Original Article ISSN (Online): 2582-7472

THE EXPANDING MODEL OF THE CONFORMALLY FLAT NON-STATIC SPHERICALLY SYMMETRIC PERFECT FLUID DISTRIBUTIONS

Dr. Manjusha Hajare Borkar¹

Assistant Professor, Department of Mathematics, Kamla Nehru Mahavidyalaya, Nagpur, Maharashtra, India

DOI

10.29121/shodhkosh.v5.i6.2024.313

Funding: This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Copyright: © 2024 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License

With the license CC-BY, authors retain the copyright, allowing anyone to download, reuse, re-print, modify, distribute, and/or copy their contribution. The work must be properly attributed to its author.

ABSTRACT

The explicit expressions for pressure, density expansion, rotation, sheer and non vanishing component of flow vector have been obtained. In this this note ,we have discussed the various geometrical and physical properties of spherically symmetric metric space time obtained by Roy and Bali [5] by considering the triples of orthogonal unit vectors α_i , β_i . Here we connect all the physical quantities obtained by Roy and Bali [5] with mathematical quantities ρ^a in Borkar and Hajare [3]. Further it is noticed that the model is expanding, rotating, shearing but non geodetic. Introduction.

Keywords:

1. INTRODUCTION

In **Takeno (1966)** [1] developed the theory of SSST on the group of invariant quantities containing two orthogonal unit vectors and deduced its geometrical and physical properties. The investigation into spherically symmetric space time is one of the important problem in general theory of relativity, because the many space times dealt with in relativistic theory are spherical symmetric in nature. Many authors have investigated the physical, geometrical and mathematical properties of spherical symmetric space time. For the sake of convenience we recall the definition from [1],

Definition: A space-time V_4 with metric tensor g_{ij} is said to be spherically symmetric if the following conditions are satisfied.

1. The curvature tensor V_4 satisfies the equation,

$$\begin{aligned} & \text{K}_{ijlm} = -\rho^1 \alpha_{[i} \alpha_{[l} \beta_{j]} \beta_{m]} - \rho^2 g_{[i[l} \alpha_{j]} \alpha_{m]} + \rho^3 g_{[i[l} \beta_{j]} \beta_{m]} + \rho^4 g_{[i[l} g_{j]m]} + \rho^5 g_{[i[l} Q_{j]m]} \end{aligned} \tag{1}$$

$$& \text{Where} \alpha_i, \beta_i \text{ are mutually orthogonal unit vector satisfying}$$

$$& \alpha_{j|i} = \sigma \alpha_i \beta_j + \kappa (g_{ij} + \alpha_i \alpha_j - \beta_i \beta_j) + \overline{\sigma} \beta_i \beta_j, \tag{2}$$

$$& \beta_{j|i} = \overline{\sigma} \beta_i \alpha_j + \overline{\kappa} (g_{ij} + \alpha_i \alpha_j - \beta_i \beta_j) + \sigma \alpha_i \alpha_j, \tag{3}$$

$$& \alpha_i \alpha^i = -1, \ \beta_i \beta^i = 1, \ \alpha_i \beta^i = 0 \tag{4}$$

$$Q_{ij} = \alpha_{(i}\beta_{j)}$$
.

Here $\alpha_{i|i}$ is the usual Riemannian covariant derivative of α_i and the notation () and [] stand for usual symmetric and antisymmetric relations respectively. These equations determine the scalars ρ^a , $\alpha = 1,2,...,5,\sigma,\overline{\sigma},\kappa,\overline{\kappa}$.

- 2. One of the five scalars $\rho^1,...,\rho^4$ and the scalars curvature $K = K_{ij}^{ij}$ is such that its gradient is a linear combination of α_i and β_i .
- 3. ρ^4 , κ and $\overline{\kappa}$ satisfy $\rho^4 - 2(\kappa^2 - \overline{\kappa}^2) \neq 0$.

The signature of the metric tensor is given by (-,-,-,+).

