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ABSTRACT 
The most challenging task in the cotton business is finding Fabric Faults (FFs) and 
refining material durability appropriately. To alleviate this, an Enhanced Pairwise-
Potential Activation Layer in Optimized Multi-Criteria Convolutional Neural Network 
(EPPAL-OMCCNN) model was created, which considers a multi-objective active sampling 
strategy for annotation and tuning CNN for FF detection. But, it needs to predict historical 
and new kinds of unknown FF patterns accurately. So, this article introduces a deep 
Reinforcement Learning (RL) scheme into the EPPAL-OMCCNN model to predict new 
unknown FFs with the help of prior knowledge. At first, the multi-objective sampling 
strategy is applied to the fabric image database to label more influential images. Then, 
these images are used to construct the Optimized CNN (OCNN) with the RL model, which 
is trained by the fabric defect characteristics to predict the new unknown fabric pattern 
defects precisely. Finally, the experimental results exhibit that the EPPAL-OMCCNN-RL 
model on the TILDA set accomplishes 97.58% accuracy contrasted with the different 
deep learning-based FF detection models. 
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1. INTRODUCTION 
The cotton business has become a well-recognized international business. By eliminating 45–65% of defects, 

operational costs can be reduced. Because a fabric fault is prevented or corrected after it has been noticed, weavers will 
often check the cotton material for extreme design flaws in modern looms [1-3]. The apparel trade has advanced toward 
highly autonomous material testing. The only way to increase dependability for textiles is often through product testing, 
which aids in the speedy and effective resolution of very minor flaws [4]. Comparing the ordinary emerging fiber 
screening to the traditional analysis, the identification rate will increase by nearly 80% [5-6]. There are several different 
recognition methods for FFs, including probabilistic, experiential, structured, composite, training-based, and design-
based. These methods may be costly and prone to mistakes, connected with specific flaws, and incompatible with 
differences in fabric structure and efficiency. An improved model aims to achieve high durability in handling 
irregularities in textile structures and deformity classes [7]. 
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In the early 20th century, deep learning models, like CNN, were used to successfully separate cloth themes [8]. 
Compared to a textured fabric's recurrent module, they have proved less effective in spotting flaws. Fully Convolutional 
Networks (FCN), U-Net, and other CNN genres control crucial modules such as convolution, pooling, and activation 
phases, where the pooling can prevent overfitting issues and minimize dimensionality. It extracts features along a whole 
contextual correlation and linguistic information that are inefficient for mapping appropriate image attributes [9]. 

Since they are shown by fewer pixel intensities, some FFs are thought of as restricted patterns. Some cotton 
analogies, such as overlap, impairment, coarse sets, etc., frequently only comprise inadequate pixels and create a very 
imbalanced dataset [10]. To enhance restricted pattern localization, CNN's performance was reconfigured by alternative 
practice. To address insufficient information on fiber pictures, CNN does not have many convolutional units, hence 
pooling is required to maintain image preservation. From this perspective, the PPAL-CNN model [11] was presented to 
recognize FFs with the aid of probabilistic loss values. The CRF must be given a previous probability in place of being 
learned. It was difficult to establish intricate connections among FF labels if there were numerous or manifested 
associations. 

So, an EPPAL-CNN technique [12] was established to address this issue and resolves the challenging pattern 
correlation of FFs. The CRF was first enhanced using external memory rules that were supported by the memory 
channels, enabling CRFs to comprehend the regional features of FFs. The linkages between cotemporal classes are 
included in the DCRF's factorial structure, which also creates restricted probability correlations between different 
classes. Using external memory, a higher-order Markov correlation across classes was created. On the other hand, the 
gradient-based optimization approaches used to train the weights of CNN have an unusual tendency toward 
convergence, which leads to ineffective categorization. To address CNN's unwanted convergence, an EPPAL-OCNN model 
was proposed [13], which contains an individual weight optimization approach based on NWM-Adam. The fact that past 
gradients were given more memory than present gradients served as the inspiration for the development of this 
exponential smoothing average version. The detective model for each flaw must be created more slowly even as the rate 
of identification improves. 

