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T In the ever-evolving landscape of cybersecurity, code injection attacks pose a significant
updates threat to the integrity and security of software applications. This paper introduces an
innovative approach to preventing code injection attacks by integrating artificial
intelligence (AI) and machine learning techniques, specifically leveraging Convolutional
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Neural Networks (CNN). The proposed method focuses on the development of a robust
model capable of effectively identifying code injection attempts in real time, thereby
fortifying applications against malicious exploits. The methodology begins with the

preparation of a comprehensive dataset containing legitimate code snippets and injected
code samples simulating common attack scenarios. Feature extraction involves the
utilization of character-level n-grams or embeddings to capture the syntactic nuances of
code. A CNN architecture is designed to take advantage of its ability to recognize local
patterns within the code, providing a deeper understanding of the structure and context.
The model is trained using the prepared dataset, employing binary classification to
distinguish between legitimate and potentially injected code. The integration of this
trained model into the application's security module enables real-time monitoring of
incoming code snippets. A threshold is set on the model's output probability to determine
when to flag a code snippet as potentially malicious, allowing for customization based on
the application's security requirements.
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1. INTRODUCTION

In today's digital landscape, as software applications become more interconnected and data-driven, the risk of cyber
threats continues to escalate. Among these threats, code injection attacks stand out as persistent and potentially
devastating exploits that can compromise the security and functionality of software systems. Traditional methods of
prevention often fall short in detecting increasingly sophisticated injection techniques. In response to this challenge, this
paper introduces an innovative approach leveraging artificial intelligence (AlI) and machine learning, specifically utilizing
Convolutional Neural Networks (CNN), for the prevention of code injection attacks.

Code injection attacks, including SQL injection and Cross-Site Scripting (XSS), exploit vulnerabilities in software
applications by inserting malicious code into user inputs or other data streams. These attacks can lead to unauthorized
access, data breaches, and system compromise. Recognizing the need for more adaptive and intelligent security
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measures, the proposed approach integrates Al and machine learning techniques to fortify the defense mechanisms
against code injection threats.

The methodology involves the creation of a robust dataset that encompasses both legitimate and injected code
snippets, enabling the training of a CNN model to discern patterns indicative of potential injection attempts. By extracting
features at the character level, the model gains a nuanced understanding of the syntactic structure of code, allowing it to
identify anomalies associated with injection attacks. The integration of this trained model into the application's security
framework facilitates real-time monitoring, providing a proactive defense against evolving cyber threats.

This paper aims to demonstrate the effectiveness of Al-integrated machine learning, particularly with CNN, in
preventing code injection attacks. As the complexity and diversity of injection techniques continue to evolve, the
proposed approach represents a crucial step towards enhancing the resilience of software applications. The following
sections will delve into the conceptual framework, implementation details, and real-world implications of this innovative
Al-based code injection prevention approach. Through this research, we aspire to contribute to the advancement of
intelligent cybersecurity practices that adapt to the ever-changing landscape of cyber threats.

2. Al ENHANCED CYBER SECURITY METHODS FOR ANOMALY DETECTION

Preventing code injection attacks is crucial for ensuring the security of software applications. An Al-integrated
machine learning approach, particularly using Convolutional Neural Networks (CNN), can enhance the detection and
prevention of code injection attacks. Collect a dataset containing legitimate code snippets. Create a dataset with injected
code snippets, simulating common injection attacks like SQL injection or Cross-Site Scripting (XSS). Extract features from
code snippets. For CNN, consider using character-level n-grams or embeddings to capture the syntax and structure of
code.

Design a CNN model for code classification. The model should take code snippets as input and output the probability
of being a legitimate or injected code. Consider using 1D convolutions to capture local patterns in the code. Train the
CNN model using the prepared dataset. Utilize a binary classification loss function (e.g., binary cross-entropy) and an
optimizer (e.g., Adam). Integrate the trained model into the application's security module. Intercept incoming code
snippets and use the model to classify them as legitimate or potentially injected.

