

Original Article ISSN (Online): 2582-7472

THERMAL STRESSES IN TWO-LAYER COMPOSITE SLAB WITH DISCONTINUOUS AT THE INTERFACE

W.K. Dange¹ Yashraj A. Raipure²

- ¹Department of Mathematics, Shree. Shivaji Arts Commerce and Science College Rajura
- ²Computer Engineering, S.P.P.U.

CorrespondingAuthor

W.K. Dange,

warsha.dange@gmail.com

10.29121/shodhkosh.v5.i6.2024.350

Funding: This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Copyright: © 2024 The Author(s). This work is licensed under a Creative Commons Attribution International License.

With the license CC-BY, authors retain the copyright, allowing anyone to download, reuse, re-print, modify, and/or distribute, copy contribution. The work must be properly attributed to its author.

ABSTRACT

This paper is concerned with the determination of temperature distribution T i (y), i=1,2 and thermal stresses σ xi of the transient thermoelastic problem of two-layer composite slabs with outer surfaces at y=-h_1 and y=h_2 and interface at y=0.Let b is the width of the slab which is the same for both the layers and h_i, i=1,2 is the height of each layer. Initially, both the layers of the slab are kept at T_0 temperature. For time t>0 the outer boundary surfaces y=-h_1 and y= h_2 are kept at zero prescribed temperature. The properties of the solid are uniform with each layer but discontinuous at the interface at y=0. The solution can be determined with prescribed initial and boundary conditions and expressed graphically.

Keywords: Temperature Distribution, Thermal Stresses, Composite, Interface, Slab, Two-Layer

1. INTRODUCTION

Adams and Bert [2] have studied the direct problem of thermoelasticity in a rectangular plate under thermal shock. W. K. Dange et. al. [5,6] have studied the thermoelastic Problem of a Thin rectangular plate and square plate. A. Vattr' ea. E. Panb [1]has derived Three-dimensional exact solutions for temperature and thermoelastic stresses in multilayered anisotropic plates for advanced boundary-value problems with general boundary conditions. Laxman V Bharambe et. al.[4] have studied the stress and deformations in the elliptical and rectangular plates with and without cutout by using finite element analysis. Huang Sheng et. al. [5] has investigated the stress state of the rectangular domain. This paper aims to evaluate temperature distribution $T_i(y)$, i = 1,2 and thermal stresses σ_{xi} of the transient thermoelastic problem of two layer composite slab with outer surface at $y = -h_1$ and $y = h_2$ and interface at y = 0. Let b is width of slab which is the same for both the layers and h_i , i = 1,2 is height of each layer. Initially both the layers of slab are kept at T_0 temperature. For time t > 0 the outer boundary surfaces $y = -h_1$ and $y = h_2$ are kept at zero prescribed

temperature. The properties of the solid are uniform with each layer but discontinuous at the interface at y=0. The orthogonal expansion technique is used to determine the solution and assessed graphically.

2. STATEMENT OF THE PROBLEM

Consider two-layer composite slab with outer boundaries at $y = -h_1$ and $y = h_2$ and interface at y = 0.Let b is the width of the slab which is the same for both the layers and h_i , i = 1,2 is the height of each layer. Let temperature distribution $T_i(y)$, i = 1,2. Transient boundary value problem of heat conduction equation is:

$$\frac{\partial^2 T_i}{\partial y^2} = \frac{1}{\alpha_i} \frac{\partial T_i}{\partial t} \quad , \quad i = 1,2$$

Where α_i , i = 1,2 is thermal diffusivity of the slab.

Subject to the initial conditions

$$M_t(T_1, 1, 0, 0) = T_0 \text{ For all } -h_1 \le y \le 0$$
 (2)
 $M_t(T_2, 1, 0, 0) = T_0 \ 0 \le y \le h_2$ (3)

and boundary conditions

$$M_{y}(T_{1}, 1, 0, -h_{1}) = 0 (4)$$

$$M_{\nu}(T_1, 0, k_1, 0) = M_{\nu}(T_2, 0, k_2, 0)$$
 at interface at $y = 0$ and $t > 0$ (5)

$$M_{\nu}(T_1, 0, -k_1, 0) = h(T_1 - T_2)$$
 at interface at $y = 0$ and $t > 0$ (6)

$$M_{\nu}(T_1, 1, 0, h_2) = 0 (7$$

Where h is contact conductance at the interface and k_i , i = 1,2 are thermal conductivities of the slab.