Additionally, acquiring a large number of annotated examples necessary for training the OCNN model takes 
additional effort. An EPPAL-OMCCNN model was subsequently suggested to reduce the time needed to produce more 
annotated samples for FF detection. Multi-objective active deep learning was used in this novel model to reduce the cost 
of manual labeling to a predetermined range [14]. The OCNN structure was first constructed using some randomly 
chosen data. The OCNN structure was then modified by suggesting more influential examples for user labeling and 
updating the learning set. The dependability of unannotated samples is assessed across all epochs using two separate 
criteria: annotated samples, and the current structure. To avoid data redundancy, the initial aim makes use of density 
and relevance to assess the trustworthiness of unannotated samples. For the second aim, the ambiguity and tag-based 
factors are used to assess the dependability of unannotated pictures, which in turn speeds up the convergence of the 
OCNN and reduces the efficiency variance between labels. Conversely, this model must adapt to predict the historical 
and novel category of defect patterns. Therefore, in this paper, a deep Reinforcement Learning (RL) scheme is integrated 
with the EPPAL-OMCCNN model to predict various kinds of fabric defect patterns simultaneously. In this study, the RL 
network is incorporated with the OMCNN, which is modified by the samples annotated by the multi-objective sampling 
strategy. An important feature of RL is that an agent captures desirable attributes. This indicates that it gradually adjusts 
previous knowledge and skills or learns new characteristics. RL also makes utilization of trial-and-error learning, which 
is a crucial component. As a result, full knowledge or environment management is not needed by the RL, whereas it 
merely requires interacting with the environment and obtaining data. During learning, the samples are provided 
sequentially and utilized to progressively modify the agent behavior. Thus, this RL with the EPPAL-OMCCNN model can 
enhance the accuracy of detecting new FF patterns according to prior experience. 

The rest of this paper can be outlined: The recent FF identification studies are discussed in Section II. The EPPAL-
OMCCNN-RL model is described in Section III, and its performance is shown in Section IV. Section V summarizes the 
results and suggests improvements. 

 
2. LITERATURE SURVEY 

Mo et al. [15] developed a Weighted Double-Low-Rank Decomposition (WDLRD) scheme to identify fabric defects 
by allocating various weights to the matrix singular values. At first, the background matrix and defect matrix were 
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normalized by the weighted nuclear norm to preserve the most relevant features. A defect prior map was created to 
identify fabric defects. But, its accuracy was detecting extremely small faults was not effective. Because the defect matrix 
was low rank, a few real-fault areas were lost. 

Peng et al. [16] designed a robust Priori Anchor CNN called (PRAN-Net) to identify fabric defects. Initially, Feature 
Pyramid Network (FPN) was utilized by the decided multi-scale attribute maps to reserve more detailed data on small 
defects. Then, a trick was applied to create sparse Priori anchors depending on fabric faults ground truth boxes rather 
than predetermined anchors to locate complex defects precisely. Moreover, a categorization network was utilized to 
categorize and refine the location of the fabric defects. However, it needs DRL networks to identify many small defects. 

Liu et al. [17] developed an effective weakly supervised shallow network, namely DLSE-Net with Link-SE (L-SE) and 
Dilation Up-Weight Class Activation Map (DUW-CAM) to identify fabric defects. A 3-branch framework was adopted to 
lessen the semantic gap created by the link of various layers and the L-SE unit was used to enhance the interpretation 
ability. Also, dilated convolution and attention strategies were introduced to suppress the background and enrich the 
defect areas. But, the accuracy was not efficient to identify tiny regions of fabric defects. 

