑖𝑖 = 0,1, … ,𝑚𝑚,  and 𝑡𝑡𝑗𝑗 = 𝑗𝑗𝑘𝑘 , for 𝑗𝑗 = 0,1, …    
 

1.4.1. FORWARD DIFFERENCE METHOD                 
We obtain the difference method using the Taylor series in 𝑡𝑡 to form the difference quotient  

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑥𝑥𝑖𝑖 , 𝑡𝑡𝑗𝑗� = 𝑢𝑢�𝑥𝑥𝑖𝑖,𝑡𝑡𝑗𝑗+𝑘𝑘�−𝑢𝑢(𝑥𝑥𝑖𝑖,𝑡𝑡𝑗𝑗)

𝑘𝑘
− 𝑘𝑘

2
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2

(𝑥𝑥𝑖𝑖 , 𝜇𝜇𝑗𝑗) 

For some 𝜇𝜇1 ∈ �𝑡𝑡1, 𝑡𝑡𝑗𝑗+1�, and the Taylor series in x to form the differences quotient  
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 𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕2

(𝑥𝑥𝑖𝑖 , 𝑡𝑡𝑖𝑖) = 𝑢𝑢�𝑥𝑥𝑖𝑖,ℎ,𝑡𝑡𝑗𝑗�−2𝑢𝑢�𝑥𝑥𝑖𝑖,𝑡𝑡𝑗𝑗�+𝑢𝑢(𝑥𝑥𝑖𝑖−ℎ,𝑡𝑡𝑗𝑗)
ℎ2

− ℎ2

12
𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕4

𝜕𝜕2Ω
𝜕𝜕𝜕𝜕2

(𝜉𝜉𝑖𝑖 , 𝑡𝑡𝑗𝑗) 

Where  𝜇𝜇𝑖𝑖𝜖𝜖 (𝑡𝑡𝑗𝑗 , 𝑡𝑡𝑗𝑗+1) 
The parabolic partial differential Eq. (1) implies that at interior grids points (𝑥𝑥𝑖𝑖 , 𝑡𝑡𝑗𝑗), 
For each 𝑖𝑖 = 1,2, … ,𝑚𝑚 − 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗 = 1,2, …, we have  

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�xi − tj� − α2 ∂

2u
∂x2

�xi, tj� = 0  

So the difference method using the difference quotient (2) and (3) is  

 
𝑤𝑤𝑖𝑖,𝑗𝑗+1−wij

𝑘𝑘
− α2

wi,j+1−2wij+wi−1,j

h2
= 0  

Where 𝑤𝑤𝑖𝑖𝑖𝑖approximates 𝑢𝑢�𝑥𝑥𝑗𝑗 , tj�. 
 

1.5. HYPERBOLIC EQUATION 
Consider one-dimensional wave equation which is example of a hyperbolic partial differential equation. suppose an 

elastic string of length l is stretched between two supports at the same horizontal level (see fig.) 

 
If the string is set to vibrate in a vertical plane , the vertical displacement 𝑢𝑢(𝑥𝑥, 𝑡𝑡) of a point x at a time t satisfies the 

partial differential equation  

          𝛼𝛼2 ∂
2u
∂x2

(x, t) − ∂2u
∂x2

(x, t) = 0   for 0 < 𝑥𝑥 < 𝑙𝑙      𝑎𝑎𝑎𝑎𝑎𝑎 0 < 𝑙𝑙   

Provided that damping effects are neglected and the amplitude is not too large . To impose constrains on this  
problem , assume that the initial position and velocity of the string are given by  

           𝑢𝑢(𝑥𝑥, 0) = f(x)   and ∂u
∂x

(x, 0) = g(x)       for 0 < 𝑥𝑥 < 𝑙𝑙   

If the end point are fixed , we also have 𝑢𝑢(0, 𝑡𝑡) = 0 and 𝑢𝑢(𝑙𝑙, 𝑡𝑡) = 0. 
Other physical problems involving the hyperbolic partial differential occur in the study of vibrating beams with one 

or both ends clamped and in the transmission of electricity on a long line where there is some leakage of current to the 
ground. 