The quantities $\alpha_i, \beta_i, \rho^a, \alpha = 1, ..., 5, \sigma, \overline{\sigma}, \kappa, \overline{\kappa}$ are called the analytical invariants (or characteristic quantities) of the spherically symmetric space time.

The analytical invariants of orthogonal spherically symmetric space time have been studied by **Borkar and Hajare [3]** by assuming the various triples of orthogonal unit vectors α_i , β_i . In this note an attempt has been made to discuss the various geometrical and physical properties of the model obtained by Roy and Bali [5] which is known as conformally flat non-static spherically symmetric perfect fluid distribution in general relativity purely on mathematical ground through the various triples of orthogonal unit vectors α_i, β_i . These triples are playing an important role in analyzing the spacetime and in the discussion of physical and geometrical properties of space time. In our discussion we studied it through the theory of triples of orthogonal unit vectors developed by Borkar and Hajare [3].

We consider the metric of Roy and Bali [5],

$$ds^{2} = \frac{16m^{2}}{(\phi(\xi) - nt)^{2}} (dr^{2} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\varphi^{2} - dt^{2}).$$
 (5)

The pressure and density for model (5) are given by
$$8\pi p = \frac{(\phi - nt)^2}{16m^2} \left[(1 - 4m\xi) \left(\frac{2\phi''}{(\phi - nt)} - \frac{3\phi'^2}{(\phi - nt)^2} \right) - \frac{12m\phi'}{\phi - nt} - \frac{6n(2mt + 1)\phi'}{(\phi - nt)^2} - \frac{3n^2}{(\phi - nt)^2} \right] - \Lambda$$
 (6)

$$8\pi\epsilon = \frac{(\phi - nt)^2}{16m^2} \left[\frac{3(1 - 4m\xi)\phi'^2}{(\phi - nt)^2} + \frac{12m\phi'}{\phi - nt} + \frac{6n(2mt + 1)\phi'}{(\phi - nt)^2} + \frac{3n^2}{(\phi - nt)^2} \right] + \Lambda \tag{7}$$

Where $\xi = mr^2 - mt^2 - t$ and the prime indicates differentiation with respect to its arguments. The non-vanishing component of flow vector are given by,

$$v_1 = \frac{8m^2r}{(\phi - nt)\sqrt{1 - 4m\xi}}$$
 and $v_4 = \frac{-4m(2mt + 1)}{(\phi - nt)\sqrt{1 - 4m\xi}}$ (8)

It satisfy the reality condition

- i) $(\epsilon + p) > 0$
- ii) $(\epsilon + 3p) > 0$

The non-vanishing component of the vector
$$\dot{v}_{l} = v_{i|j}v^{j}$$
 are,
$$\dot{v}_{1} = \frac{2mrn(2mt+1)}{(\phi-nt)(1-4m\xi)} and \dot{v}_{4} = \frac{-n(2mt+1)^{2}}{(\phi-nt)(1-4m\xi)}$$
(9)

The expression for shear σ_{ij} , rotation ω_{ij} and expansion θ' , calculated for the flow vector v^i are given by,

are given by,
$$\sigma_{11} = \frac{8mn(2mt+1)\{1-4m\xi+4m^2r^2\}}{(\phi-nt)^2(1-4m\xi)^{3/2}}$$

$$\sigma_{22} = \frac{8mnr^2(2mt+1)}{(\phi-nt)^2\sqrt{1-4m\xi}}$$

$$\sigma_{33} = \frac{8mnr^2\sin^2\theta(2mt+1)}{(\phi-nt)^2\sqrt{1-4m\xi}}$$

$$\sigma_{44} = \frac{4mn(2mt+1)\{2(2mt+1)^2 - (1-4m\xi)\}}{(\phi-nt)^2(1-4m\xi)^{3/2}}$$

$$\sigma_{14} = -\frac{4m^2rn\{4(2mt+1)^2 + 1-4m\xi\}}{(\phi-nt)^2(1-4m\xi)^{3/2}}$$