Jun et al. [18] developed a training-based model for automatically identifying fabric faults. Initially, a predetermined-
size square slider was used to crop the actual image and an enhanced histogram normalization was applied to enrich all 
cropped images. Moreover, the Inception-V1 structure was used to predict the appearance of defects in the local region 
and the LeNet-5 framework was applied as a voting system to identify the category of the fabric defects. But, it was only 
approximately detected fabric defects, therefore it was hard to precisely find the cause of the defects. 

Almeida et al. [19] developed a rapid and automated defect identification method using a custom CNN. Initially, 
fabric images were collected and pre-processed by histogram normalization to strengthen the fault area. After that, a 
modified CNN was applied to identify the fabric faults. But, the database was limited and less effective for identifying 
more complex defects. 

Hu et al. [20] designed an unsupervised printing defect identification scheme by processing the disparity map 
between the test and the reference images. To achieve this, a Content-Based Image Retrieval (CBIR) scheme was 
introduced to restore the reference sample, which involves an image corpus, a Convolutional Denoising Auto-Encoder 
(CDAE) and a Hash Encoder (HE). The CDAE was used to extract a reliable feature interpretation of the patterns and the 
HE was used to index the feature vectors to binary code when preserving their similarity. Using the restored reference 
image, the fault was detected by employing the Tsallis entropy thresholding and opening process on the disparity map. 
However, the accuracy and stability of the detection were not satisfactory. 

Wu et al. [21] designed a Wide-And-Light Network (WALNet) model depending on Faster Residual-CNN (FR-CNN) 
to identify usual fabric faults. In this model, the feature extraction network was enhanced by the dilated convolution unit, 
which utilizes a multi-scale convolution kernel to adapt to faults of various dimensions and learn the desired traits. Also, 
high-level semantic traits were merged with low-level detail characteristics using a skip-path and a sequence of anchor 
frames was aimed to identify the multi-scale fabric defects. However, it requires more annotated samples, which takes 
more time. 

Liu et al. [22] designed an improved YOLOv4 model, which adopts a novel Spatial Pyramid Pooling (SPP) structure 
to identify fabric defects. Initially, the anchor was split based on the defect features and the CLAHE was applied to process 
the image to eliminate inappropriate color data and enrich the image contrast. Moreover, the SPP structure was 
enhanced by soft pooling and applied to detect fabric defects. However, it was not effective in detecting tiny faults. 

Xiang et al. [23] presented an online identification of fabric defects depending on the improved CenterNet with 
deformable convolution. Also, an implicit Feature Pyramid Network (i-FPN) was adopted to improve the identification 
efficiency for tiny faults and accelerate the process. However, false identifications exist since wrinkles and imperfections 
were extremely analogous. As well, a few faults merely contain a minimal quantity of learning samples so it was complex 
for the framework to localize and detect them. 

Huang et al. [24] developed a semantic segmentation model called Repeated Pattern Defect Network (RPDNet) 
utilizing a continuous pattern evaluation scheme for pixel-level identification of fabric defects. First, the periodic features 
related to possible defect regions were captured by obtaining continuous pattern details and appropriate guidance of 
the network in a high-level semantic space. After that, semi-supervised training was applied to learn those features and 
identify fabric defects. However, this model fails to sufficiently handle continuous pattern-free images. 
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Jing et al. [25] designed a very effective CNN called Mobile-UNet to establish an end-to-end fabric defect 
identification. The mid-frequency harmonizing error value was utilized to solve the data imbalance problem. Also, a 
depth-wise separable convolution was adopted to decrease the complexity cost and network dimension. Since a 
supervised scheme, this model necessitates a huge quantity of manually labeled samples, resulting in a longer detection 
time. 

 
3. PROPOSED METHODOLOGY 

In this section, the EPPAL-OMCCNN-RL model is described briefly. Figure 1 illustrates the block diagram of the 
presented study to identify FFs. 