Set a threshold for the model's output probability to determine when to flag a code snippet as potentially malicious.
Adjust the threshold based on the application's specific requirements and desired balance between false positives and
false negatives. Continuously monitor incoming code snippets in real-time. Implement response mechanisms to block or
log code snippets identified as potential injection attacks.

Convolutional Neural Networks (CNNs) are a class of deep neural networks primarily designed for processing and
analyzing visual data. CNNs have been highly successful in various computer vision tasks, including image classification,
object detection, and image segmentation. They are characterized by their ability to automatically learn hierarchical
representations directly from raw pixel data. CNNs use convolutional layers to automatically and adaptively learn spatial
hierarchies of features from input images. Convolution involves sliding a small filter (also known as a kernel) over the
input image, performing element-wise multiplications and summations to produce feature maps.

Filters (kernels) are small windows that slide over the input image. The convolution operation involves element-
wise multiplication of filter values with corresponding pixel values in the input, followed by summation to produce a
feature map. Filters are responsible for capturing various patterns and features in the input data. Pooling layers reduce
the spatial dimensions of the input by downsampling. Max pooling, for example, retains the maximum value from a set
of values in a local region, helping to maintain essential features while reducing the computational load.

Non-linear activation functions, such as Rectified Linear Unit (ReLU), are applied to introduce non-linearity into the
model. ReLU is commonly used in CNNs to introduce non-linearities and help the network learn complex patterns. After
several convolutional and pooling layers, CNNs often include one or more fully connected layers for classification or
regression tasks. These layers connect every neuron to every neuron in the previous and subsequent layers, forming a
traditional neural network structure.

Before fully connected layers, the output from the convolutional and pooling layers is flattened into a one-
dimensional vector. This transformation enables the transition from spatial hierarchies to a format suitable for
traditional neural network layers. Stride defines the step size when sliding the filter over the input. Padding involves
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adding extra pixels around the input to ensure that the filter can cover the entire input without losing information at the
edges.

CNNs use weight sharing, meaning that the same filter is applied across the entire input. This property reduces the
number of parameters in the network and enables the model to learn translation-invariant features. CNNs automatically
learn hierarchical representations of features. Lower layers may capture basic features like edges and textures, while
higher layers may represent more complex structures and patterns. CNNs can benefit from transfer learning, where pre-
trained models on large datasets (e.g., ImageNet) are fine-tuned for specific tasks. This is particularly useful when dealing
with limited datasets.

3. LITERATURE SURVEY ANALYSIS

Researchers often investigate various machine learning techniques, including supervised and unsupervised
learning, to detect and prevent code injection attacks. Ensemble methods, deep learning, and neural networks, including
CNNs, are explored for their effectiveness. Feature extraction and engineering play a crucial role in developing effective
models for code injection prevention. Studies focus on identifying relevant features in code snippets that can distinguish
between legitimate and injected code. The availability of diverse and representative datasets is critical for training and
evaluating machine learning models. Researchers emphasize constructing datasets that capture the complexity and
variety of real-world code injection scenarios.

Given the importance of transparency in security applications, there is an increasing emphasis on making Al models
interpretable. Researchers explore methods for explaining the decisions made by models to enhance their
trustworthiness. As code injection attacks can have immediate and severe consequences, the literature often discusses
real-time detection mechanisms. Researchers propose solutions that can swiftly identify and mitigate injection attempts
as they occur. Studies investigate the robustness of machine learning models against adversarial attacks, where attackers
intentionally manipulate input data to deceive the model. Enhancing model resilience to such attacks is a key area of
interest.

Combining machine learning models with traditional security mechanisms, such as Web Application Firewalls, is
explored to create comprehensive defense strategies. This integration aims to leverage the strengths of both approaches.
Transfer learning, particularly pre-training models on large datasets and fine-tuning for specific code injection scenarios,
is examined for its potential to improve model performance, especially in cases with limited labeled data. Establishing
appropriate evaluation metrics is crucial. Researchers discuss and propose metrics that accurately measure the
performance of code injection prevention models, considering factors like precision, recall, and false positive rates.

Literature surveys often conclude by highlighting open challenges and suggesting directions for future research.
This includes addressing emerging threats, improving model scalability, and considering the practical deployment of
solutions.