Thermal stresses are given by

$$\sigma_{xi}(y) = -\alpha_{t_i} E_i T_i(y) + \frac{2bE_i}{D} \left\{ 2[\aleph_1 + \aleph_2] \left[E_2 h_2^3 + E_1 h_1^3 \right] - 3[\aleph_3 + \aleph_4] \left[E_2 h_2^2 + E_1 h_1^2 \right] \right\} + \frac{6E_i}{D} \left\{ 2[\aleph_3 + \aleph_4] \left[E_2 h_2 b + E_1 h_1 b \right] - \left[\aleph_1 + \aleph_2 \right] \left[E_2 h_2^2 b + E_1 h_1^2 b \right] \right\} \quad i = 1, 2 \quad (8)$$

$$E_1 h_1 b$$
] - $[\aleph_1 + \aleph_2] [E_2 h_2^2 b + E_1 h_1^2 b]$ $i = 1,2$ (8)

Where
$$D = b^2 (E_2 h_2^2 - E_1 h_1^2)^2 + 4 b^2 h_1 h_2 E_1 E_2 (h_1 + h_2)^2$$
 (9)

$$\aleph_1 = \int_{-h_1}^0 \alpha_{t_1} E_1 \, T_1 \, (y) dy \tag{10}$$

$$\aleph_{2} = \int_{0}^{h_{2}} \alpha_{t_{2}} E_{2} T_{2} (y) dy$$

$$\aleph_{3} = \int_{-h_{1}}^{0} \alpha_{t_{1}} E_{1} y T_{1} (y) dy$$
(11)

$$\aleph_3 = \int_{-h_1}^0 \alpha_{t_1} E_1 \, y T_1 \, (y) dy \tag{12}$$

$$\aleph_4 = \int_0^{h_2} \alpha_{t_2} E_2 \, y T_2 \, (y) dy \tag{13}$$

Since external forces do not act on the slab then

$$\int_{-h_1}^0 \alpha_{t_1} E_1 \, \sigma_{x_1} dy + \int_0^{h_2} \alpha_{t_2} E_2 \, \sigma_{x_2} dy = 0 \tag{14}$$

$$\int_{-h_1}^0 \alpha_{t_1} E_1 y \, \sigma_{x_1} dy + \int_0^{h_2} \alpha_{t_2} E_2 \, y \sigma_{x_2} dy = 0$$
 (15)

Where α_{t_i} i = 1,2 are thermal expansion coefficient, E_i , i= 1,2 are Young's modulus

3. DETERMINATION OF TEMPERATURE FIELD

temperature with prescribed boundary and initial conditions are given by

$$T_i(y,t) = \sum_{n=1}^{\infty} A_n Y_{in}(y) \exp(-\alpha_i \beta_{in}^2 t) , i = 1,2$$
 (16)

Where $Y_{in}(y)$ is eigenfunctions which are chosen in the form

$$Y_{1n}(y) = \sin \beta_{1n} y + D_{1n} \cos \beta_{1n} y \tag{17}$$

 $Y_{2n}(y) = C_{2n} \sin \beta_{2n} y + D_{2n} \cos \beta_{2n} y$ (18)

Where D_{1n} , C_{2n} , D_{2n} are unknown coefficients to be determined from given boundary conditions (4), (5) and (7) as follows

$$D_{1n} = \tan \beta_{1n} h_1 \tag{19}$$

$$C_{2n} = \sqrt{\frac{\alpha_1}{\alpha_2}} \frac{k_1}{k_2} \tag{20}$$

$$D_{2n} = -C_{2n} \tan \beta_{2n} h_2 \tag{21}$$

 β_{1n} and β_{2n} are eigenvalues of eigenfunctions $Y_{1n}(y)$ and $Y_{2n}(y)$ respectively. Equation (6) will be used to determine the relationship between eigenvalues β_{1n} and β_{2n} . As time is the same on either side of the interface due to their no storage of energy at the interface then