 
Figure 1. Block Diagram of Presented Study for FFs Detection 

Consider the learning fabric image set 𝒟𝒟 = {𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖}𝑖𝑖=1𝑁𝑁 , where 𝑥𝑥𝑖𝑖  is 𝑖𝑖𝑡𝑡ℎ example in 𝒟𝒟 and contains a string: {𝑥𝑥𝑖𝑖1, … , 𝑥𝑥𝑖𝑖𝑖𝑖} 
and 𝑦𝑦𝑖𝑖  is their corresponding tags {𝑦𝑦𝑖𝑖1, … ,𝑦𝑦𝑖𝑖𝑖𝑖}. Then, the multi-criteria active sampling strategy is performed to label the 
new unknown fabric images and find the most influential image sets. Those are further used to construct the EPPAL-
OMCCNN-RL model and in the training phase of EPPAL-OMCCNN-RL, each 𝑥𝑥𝑡𝑡  represents the temporal traits in the input 
example with their corresponding 𝑦𝑦𝑡𝑡 . 

In this EPPAL-OMCCNN-RL, external memory strategies are initially combined with the CRF to capture the local 
features. Also, the NWA-Adam optimization is applied to drive the rapid convergence of RL-based OCNN to predict the 
new FFs by considering prior knowledge. The description of RL is presented below. 

3.1 Reinforcement Learning Model 
The components of the typical RL learning model are an agent, an environment, a limited state space 𝑆𝑆, a set of 

activities 𝐴𝐴 the agent may access, and a bonus variable: 𝑆𝑆 × 𝐴𝐴 → 𝑅𝑅. The main idea behind RL is to teach the agent to make 
better judgments through trial-and-error interactions with the environment. According to the analysis of the current 
condition 𝑠𝑠𝑡𝑡 in the environment, the agent takes into consideration an action 𝑎𝑎𝑡𝑡 during each outcome interval 𝑡𝑡. The 
condition of the atmosphere will change to the new condition 𝑠𝑠𝑡𝑡+1 when the action is completed. The agent will 
simultaneously receive a bonus 𝑟𝑟𝑡𝑡 that represents the variety of state transitions. This kind of agent-atmosphere process 
occurs often. 

The RL agent is a long-term decision-maker; thus, it intends to boost its projected group bonuses over an interval: 
𝔼𝔼[∑ 𝛾𝛾𝑡𝑡𝑟𝑟𝑡𝑡∞

𝑡𝑡=0 ], where 𝛾𝛾 ∈ (0, 1] defines a variable lowering prospective bonus. It achieves its goal by instructing the agent 
on how to choose acceptable actions under different conditions. Q-learning is one of the most often used RL models 
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without modeling. It does not require prior knowledge of the network, such as the likelihood of state transition. It learns 
how to make defensible judgments based on encounters. 

The agent preserves a Q-factor �𝑄𝑄(𝑠𝑠, 𝑎𝑎)� for every condition-action set that represent the projected long-term bonus 
when taking 𝑎𝑎 at 𝑠𝑠. The agent may comprehend the anticipated Q-factor for all actions at the current condition relying 
on this Q-factor. The agent also decides which actions should be taken into account to achieve the best long-term group 
bonuses. Each time an event occurs, the Q-factor is repeatedly modified by 

𝑄𝑄(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) ← 𝑄𝑄(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) + 𝛼𝛼 ∗ �𝑟𝑟(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) + 𝛾𝛾 ∗ max
𝑎𝑎

𝑄𝑄(𝑠𝑠𝑡𝑡+1,𝑎𝑎) − 𝑄𝑄(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)�  (1) 

In Eq. (1), 𝛼𝛼 ∈ (0, 1] is the learning rate, 𝑟𝑟(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) is the bonus obtained by 𝑎𝑎𝑡𝑡 in 𝑠𝑠𝑡𝑡 and 𝛾𝛾 is the deduction percentage. 
The Q-learning strategy generally presents a statistical formulation of the Q-factor. However, managing complex control 
concerns involving several states and actions are not appropriate. DRL uses the OCNN to build the relationship between 
these state-activity pairings and their associated Q-factor to address this issue. 