$$ShodhKosh: Journal of Visual and Performing Arts$$

$$(10)$$

$$\sigma_{13} = \frac{8mnr^2\sin^2\theta(2mt+1)}{(\phi-nt)^2(1-4m\xi)^{3/2}}$$

$$\sigma_{14} = -\frac{4m^2rn\{4(2mt+1)^2 + 1-4m\xi\}}{(\phi-nt)^2(1-4m\xi)^{3/2}}$$

$$(11)$$

$$\sigma_{22} = \frac{8mnr^2(2mt+1)}{(\phi - nt)^2 \sqrt{1 - 4m\xi}} \tag{11}$$

$$\sigma_{33} = \frac{8mn^2 \sin^2\theta (2mt+1)}{(\phi - nt)^2 \sqrt{1 - 4m\xi}} \tag{12}$$

$$\sigma_{44} = \frac{4mn(2mt+1)\{2(2mt+1)^2 - (1-4m\xi)\}}{(\phi - nt)^2(1-4m\xi)^{3/2}} \tag{13}$$

$$\sigma_{14} = -\frac{4m^2 r n \{4(2mt+1)^2 + 1 - 4m\xi\}}{(\phi - nt)^2 (1 - 4m\xi)^{3/2}} \tag{14}$$

$$\omega_{14} = \frac{4m^2 rn}{(\phi - nt)^2 \sqrt{1 - 4m\xi}} \tag{15}$$

$$\theta' = \frac{3(\phi - nt)}{2\sqrt{1 - 4m\xi}} + \frac{3\phi'\sqrt{1 - 4m\xi}}{4m} - \frac{3n(2mt + 1)}{4m\sqrt{1 - 4m\xi}}$$
(16)

The other components of rotation tensor ω_{ij} and shear tensor σ_{ij} vanish.

In this note we connect all the physical quantities of model (5) obtained by Roy and Bali [5] with the mathematical quantity ρ^a given in **Borkar and Hajare [3]** on the basis of the triples of orthogonal unit vectors α_i and β_i and discuss geometrical and physical properties of space time.

2. CHARACTERISTIC QUANTITIES:

We are studying the space time (5) in relation to the triples corresponding to the triples $(\alpha_1, \alpha_3, \beta_2)$. For $(\alpha_1, \alpha_3, \beta_2)$:

We deduced the value of ρ^a , a = 1,2,...,5 from the component of curvature tensor K_{ijlm} in view of the definition of SSST in [3] for the line element (5).

$$\rho^2 = -4K_{4143} \frac{(1+r^2\sin^2\theta)(\phi - nt)^4}{16^2m^4r^2\sin^2\theta}$$
(17)

$$\rho^{1} + \rho^{2} = 4K_{2123} \frac{(1 + r^{2} \sin^{2}\theta)(\phi - nt)^{4}}{16^{2}m^{4}r^{4}\sin^{2}\theta}$$
(18)

$$\rho^{2} + 2\rho^{4} = 4K_{1313} \frac{(\phi - nt)^{4}}{16^{2}m^{4}r^{2}\sin^{2}\theta}$$

$$(19)$$

$$\rho^3 + 2\rho^4 = -4K_{2424} \frac{(\phi - nt)^4}{16^2 m^4 r^2} \tag{20}$$

$$\rho^{3} + 2\rho^{4} = -4K_{2424} \frac{(\phi - nt)^{4}}{16^{2}m^{4}r^{2}}$$

$$\rho^{5} \frac{16^{2}m^{4}r^{2}sin^{2}\theta}{(\phi - nt)^{4}} \sqrt{\frac{-1}{1 + r^{2}sin^{2}\theta}} = 8\left[K_{1213}, \frac{K_{3132}}{r^{2}sin^{2}\theta}, -K_{4142}, -K_{4243}\right]$$
(21)

3. SOME PHYSICAL PROPERTIES:

For the space time (5) we calculate the physical quantities for the triple $(\alpha_1, \alpha_3, \beta_2)$ using mathematical values ρ^a , a = 1, ..., 5 as follows,

