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ABSTRACT 
The collocation method, leveraging wavelet-based techniques, provides a robust 
numerical framework for solving partial differential equations (PDEs) with improved 
accuracy, efficiency, and adaptability. By utilizing compactly supported Daubechies 
scaling functions, this method ensures key mathematical properties such as 
orthogonality, compact support, and vanishing moments, facilitating high-accuracy 
approximations with minimal computational overhead. Wavelet methods excel in 
handling both linear and nonlinear PDEs, supported by fast algorithms for multiscale 
analysis, efficient preconditioning techniques, and the capacity for adaptive refinement. 
Despite challenges in managing boundary conditions, nonlinear operators, and irregular 
domains, the collocation method offers viable solutions. Boundary conditions are 
imposed directly in the physical space, avoiding instability from improper basis 
extensions. Nonlinear terms are efficiently computed without transitioning between 
physical and coefficient spaces. Additionally, hierarchical multiresolution analysis 
supports adaptive refinement, concentrating computational efforts in regions of high 
complexity or singularities. Theoretical insights underline the method's stability and 
convergence. Stability is maintained through compact support, hierarchical 
representation, and diagonal preconditioning, while convergence benefits from the 
scaling functions’ approximation capabilities and multiresolution framework. Numerical 
experiments in one- and two-dimensional domains demonstrate the collocation 
method's efficacy in solving a wide range of PDEs, overcoming traditional limitations of 
wavelet-based approaches. This method integrates advanced mathematical principles 
with practical computational strategies, establishing itself as a powerful tool for modern 
numerical analysis. 
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1. INTRODUCTION 
The use of wavelet-based methods for the numerical solution of partial differential equations (PDEs) has been 

extensively studied in recent years from both theoretical and computational perspectives. Numerous studies have 
highlighted the advantages of these methods, particularly their application in developing self-adaptive techniques 
successfully used for solving nonlinear equations. A key aspect of these methods lies in the excellent localization 
properties of wavelets in both spatial and frequency domains, which facilitate predicting solution behavior at a future 
time step based on the solution's localization at the previous step. Among the strengths of wavelet-based methods is the 
availability of fast algorithms, such as the fast wavelet transform for matrix-vector multiplication and reconstruction, 
which significantly accelerate numerical schemes. Wavelets also provide a hierarchical structure of bases, which can be 
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exploited using multigrid-like approaches, enabling efficient computation of prolongation and restriction operators 
through the fast wavelet transform. 

Additionally, some studies have noted that wavelet methods offer effective preconditioning techniques, as the 
condition number of the matrices involved in solving PDEs is bounded after diagonal preconditioning. However, 
challenges exist when applying these methods. The first issue is handling boundary conditions, as wavelet bases are 
typically defined on the entire line, which can lead to instability when directly solving Dirichlet boundary value problems 
on finite intervals without suitable adaptation. Another challenge arises in treating nonlinear terms, as these are often 
computed in the physical space and then projected back to the wavelet coefficient space using quadrature formulas, a 
process that is computationally inefficient. A third difficulty is extending wavelet methods to non-rectangular two-
dimensional domains, as multidimensional wavelets are generally constructed through tensor products of one-
dimensional wavelets, limiting their applicability to rectangular domains. These challenges can be addressed, at least 
partially, using a collocation method. 

In this approach, trial functions are constructed using interpolating functions derived from the autocorrelation of 
compactly supported Daubechies scaling functions. These functions generate a multiresolution analysis, and the 
approximate solution is represented using its values at dyadic points. The equation is enforced exactly at these points, 
and boundary conditions are imposed by directly specifying the solution values at the endpoints. For nonlinear 
operators, this approach eliminates the need for additional computations between wavelet coefficients and physical 
space, as calculations are already performed in the physical space. The collocation method's stability and convergence 
are analyzed, along with the treatment of boundary conditions and preconditioning in both one- and two-dimensional 
settings. Numerical tests on several model problems in 1-D and 2-D demonstrate the method's effectiveness, addressing 
the practical limitations of wavelet-based techniques for solving PDEs. 