The deep Q-learning engine, which is based on the OCNN, is also created to determine the agent's optional activities. 
The RL's role in the agent-atmosphere interface network is shown in Figure 2. 

 
Figure 2. Schematic Representation of RL with OCNN Model 

Training process 
For all decision intervals 𝑡𝑡𝑗𝑗  for 𝑗𝑗𝑡𝑡ℎ characteristic, the RL agent completes 𝑎𝑎𝑗𝑗  relying on 𝑠𝑠𝑗𝑗 . After obtaining the 

immediate bonus 𝑟𝑟𝑗𝑗  and 𝑠𝑠𝑗𝑗+1, the changing profiles �𝑠𝑠𝑗𝑗 ,𝑎𝑎𝑗𝑗 , 𝑟𝑟𝑗𝑗 , 𝑠𝑠𝑗𝑗+1� is added to the repetition memory ∆ with capability 
𝑁𝑁∆. In all instants when Q-learning modification occurs, weight and bias variables (𝑤𝑤,𝜃𝜃) of the OCNN are updated using 
the mini-batch that comprises constant arbitrary examples 𝑆𝑆∆ from ∆. To minimize the computation period, this 
modification might occur all 𝑈𝑈 decision intervals (𝑈𝑈 ≥ 1). The link between training observation and sequence 
interactions is disrupted by the interaction replay rule, allowing the agent to adapt from random transition examples 
rather than sequence interactions and decreasing the disparity of fine-tuned parameters. Because each example may be 
chosen several times to adjust parameters, training details are also used extensively. 

Two CNN—the target and analysis networks—are used simultaneously to further reduce the divergence and 
oscillations of OCNN variables during learning phases. These two networks have a comparable design but different 
variables. To create the necessary Q-factors, the target network is used when refining Q-learning. Target networks have 
the notable characteristic of being temporarily frozen networks, whereas the analysis network keeps the new variables 
and is used to forecast Q-factors. Thus, based on the Q-factors, the FFs are predicted properly from the new unknown 
examples. 

Algorithm: 
Input: Training dataset 𝒟𝒟 = {𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖}𝑖𝑖=1𝑁𝑁  
Output: FF and pure fabrics images 
Begin 
Initialize the maximum epoch 𝑇𝑇, and the number of chosen images in all epochs 𝑁𝑁; 
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Split 𝒟𝒟 into the annotated image collection 𝒟𝒟𝐿𝐿𝑡𝑡  and unannotated image collection 𝒟𝒟𝑈𝑈𝑈𝑈𝑡𝑡 ; 
Obtain the new annotated dataset and train the EPPAL-OMCCNN-RL model; 
𝒇𝒇𝒇𝒇𝒇𝒇(𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)  
 Initialize 𝛼𝛼, 𝛾𝛾, learning rate 𝛽𝛽, initial training period 𝜏𝜏, mini-batch 𝑆𝑆∆, replay time 𝜂𝜂; 
 Initialize ∆ with 𝑁𝑁∆; 
 Initialize analysis and desired activity-Q with random variables, 𝑤𝑤 and 𝜃𝜃; 
   𝒇𝒇𝒇𝒇𝒇𝒇�𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑛𝑛𝑛𝑛𝑛𝑛 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑗𝑗 𝑎𝑎𝑎𝑎 𝑡𝑡𝑗𝑗� 
  Randomly select an activity; or else, 𝑎𝑎𝑗𝑗 = argmax

𝑎𝑎
𝑄𝑄�𝑠𝑠𝑗𝑗 ,𝑎𝑎;𝑤𝑤,𝜃𝜃�; 