The equation for pressure and density for the line element (5) from equation (6) and (7), we get,
$$8\pi p = \frac{r \sin\theta}{2} \sqrt{\frac{\rho^2 + 2\rho^4}{K_{1313}}} \left[(1 - 4m\xi) \left(\frac{2\phi''}{(\phi - nt)} - \frac{3\phi'^2}{(\phi - nt)^2} \right) - \frac{12m\phi'}{\phi - nt} - \frac{6n(2mt + 1)\phi'}{(\phi - nt)^2} - \frac{3n^2}{(\phi - nt)^2} \right] - \Lambda \quad (22)$$

$$8\pi\epsilon = \frac{r\sin\theta}{2} \sqrt{\frac{\rho^2 + 2\rho^4}{K_{1313}}} \left[\frac{3(1 - 4m\xi)\phi'^2}{(\phi - nt)^2} + \frac{12m\phi'}{\phi - nt} + \frac{6n(2mt + 1)\phi'}{(\phi - nt)^2} + \frac{3n^2}{(\phi - nt)^2} \right] + \Lambda$$
 (23)

The non-vanishing component of flow vector from equation (8) and (9), we get,

$$\nu_{1} = \left[\frac{4K_{1313}}{(\rho^{2} + 2\rho^{4})r^{2}sin^{2}\theta} \right]^{\frac{1}{4}} \frac{2mr}{\sqrt{1 - 4m\xi}} \quad \text{and} \quad \nu_{4} = -\left[\frac{4K_{1313}}{(\rho^{2} + 2\rho^{4})r^{2}sin^{2}\theta} \right]^{\frac{1}{4}} \frac{(2mt+1)}{\sqrt{1 - 4m\xi}}$$
 (24)

The non-vanishing component of the vector $\dot{v}_i = v_{i|j}v^j$ from equation (10) and (11)

$$\dot{v_1} = \frac{1}{2} \left[\frac{4K_{1313}}{(\rho^2 + 2\rho^4)r^2 \sin^2 \theta} \right]^{\frac{1}{4}} \frac{rn(2mt+1)}{(1-4m\xi)} \quad \text{and} \quad \dot{v_4} = -\frac{1}{4m} \left[\frac{4K_{1313}}{(\rho^2 + 2\rho^4)r^2 \sin^2 \theta} \right]^{\frac{1}{4}} \frac{n(2mt+1)^2}{(1-4m\xi)}$$
 (25)

(Therefore the flow is non-geodetic in general).

The expression for shear σ_{ij} , rotation ω_{ij} and expansion θ' are given by,

$$\sigma_{11} = \frac{n(2mt+1)\{1-4m\xi+4m^2r^2\}}{mr\sin\theta(1-4m\xi)^{3/2}} \sqrt{\frac{K_{1313}}{(\rho^2+2\rho^4)}}$$
(26)

$$\sigma_{22} = \frac{nr(2mt+1)}{m\sin\theta} \sqrt{\frac{K_{1313}}{(\rho^2 + 2\rho^4)(1 - 4m\xi)}}$$
 (27)

$$\sigma_{33} = \frac{nrsin\theta(2mt+1)}{m} \sqrt{\frac{K_{1313}}{(\rho^2 + 2\rho^4)(1 - 4m\xi)}}$$
 (28)

$$\sigma_{44} = \frac{n(2mt+1)\{2(2mt+1)^2 - (1-4m\xi)\}}{2mr\sin\theta(1-4m\xi)^{3/2}} \sqrt{\frac{K_{1313}}{(\rho^2 + 2\rho^4)}}$$
(29)

$$\sigma_{14} = -\frac{n\{4(2mt+1)^2 + 1 - 4m\xi\}}{2\sin\theta(1 - 4m\xi)^{3/2}} \sqrt{\frac{K_{1313}}{(\rho^2 + 2\rho^4)}}$$
(30)