$$\beta_{2n} = \sqrt{\frac{\alpha_1}{\alpha_2}} \beta_{1n} \tag{22}$$

And

$$\beta_{1n} = \frac{-h}{k_1} \sqrt{\frac{\alpha_1}{\alpha_2}} \left[\tan \beta_{1n} h_1 + \frac{k_1}{k_2} \sqrt{\frac{\alpha_2}{\alpha_2}} \tan \beta_{2n} h_2 \cos \beta_{2n} y \right]$$
 (23)

Thus temperature distribution in the two layers Slab with contact resistance at the interface is given in the form

$$T_1(y,t) = \sum_{n=1}^{\infty} A_n [\sin \beta_{1n} y + \tan \beta_{1n} h_1 \cos \beta_{1n} y] \exp(-\alpha_1 \beta_{1n}^2 t)$$
 (24)

$$T_2(y,t) = \sum_{n=1}^{\infty} A_n \left[\sqrt{\frac{\alpha_1}{\alpha_2}} \frac{k_1}{k_2} \sin \beta_{2n} y + \tan \beta_{1n} h_1 \cos \beta_{2n} y \right] \exp(-\alpha_2 \beta_{2n}^2 t) (25)$$

Where

$$A_{n} = \frac{4k_{2}T_{0}}{k_{1}} \frac{\cos\beta_{1n} h_{1} \sin\beta_{1n} h_{1} + \cos\beta_{2n} h_{2} + \sin\beta_{2n} h_{2} - 3}{2\beta_{1n} h_{1} \sec^{2}\beta_{1n} h_{1} + \sin\beta_{1n} h_{1} (\tan^{2}\beta_{1n} h_{1} - 1) - 5\tan\beta_{1n} h_{1} \sin\beta_{1n} h_{1}} + 2\beta_{1n} h_{2} (1 + \tan\beta_{2n} h_{2} \sin\beta_{2n} h_{2}) + \sqrt{\frac{\alpha_{2}}{\alpha_{1}}} \sin\beta_{2n} h_{2} (\tan\beta_{2n} h_{2} \sin\beta_{2n} h_{2} - 1) - \sqrt{\frac{\alpha_{2}}{\alpha_{1}}} \sin^{2}\beta_{2n} h_{2}$$