  Train 𝑗𝑗 according to 𝑎𝑎𝑗𝑗 , obtain 𝑟𝑟𝑗𝑗  and condition change at consecutive decision period 𝑡𝑡𝑗𝑗+1 with 𝑠𝑠𝑗𝑗+1; 
  Add change �𝑠𝑠𝑗𝑗 ,𝑎𝑎𝑗𝑗 , 𝑟𝑟𝑗𝑗 , 𝑠𝑠𝑗𝑗+1� to ∆; 
  𝒊𝒊𝒊𝒊(𝑗𝑗 ≥ 𝜏𝜏 𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗 ≡ 0 mod𝛽𝛽) 
   𝒊𝒊𝒊𝒊(𝑗𝑗 ≡ 0 mod 𝜂𝜂) 
    Set 𝑄𝑄� = 𝑄𝑄; 
   𝒆𝒆𝒆𝒆𝒆𝒆 𝒊𝒊𝒊𝒊 
   Randomly choose examples 𝑆𝑆∆ from ∆; 
   𝒇𝒇𝒇𝒇𝒇𝒇(𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑠𝑠𝑘𝑘 ,𝑎𝑎𝑘𝑘 , 𝑟𝑟𝑘𝑘 , 𝑠𝑠𝑘𝑘+1) 𝑖𝑖𝑖𝑖 𝑆𝑆∆) 
    𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘 = 𝑟𝑟𝑘𝑘 + 𝛾𝛾 ∗ 𝑚𝑚𝑚𝑚𝑚𝑚

𝑎𝑎′
𝑄𝑄�(𝑠𝑠𝑘𝑘+1,𝑎𝑎′;𝑤𝑤′, 𝜃𝜃′); 

    Adjust OCNN variables 𝑤𝑤,𝜃𝜃 with a loss value of 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘 − 𝑄𝑄(𝑠𝑠𝑘𝑘 ,𝑎𝑎𝑘𝑘;𝑤𝑤,𝜃𝜃)2; 
   𝒆𝒆𝒆𝒆𝒆𝒆 𝒇𝒇𝒇𝒇𝒇𝒇 
  𝒆𝒆𝒆𝒆𝒆𝒆 𝒊𝒊𝒊𝒊 
 𝒆𝒆𝒆𝒆𝒆𝒆 𝒇𝒇𝒇𝒇𝒇𝒇 
 Predict the new FF patterns; 
𝒆𝒆𝒆𝒆𝒆𝒆 𝒇𝒇𝒇𝒇𝒇𝒇  
Validate the classifier efficiency; 
End 
IV. EXPERIMENTAL RESULTS 
The effectiveness of the EPPAL-OMCCNN-RL is examined in this section by using MATLAB 2017b to design it and 

contrast it with the current models: EPPAL-OMCCNN [14], PRAN-Net [16], DLSE-Net [17], WALNet [21], improved 
CenterNet [23] and Mobile-UNet [25]. The Irish Longitudinal Study on Ageing (TILDA) picture corpus [26], which 
includes 7 labels of fibres with faults and 1 label of fibres without flaws, is taken into consideration in this assessment. 
The observation is that a whole corpus has 3200 TIF visuals that are 1.2GB in size. The TILDA collection includes detailed 
descriptions of each image's defects. 1100 visuals are employed for testing, and 2100 images are employed for training. 
The confusion matrix of EPPAL-OMCCNN-RL on test set for recognizing FFs. 

Table 1. Confusion Matrix for EPPAL-OMCCNN-RL on Test Set 
 Detected label 

 
 
Real label 

 Pure Damaged 

Pure (550 for each class) TP 
538 

FN 
12 

Damaged (550 for other class) FP 
12 

TN 
538 
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4.1 Accuracy 
It measures the ratio of correctly identified damaged to pure fiber samples. 

𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑇𝑇𝑇𝑇)+𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑇𝑇𝑇𝑇)
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝐹𝐹𝐹𝐹)+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝐹𝐹𝐹𝐹)

× 100%  

The number of damaged fibre samples that are accurately identified as damaged is defined by TP, whereas the 
number of pure fibre samples that are precisely identified as healthy is defined by TN. Additionally, FP defines the 
number of damaged fibre samples that were mistakenly identified as pure, whereas FN defines the number of pure fibre 
samples that were mistakenly identified as damaged. 