$$\sigma_{14} = -\frac{n\{4(2mt+1)^2 + 1 - 4m\xi\}}{2sin\theta(1 - 4m\xi)^{3/2}} \sqrt{\frac{K_{1313}}{(\rho^2 + 2\rho^4)}}$$

$$\omega_{14} = \frac{n}{2\sin\theta} \sqrt{\frac{K_{1313}}{(\rho^2 + 2\rho^4)(1 - 4m\xi)}}$$
(31)

$$\theta' = \frac{6m}{\sqrt{1 - 4m\xi}} \left[\frac{(\rho^2 + 2\rho^4)r^2 \sin^2 \theta}{4K_{1313}} \right]^{\frac{1}{4}} + \frac{3\phi'\sqrt{1 - 4m\xi}}{4m} - \frac{3n(2mt+1)}{4m\sqrt{1 - 4m\xi}}$$
(32)

The other components of rotation tensor ω_{ij} and shear tensor σ_{ij} vanish. Hence the model is expanding, rotating, shearing but non-geodetic in general. The metric (5) cannot represent the dust distribution or disordered radiation unless n = 0. Clearly the component \dot{v}_1 and \dot{v}_4 vanish when n=0. We observed that the physical properties for the triple $(\alpha_1, \alpha_3, \beta_4)$ are same as the triple $(\alpha_1, \alpha_3, \beta_2)$

By adopting the similar procedure, we deduced the result for other triples. We observed that there is relationship among them in the following manner:

For $(\alpha_2, \beta_1, \beta_3) \Leftrightarrow (\alpha_1, \alpha_3, \beta_2)$ and $(\alpha_2, \beta_1, \beta_3) \Leftrightarrow (\alpha_1, \alpha_3, \beta_2)$, the scalars ρ^1, ρ^4, ρ^5 does not change their values, $\rho^2 \Leftrightarrow \rho^3$. Our result agreed with the result of Roy and Bali [5].

The non-vanishing components of Ricci tensor K_{ij} , satisfies the relation by [1,3]. For $(\alpha_1, \alpha_3, \beta_2)$:

$$\begin{split} \delta &= \frac{(\phi - nt)^2}{16m^2} (\gamma \alpha_1^2 - K_{11}) = -\frac{(\phi - nt)^2}{16m^2r^2} (K_{22} + \lambda \beta_2^2) = \frac{(\phi - nt)^2}{16m^2r^2sin^2\theta} (\gamma \alpha_3^2 - K_{33}) = -\frac{(\phi - nt)^2}{16m^2} K_{44}. \\ And \end{split}$$

For $(\alpha_1, \alpha_3, \beta_2)$:

$$\delta = \frac{(\phi - nt)^2}{16m^2} (\gamma \alpha_1^2 - K_{11}) = -\frac{(\phi - nt)^2}{16m^2r^2} K_{22} = \frac{(\phi - nt)^2}{16m^2r^2 sin^2\theta} (\gamma \alpha_3^2 - K_{33}) = -\frac{(\phi - nt)^2}{16m^2} (K_{44} - \lambda \beta_4^2).$$

where
$$\delta = \frac{1}{4}(\rho^2 + \rho^3 + 6\rho^4)$$
, $\gamma = \frac{1}{4}(\rho^1 + 2\rho^2)$, $\lambda = \frac{1}{4}(\rho^1 + 2\rho^3)$.

The values of the scalars $\sigma_1, \overline{\sigma}_2, \kappa_1, \overline{\kappa}$ for $(\alpha_1, \alpha_2, \beta_2)$ are,

$$\sigma = -\frac{(\phi - nt)}{8mr} \frac{\partial}{\partial \theta} \left[\log \left(\frac{16m^2 r^2 \sin^2 \theta}{(\phi - nt)^2} \right) \right]$$
 (33)

$$\bar{\sigma} = -\frac{(\phi - nt)\sqrt{(1 + r^2 \sin^2 \theta)}}{8mr \sin \theta \sqrt{-1}} \frac{\partial}{\partial r} \left[\log \left(\frac{16m^2 r^2}{(\phi - nt)^2} \right) \right]$$
(34)