$$(26)$$

Thermal stresses are given by

$$\sigma_{x1}(y) = -\alpha_{t_{1}} E_{1} \sum_{n=1}^{\infty} A_{n} [\sin \beta_{1n} y + \tan \beta_{1n} h_{1} \cos \beta_{1n} y] \exp(-\alpha_{1} \beta_{1n}^{2} t) + \sum_{n=1}^{\infty} \left\{ \frac{2b^{2} E_{1}}{\beta_{1n}} \left[\cos \beta_{1n} h_{1} - 1 + \tan \beta_{1n} h_{1} \sin \beta_{1n} h_{1} \right] + \alpha_{t_{2}} E_{2} \left[\frac{1}{\beta_{2n}} \left[1 - \cos \beta_{2n} h_{2} + \tan \beta_{2n} h_{2} \sin \beta_{2n} h_{2} \right] \right] \left[E_{2} h_{2}^{3} + E_{1} h_{1}^{3} \right] - 3\alpha_{t_{1}} E_{1} \left[\frac{-1}{\beta_{1n}} h_{1} \cos \beta_{1n} h_{1} + \frac{1}{\beta_{1n}^{2}} \sin \beta_{1n} h_{1} + \tan \beta_{1n} h_{1} \left[\frac{-h_{1} \sin \beta_{1n} h_{1}}{\beta_{1n}} + \frac{1}{\beta_{1n}^{2}} \left[1 - \cos \beta_{1n} h_{1} \right] \right] + \alpha_{t_{2}} E_{2} \left[\frac{-h_{2} \cos \beta_{2n} h_{2}}{\beta_{2n}} + \frac{1}{\beta_{1n}^{2}} \sin \beta_{2n} h_{2} + \tan \beta_{2n} h_{2} \left[\frac{-h_{2} \sin \beta_{2n} h_{2}}{\beta_{2n}} + \frac{1}{\beta_{1n}^{2}} \sin \beta_{2n} h_{2} + \tan \beta_{2n} h_{2} \left[\frac{-h_{2} \sin \beta_{2n} h_{2}}{\beta_{2n}} + \frac{1}{\beta_{1n}^{2}} \sin \beta_{2n} h_{2} + \tan \beta_{2n} h_{2} \left[\frac{-h_{2} \sin \beta_{2n} h_{2}}{\beta_{2n}} + \frac{1}{\beta_{2n}^{2}} \sin \beta_{2n} h_{2} + \tan \beta_{2n} h_{2} \left[\frac{-h_{2} \sin \beta_{2n} h_{2}}{\beta_{2n}} + \frac{1}{\beta_{2n}^{2}} \sin \beta_{2n} h_{2} + \tan \beta_{2n} h_{2} \left[\frac{-h_{2} \sin \beta_{2n} h_{2}}{\beta_{2n}} + \frac{1}{\beta_{2n}^{2}} \cos \beta_{2n} h_{2} - 1 \right] \left[E_{2} h_{2} b + E_{1} h_{1} b \right] - \left\{ \alpha_{t_{1}} E_{1} \frac{1}{\beta_{1n}} \left[\cos \beta_{1n} h_{1} - 1 + \tan \beta_{1n} h_{1} \sin \beta_{1n} h_{1} \right] + \alpha_{2} E_{2} \left[\frac{1}{\beta_{2n}} \left[1 - \cos \beta_{2n} h_{2} + \tan \beta_{2n} h_{2} \sin \beta_{2n} h_{2} \right] \right] \left[E_{2} h_{2}^{2} b + E_{1} h_{1}^{2} b \right] \right\} \right\}$$

$$\tan \beta_{2n} h_{2} \left[\frac{h_{2} \sin \beta_{2n} h_{2}}{\beta_{2n}} + \frac{1}{\beta_{1n}^{2}} [\cos \beta_{2n} h_{2} - 1] \right] [E_{2} h_{2} b + E_{1} h_{1} b] - \left\{ \alpha_{t_{1}} E_{1} \frac{1}{\beta_{1n}} [\cos \beta_{1n} h_{1} - 1 + \tan \beta_{1n} h_{1} \sin \beta_{1n} h_{1}] + \alpha_{2} E_{2} \left[\frac{1}{\beta_{2n}} [1 - \cos \beta_{2n} h_{2} + \tan \beta_{2n} h_{2} \sin \beta_{2n} h_{2}] \right] \right\} [E_{2} h_{2}^{2} b + E_{1} h_{1}^{2} b] \right\}$$

$$(28)$$

4. NUMERICAL CALCULATIONS

Numerical calculations are carried out for the copper slab with properties

thermal expansion coefficient : $\alpha_{t_1} = \alpha_{t_2} = 16.5 \times 10^{-6} K^{-1}$

thermal diffusivity $\alpha_1=\alpha_2=112.34\times 10^{-6}m^2s^{-1}$

outer boundaries : $h_1 = 1$ inch $h_2 = 2$ inch

thermal conductivities $k_1 = k_2 = 1$

Young's modulus= $E_1 = E_2 = 120$ Gpa

substituting all these values in the equations (24),(25), (27)& (28)and illustrated graphically

Figure 1 Graph of T_1 versus y for different values of t

Figure 1 shows the graph of T_1 versus y for different values of t . It is observed that T_1 goes on increasing.

Figure 2 Graph of T_2 versus y for different values of t

Figure 2 shows the graph of T_2 versus y for different values of t. It is observed that T_2 goes on increasing from y = -1 to y = 0 and then T_2 is constant for different values of t.

Figure 3 Graph of σ_{x1} versus y for different values of t

Figure 3 shows the graph of σ_{x1} versus y for different values of t. It is observed that σ_{x1} goes on increasing from y = -1 to y = 2.