4. EXISTING APPROCHES

Employ machine learning models, including CNNs, for behavioral analysis of code snippets. Train models on normal
code behavior and use anomalies in execution patterns to detect potential code injection attacks. Utilize deep learning
techniques to learn meaningful representations of code. Embeddings generated by deep neural networks can capture
semantic relationships in code, helping distinguish between normal and injected code. Explore the use of recurrent
neural networks, especially in sequential modeling of code. RNNs can capture dependencies over time and identify
patterns in code execution that may be indicative of injection attempts.

Incorporate adversarial training to enhance the robustness of machine learning models against sophisticated
injection attacks. This involves training models with adversarial examples to make them more resilient to potential
evasion tactics. Leverage transfer learning by pre-training models on large datasets containing general code knowledge.
Fine-tune these models for specific code injection prevention tasks, especially in scenarios with limited labeled data.
Develop effective feature engineering techniques for representing code snippets. Extract syntactic and semantic features
that are relevant for distinguishing between legitimate and injected code. Consider using embeddings or n-grams for
feature representation.
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Combine multiple machine learning models, possibly using ensemble methods, to improve the overall accuracy and
robustness of code injection detection. Each model may bring unique strengths to the task. Integrate machine learning
models, including CNNs, into real-time monitoring systems and intrusion detection systems. This allows for immediate
detection and response to potential code injection attacks. Emphasize the interpretability of machine learning models.
Use explainable Al techniques to provide insights into why a model flagged certain code snippets as potentially malicious.
Interpretability is crucial for building trust in security systems.

Combine Al-driven models with rule-based systems. Rule-based systems can capture known patterns of code
injection attacks, while machine learning models, including CNNs, can adapt to detect novel and sophisticated attack
patterns. Implement dynamic thresholding techniques to adjust the sensitivity of the model based on changing
conditions. This helps in reducing false positives and adapting to variations in the code execution environment. Design
models that can adapt and learn continuously from new data. This ensures that the code injection prevention system
remains effective in dynamic and evolving environments where attack patterns may change over time.

5. PROPOSED METHOD

Code injection attacks, such as SQL injection and Cross-Site Scripting (XSS), pose a significant threat to the security
of web applications. Traditional methods are often reactive and struggle to adapt to evolving attack techniques. There is
a need for a proactive and adaptive code injection prevention system. Assemble a comprehensive dataset containing
both legitimate and injected code snippets. Ensure diversity in injection techniques, including various encoding schemes
and obfuscation methods. Annotate the dataset with labels indicating the presence or absence of code injection.

Implement preprocessing steps to convert code snippets into a suitable format for CNNs. Consider using character-
level tokenization and padding to create uniform-length sequences. Normalize and clean the data to remove noise and
irrelevant characters. Design a CNN architecture tailored for code injection prevention. The model should consist of
convolutional layers for feature extraction, pooling layers for downsampling, and fully connected layers for classification.
Experiment with different kernel sizes and layer configurations.

Incorporate embeddings to capture semantic relationships in code. Train the model to automatically learn
hierarchical features from the code snippets. Focus on extracting relevant features that distinguish between normal and
injected code patterns. Implement mechanisms for dynamic learning to adapt the model continuously. Allow the system
to update its knowledge based on new data and emerging injection techniques. This ensures that the model remains
effective against evolving threats.

Strengthen the model's robustness by incorporating adversarial training. Introduce adversarial examples during
training to improve the model's ability to withstand evasion tactics commonly employed by attackers. Integrate the
trained model into a real-time monitoring system. Intercept incoming code snippets and use the CNN model to classify
them as either legitimate or potentially injected. Ensure minimal latency to enable swift responses.