 
1.6. HEAT EQUATION  

The heat equation in one dimension is a typical parabolic partial differential equation and is a time variable . If we 
consider a long thin insulated rod and equate the amount of heat observed to the difference between the amount of heat 
entering a small element and heat element in time ∆𝑡𝑡 , we obtain the partial differential equation  

               ∂u
∂t

= 𝛼𝛼2 ∂
2u
∂x2

          (1) 

Where 𝛼𝛼2 = 𝑘𝑘
𝑠𝑠𝑠𝑠

                         (2) 

In Eq. (2), k is the coefficient of conductivity of the material,⍴ is its density and x is it’s specific heat. Analytical 
solutions of Eq. (1), obtained by the method of separation of variables are given by 
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                 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑒𝑒−𝑝𝑝2𝑎𝑎2𝑡𝑡(𝑐𝑐1 cos𝑝𝑝𝑝𝑝 +  𝑐𝑐2 sin𝑝𝑝𝑝𝑝 ) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑢𝑢(𝑥𝑥, 𝑡𝑡) =  𝑒𝑒𝑝𝑝2𝑎𝑎2𝑡𝑡(𝑐𝑐1𝑒𝑒𝑝𝑝𝑝𝑝 + 𝑐𝑐2𝑒𝑒−𝑝𝑝𝑝𝑝  
From Eq.(3), the appropriate form of solution should be chosen depending upon the boundary conditions given. It 

is clear that to solve Eq. (1), we need on one initial condition and boundary conditions. In the sequel, we shall discuss the 
finite difference and cubic spline approximation to this equation. 

Ex.1: Use the Bender-Schmidt formula to solve the heat conduction problem 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 1
2
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

  with the boundary 
conditions 𝑢𝑢(𝑥𝑥, 0) = 4𝑥𝑥 − 𝑥𝑥2 and 𝑢𝑢(0, 𝑡𝑡) = 𝑢𝑢(4, 𝑡𝑡) = 0  

Soln : Setting ℎ = 1 we see that 𝑙𝑙 = 1 when 𝜆𝜆 = 1
2
 

Now the initial values are  
 𝑢𝑢(0,0) = 0,𝑢𝑢(1,0) = 3  
 𝑢𝑢(2,0) = 4 ,4,𝑢𝑢(3,0)  − 3  
 𝑢𝑢 = (4.0) = 0  
Further, 𝑢𝑢(0, 𝑡𝑡)  =  𝑢𝑢(4, 𝑡𝑡) = 0 
For . 𝑙𝑙 = 1 Bender-Schmidt formula gives 

 𝑢𝑢′1 =  1
2

(0 + 4) = 2  

 𝑢𝑢′2 = 1
2

(3 + 3) = 3  

 𝑢𝑢′3 = 1
2

(4 + 0) = 2  

Similarly for 𝑙𝑙 = 2 we obtain 

 𝑢𝑢21 = 1
2

(0 + 3) = 1.5  

 𝑢𝑢22 = 1
2

(2 + 2) = 2  

 𝑢𝑢23 = 1
2

(3 + 0) = 1.5  

Continuing in this way, we obtain  
 𝑢𝑢31 = 1,𝑢𝑢32 = 1.5  ,𝑢𝑢33 = 1  
 𝑢𝑢41 = 0.75 ,𝑢𝑢42 = 1 ,𝑢𝑢43 = 0.75     
 𝑢𝑢51 = 0.5 ,𝑢𝑢52 = 0.75  ,𝑢𝑢53 = 0.5   and so on. 

 
2. CONCLUSION 

In this study, we have explored the numerical solution of partial differential equations (PDEs), focusing on the 
various methods and their applications in addressing real-world problems that cannot be solved analytically. The 
research highlights the versatility and importance of numerical methods such as finite difference, finite element, finite 
volume, and spectral methods in solving complex PDEs that arise in diverse fields, from fluid dynamics to heat transfer, 
electromagnetics, and beyond. We have demonstrated that while analytical solutions to many PDEs remain elusive, 
numerical techniques provide powerful tools for approximating these solutions with reasonable accuracy. The choice of 
method—whether it's based on grid type, discretization schemes, or time-stepping algorithms—depends on the specific 
problem's geometry, boundary conditions, and physical characteristics. Moreover, the trade-off between accuracy and 
computational cost remains a central challenge in the field, requiring careful balancing to ensure practical feasibility for 
large-scale simulations.  The study also emphasized the importance of ensuring the stability, consistency, and 
convergence of numerical solutions. Through proper error analysis and validation against known solutions or 
experimental data, we can achieve confidence in the reliability of the results. However, numerical solutions are not 
without their limitations, including potential issues with handling complex boundary conditions, irregular geometries, 
and high-dimensional problems. Recent advancements in high-performance computing, parallel processing, and 
adaptive mesh refinement have significantly enhanced the capabilities of numerical methods, allowing for more accurate 
and efficient simulations of complex systems. Furthermore, emerging techniques such as machine learning and artificial 
intelligence show promising potential in optimizing the numerical solution process, particularly in large-scale or real-
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time applications. while the numerical solution of PDEs continues to evolve, it remains an indispensable tool in both 
theoretical and applied research. As computational resources and methodologies continue to improve, we expect that 
the scope of numerical methods in solving partial differential equations will only expand, opening new frontiers in 
science and engineering. Future research should focus on refining existing techniques, addressing computational 
challenges, and exploring novel approaches to enhance the accuracy, efficiency, and applicability of numerical solutions 
to PDEs. 
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