 
Figure 3. Comparison of Accuracy 

Figure 3 depicts the accuracy (in %) values for various existing and proposed FF detection models. It scrutinizes 
that the accuracy of EPPAL-OMCCNN-RL is 7.99% better than the Mobile-UNet, 7.6% better than the improved 
CenterNet, 7.08% better than the PRAN-Net, 5.61% better than the DLSE-Net, 3.02% better than the WALNet and 1.61% 
better than the EPPAL-OMCCNN models. Accordingly, this EPPAL-OMCCNN-RL model will enhance the accuracy of 
detecting the FFs compared to the other models. 

4.2 Precision 
It is the percentage of properly declared damaged fiber samples. 

𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑁𝑁𝑁𝑁.𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑁𝑁𝑁𝑁.𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓+𝑁𝑁𝑁𝑁.𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
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Figure 4. Comparison of Precision 

Figure 4 shows the precision (in %) values for various FF detection models. It indicates that the precision of EPPAL-
OMCCNN-RL is 7.84% superior to the Mobile-UNet, 7.59% superior to the improved CenterNet, 7.12% superior to the 
PRAN-Net, 5.62% superior to the DLSE-Net, 3.06% superior to the WALNet and 1.49% superior to the EPPAL-OMCCNN. 
So, this EPPAL-OMCCNN-RL increases the precision of detecting the FFs than the other models. 

4.3 Recall 
It is the percentage of damaged fiber images that are correctly identified as damaged. 

𝑅𝑅𝑅𝑅 = 𝑁𝑁𝑁𝑁.𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑁𝑁𝑁𝑁.𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓+𝑁𝑁𝑁𝑁.𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑛𝑛𝑛𝑛𝑛𝑛−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

  

 
Figure 5. Comparison of Recall 

Figure 5 demonstrates the recall (in %) values for various existing and proposed FF detection models. It observes 
that the recall of EPPAL-OMCCNN-RL is 8.15% higher than the Mobile-UNet, 7.54% higher than the improved CenterNet, 
7.11% higher than the PRAN-Net, 5.59% higher than the DLSE-Net, 3.06% higher than the WALNet and 1.69% higher 
than the EPPAL-OMCCNN models. Thus, this EPPAL-OMCCNN-RL model can maximize the recall of detecting the FFs 
compared to the other models. 

4.4 F-measure 
It is determined by 

𝐹𝐹 −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 2 × 𝑃𝑃𝑃𝑃∙𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅
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Figure 6. Comparison of F-measure 

Figure 6 displays the f-measure (in %) values for various existing and proposed FF detection models. It indicates 
that the f-measure of EPPAL-OMCCNN-RL is 7.99% higher than the Mobile-UNet, 7.57% higher than the improved 
CenterNet, 7.11% higher than the PRAN-Net, 5.6% higher than the DLSE-Net, 3.06% higher than the WALNet and 1.59% 
higher than the EPPAL-OMCCNN models. Thus, this EPPAL-OMCCNN-RL model can maximize the f-measure of detecting 
the FFs compared to the other models. 

 
4. CONCLUSION 

In this paper, the EPPAL-OMCCNN-RL model was designed by integrating the RL model into the EPPAL-OMCCNN 
for FF detection. Primarily, the multi-objective active training was used to alleviate the class imbalance issue during the 
learning phase. Then, the EPPAL-OCNN-RL model was constructed using the annotated influential images for FF 
recognition. This model can predict new FF patterns based on prior knowledge regarding FFs with high accuracy. Finally, 
the experimental findings using the TILDA corpus accomplished that the EPPAL-OMCCNN-RL has 97.82% accuracy 
which was 5.43% greater than all the existing FF detection models.  
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