Set dynamic thresholds for classification based on the sensitivity of the environment. Experiment with different
threshold values to balance between false positives and false negatives, adapting to the application's specific

requirements.
/ ‘ = Healthy

= Alarm
= Danger

- gl :
” | " i ~
é I i H i :
/ d L] = Damaged
FULLY
| INPUT \couvownon +RELU  POOLING  CONVOLUTION + RELU POOLING P \rumu ComuLY o SOFTMAX y

v

Y.
Aircraft . Structural Condition
. Feature Learning e
Sensing Input Classification

ShodhKosh: Journal of Visual and Performing Arts 851


https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh

Abdul Subhahan Shaik, and Dr. Amjan Shaik

Figurel Typical architecture of a CNN

6. RESULT
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Figure 2 Comparison between different classifiers
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In this section we have presented our results that Figure 4 presents the results for the five most classifiers that were
used in this study namely CNN - Convolutional Neural Network, GNB - Naive Bayes, SVM - Support Vector Machine, KNN
- Knearest Neighbors and DT - Decision Tree. As we see from the graph that while GNB provides the highest Accuracy
and SVM provides the greatest precision, but despite this when compared across all 3 metrics we observe that CNN
provides the greatest consistency and best results. This is further validated by the AUC Value of CNN being highest across

all 5 algorithms, hence we believe CNN is the best Classifier to use for this problem.
Table 1: Comparison between different classifiers

CNN
GNB
SVM
KNN
DT

Accuracy @ Precision

0.92
0.94
0.8

0.68
0.87

0.82
0.87
1

0.42
0.63

Recall

0.92
091
0.23
0.96
0.98
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Figure 3 Receiver operating characteristics

The figure (5) below shows: False Positives Rate (FPR) is denoted on the x-axis against recall or True Positive Rate
(TPR) on the y-axis (sensitivity). On the x-axis higher the value, poorer the performance and the vice-versa for y-axis
which has been achieved and shown in the graph below.

Table 2: Receiver operating characteristics

Positives Rate AUC of Guassian = AUC Decision = AUC of SVC=0.62 = AUCofKNN=0.77 AUC of Keras

NB=0.96 Tree=0.90 CNN=0.98

0.0 0.0 0.0 0.0 0.0 0.0

0.1 0.98 0.76 0.1 0.2 0.9

0.2 0.98 0.98 0.4 0.4 0.98
0.3 0.98 0.98 0.5 0.6 0.98
0.4 0.98 0.98 0.55 0.9 0.98
0.5 0.98 0.98 0.63 0.95 0.98
0.6 0.98 0.98 0.73 0.96 0.98
0.7 0.98 0.98 0.78 0.97 0.98
0.8 0.98 0.98 0.83 0.98 0.98
0.9 0.98 0.98 0.9 0.98 0.98
1.0 0.98 0.98 0.98 0.98 0.98

7. CONCLUSION

In conclusion, the integration of an Al-driven machine learning approach, particularly utilizing Convolutional Neural
Networks (CNNs), presents a promising paradigm for the prevention of code injection attacks. The proposed method
combines the strengths of deep learning with the specificity of CNNs to enhance the security posture of web applications.
By harnessing the power of CNNs, the proposed method establishes a proactive defense mechanism against code
injection attacks. The ability of CNNs to automatically learn hierarchical representations from code snippets contributes
to the early detection of potential threats. The incorporation of dynamic learning and continuous adaptation ensures
that the code injection prevention system remains effective in the face of evolving attack techniques. The model can
autonomously update its knowledge base, staying ahead of emerging threats without requiring manual intervention.

The integration of the CNN-based model into a real-time monitoring system enables swift responses to potential
injection attempts. The low-latency nature of the system contributes to timely detection and mitigation, minimizing the
impact of security incidents. The inclusion of adversarial training enhances the robustness of the model, making it more
resilient to adversarial attempts to evade detection. This strengthens the overall security posture of the system and
reduces the risk of false negatives. The implementation of explainable Al (XAI) techniques ensures transparency in the
decision-making process of the model. This interpretability builds trust among security professionals and stakeholders,
allowing them to comprehend and validate the model's actions.
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The ability to set dynamic thresholds for classification enables customization based on the specific security
requirements of the application. Additionally, the exploration of ensemble learning techniques further enhances the
accuracy and reliability of the code injection prevention system. The proposed method emphasizes an iterative
improvement process, where regular evaluations and feedback from security analysts and end-users contribute to
refining the model's performance. This iterative approach ensures adaptability to changing environments and emerging
threats.
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