Figure 4 Graph of σ_{x2} versus y for different values of t

Figure 4 shows the graph of σ_{x2} versus y for different values of t. It is observed that σ_{x2} develops tensile stresses from y=-0.5 to y=0 then goes on increasing from y=-1 to y=-0.5 and y=0 to y=2

Figure 5: Graph of T_1 versus t for different values of y

Figure 5 shows the graph of T_1 versus t for different values of y It is observed that T_1 develops tensile stresses from $t=7\sec to$ t=12 and $t=17\sec to$ $t=22\sec and$ compressive stress from $t=12\sec to$ $t=17\sec and$ $t=22\sec to$ $t=28\sec to$ $t=28\sec to$ $t=30\sec to$

Figure 6 Graph of T_2 versus t for different values of y

Figure 6 shows the graph of T_2 versus t for different values of y. It is observed that T_2 develops tensile stresses from $t=5\sec to$ t=15. It is approximately equal to zero from $t=15\sec to$ $t=25\sec to$ and then T_2 goes on increasing from $t=25\sec to$ $t=30\sec to$.

Figure 7 Graph of σ_{x1} versus t for different values of y

Figure 7 shows the graph of σ_{x1} versus t for different values of y. It is observed that σ_{x1} develops tensile stresses from $t=10 \sec to$ t=20. It is approximately equal to zero from $t=20 \sec to$ $t=25 \sec \alpha nd$ then σ_{x1} goes on increasing from $t=25 \sec to$ $t=30 \sec c$.

Figure 8 Graph of σ_{x2} versus t for different values of y

Figure 8 shows the graph of σ_{x2} versus t for different values of y. It is observed that σ_{x2} is approximately equal to zero from $t=10\sec t$ of $t=25\sec t$ and $t=25\sec t$ or increasing from $t=5\sec t$ of $t=10\sec t$ and $t=25\sec t$ of $t=30\sec t$.

5. CONCLUSION

In this paper one treated the transient thermoelectric problem of the two-layer composite slab with prescribed initial and boundary conditions. Temperature distribution $T_i(y)$, i=1,2 and thermal stresses $\sigma_{\chi i}$, i=1,2 have been determined by using the orthogonal expansion technique and illustrated graphically.

CONFLICT OF INTERESTS

None.

ACKNOWLEDGMENTS

None.

REFERENCES

A. Vattr' ea, E. Panb," Thermoelasticity of multilayered plates with imperfect interfaces "University Paris-Saclay, ONERA, Preprint submitted to Elsevier November 26, 2020.

Adams R. J. and Best C. W.: Thermoelastic vibrations of a laminated rectangular plate subjected to a thermal shock, Journal of Thermal Stresses; Vol. 22(1999), pp. 875-895.

David W. Hahn M. Necati Ozisik, Heat Conduction, Third Edition, John Wiley & Sons, Inc., 1964.

Huang Sheng Natalya Vaysfeld Zinaida Zhuravlova," Uncoupled thermoelasticity problem for a finite rectangular composite ", Received: 4 July 2024 Revised: 9 September 2024 Accepted: 19 September 2024, ZAMM - Journal of Applied Mathematics and Mechanics,

Laxman V Bharambe , Prof.Hemant R Nehete," Stress Analysis Of Composite Plate With Elliptical And Rectangular Cuttouts By Finite Element Method ",International Research Journal of Modernization in Engineering Technology and Science ,Volume:02/Issue:05/May-2020 .

Naotake Noda, Richard B. Hetnarski, Yashinobu Tanigawa, Thermal stresses, Second ed. Taylor and Francis, New York (2003).

W. K. Dange, N.W. Khobragade, "Three-Dimensional Inverse Steady-State Thermoelastic Problem Of A Thin Rectangular Plate" Bulletin Of The Calcutta Mathematical Society. **01/2009**; 101(3).

W. K. Dange, "Determination Of Thermal Stresses Of A Three Dimensional Transient Thermoelastic Problem Of A Square Plate Under Unsteady Temperature Field" International Journal Of Physics And Mathematical Sciences, Issn: 2277-2111 (Online) 2014 Vol. 4 (1) , January-April, Pp.34-40/Dange.