$$\kappa = \frac{(\phi - nt)^3 \sqrt{(1 + r^2 \sin^2 \theta)}}{128m^3 r^3 \sin^3 \theta} \frac{\partial}{\partial r} \left(\frac{16m^2 r^2 \sin^2 \theta}{(\phi - nt)^2} \right) \tag{35}$$

$$\bar{\kappa} = \frac{(\phi - nt)^3}{128m^3r^3\sin^2\theta} \frac{\partial}{\partial\theta} \left(\frac{16m^2r^2\sin^2\theta}{(\phi - nt)^2} \right) \tag{36}$$

The scalars $\sigma, \overline{\sigma}, \kappa, \overline{\kappa}$ corresponding to $(\alpha_r, \beta_p, \beta_q)$ takes the values $i, \overline{\sigma}, -i, \sigma, i\overline{\kappa}, -i\kappa$ of $(\alpha_p, \alpha_q, \beta_r)$ respectively.

The values of the scalars $\sigma, \overline{\sigma}, \kappa, \overline{\kappa}$ for $(\alpha_1, \alpha_3, \beta_2)$ are,

$$\sigma = -\frac{(\phi - nt)}{8m\sqrt{-1}} \frac{\partial}{\partial t} \left[\log \left(\frac{16m^2}{(\phi - nt)^2} \right) \right]$$
 (37)

$$\bar{\sigma} = -\frac{(\phi - nt)\sqrt{(1 + r^2 \sin^2 \theta)}}{8mr \sin \theta \sqrt{-1}} \frac{\partial}{\partial r} \left[\log \left(\frac{16m^2}{(\phi - nt)^2} \right) \right]$$
(38)

$$\kappa = \frac{(\phi - nt)^3 \sqrt{-(1 + r^2 \sin^2 \theta)}}{128m^3 r^3 \sin^3 \theta} \frac{\partial}{\partial r} \left(\frac{16m^2 r^2 \sin^2 \theta}{(\phi - nt)^2} \right)$$
(39)

$$\bar{\kappa} = -\frac{(\phi - nt)^3 \sqrt{-1}}{128m^3} \frac{\partial}{\partial t} \left(\frac{16m^2}{(\phi - nt)^2} \right) \tag{40}$$

The scalars $\sigma, \overline{\sigma}, \kappa, \overline{\kappa}$ corresponding to $(\alpha_4, \beta_1, \beta_3)$ takes the values $i, \overline{\sigma}, -i, \sigma, i\overline{\kappa}, -i\kappa$ of $(\alpha_1, \alpha_3, \beta_4)$ respectively.

CONFLICT OF INTEREST

None

ACKNOWLEDGEMENTS

None

4. CONCLUSION

Here we discussed the various geometrical and physical properties of spherically symmetric metric space time obtained by Roy and Bali [5] by considering the triples of orthogonal unit vectors α_i , β_i . The explicit expressions for pressure, density expansion, rotation, sheer and non vanishing component of flow vector have been obtained. Further it is noticed that the model is expanding, rotating, shearing but non geodetic in general.

REFERENCES

Takeno H., "The theory of spherically symmetric space time", Hiroshima University, Japan, (1966).

Karade T.M. and Borkar M.S., J. Post-RAAG reports, Japan, 350, 1(2000).

Borkar M.S. and Hajare M.H., J. Tensor Society, Japan. (No. 3), 269(2007).

Borkar M.S. and Hajare M.H., J. vid J. sci. Amaravati, (No.1), 40(2008).

Roy S.R. and Raj Bali, "Conformally flat non-static spherically symmetric perfect fluid distribution in general relativity", Indian J. pure appl. Maths 9,871 (1978).

Singh K.P. and Abdussattar (1974). A conformally flat non-static perfect fluid distribution. G.R.G., 5(1), 115-18.

Pandey S.N. and Tiwari R., "Conformally flat spherically symmetric charged perfect fluid distribution in general relativity", Indian J. pure appl. Math. 12(2) (1981).