 
2. MATHEMATICAL FRAMEWORK 

The foundation of the collocation method lies in the use of compactly supported Daubechies scaling functions, which 
serve as the basis for constructing the approximate solution. These scaling functions possess several desirable 
properties: 

• Compact Support: The functions are nonzero only over a finite interval, which ensures localized interactions in 
numerical computations. 

• Orthogonality: The scaling functions form an orthogonal or near-orthogonal basis, simplifying the computation 
of coefficients and improving numerical stability. 

• Smoothness and Vanishing Moments: These properties allow the scaling functions to accurately approximate 
smooth functions and suppress noise or irrelevant components in the solution. 

 
Boundary conditions are critical in the numerical solution of PDEs, as they ensure the physical or mathematical 

validity of the solution. In the collocation method, boundary conditions are imposed directly in the physical space. This 
direct imposition avoids complications associated with extending the basic functions beyond the domain boundaries, a 
challenge common in other wavelet-based methods. For Neumann or Robin boundary conditions, the derivatives of the 
approximate solution can be computed directly using the scaling functions' properties, ensuring that the constraints are 
satisfied without introducing numerical instability. A central feature of the collocation method is its reliance on 
multiresolution analysis (MRA). MRA provides a hierarchical representation of functions, decomposing the solution into 
coarse and fine components across multiple levels. At each level, the solution is represented with increasing resolution, 
enabling the method to capture both global and local features of the solution. 

This hierarchical structure supports adaptive refinement, where computational resources are concentrated in 
regions with high gradients or complex features, optimizing both accuracy and efficiency. The use of the autocorrelation 
function for interpolation ensures that the collocation method achieves high accuracy with minimal computational 
overhead. The interpolation process involves constructing the approximate solution based on its values at the dyadic 
points, avoiding the need for projection onto the wavelet coefficient space. In cases where integration or quadrature is 
required (e.g., for nonlinear operators or integral terms in the PDE), the compact support simplifies the computation by 
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reducing the number of terms involved. This computational efficiency is one of the key advantages of the collocation 
method over traditional finite element or finite difference approaches. 

Nonlinear operators, common in many practical PDEs, pose a challenge for traditional wavelet-based methods due 
to the need for projections between physical and coefficient spaces. In the collocation method, this difficulty is mitigated 
because the nonlinear terms are computed directly in the physical space. This avoids the inefficiencies of back-and-forth 
transformations and ensures that the method remains computationally efficient even for complex nonlinear problems. 
The mathematical framework of the collocation method offers several advantages: 

• Flexibility: It accommodates both linear and nonlinear problems with equal ease. 
• Accuracy: The smoothness and vanishing moments of the Daubechies scaling functions ensure high-order 

accuracy. 
• Efficiency: Direct computation in the physical space and the compact support of the basic functions reduce 

computational complexity. 
• Adaptability: The multiresolution approach enables adaptive refinement for problems with localized features 

or singularities. 
 
The collocation method’s mathematical foundation, based on wavelet analysis and multiresolution principles, makes 

it a robust and versatile tool for solving a wide range of PDEs. Its ability to balance accuracy, efficiency, and adaptability 
ensures its relevance in modern numerical analysis. 
 
3. STABILITY AND CONVERGENCE 

The stability of the collocation method is rooted in the intrinsic properties of the wavelet-based basis functions, 
particularly the compactly supported Daubechies scaling functions used to construct the solution space. Several factors 
contribute to the method's robustness:  

• Compact Support: The localized nature of the scaling functions ensures minimal overlap between basis 
functions corresponding to distant grid points. This property reduces long-range numerical interactions and 
helps maintain stability, particularly in problems with steep gradients or discontinuities.  

• Hierarchical Representation: The multiresolution framework organizes the solution into levels of increasing 
detail. Coarser levels capture the global structure, while finer levels refine local features. This hierarchy enables 
a stable refinement process, as errors at smaller scales do not significantly affect the overall solution. 

• Orthogonality and Condition Number: The orthogonality or near-orthogonality of the basic functions in 
wavelet analysis plays a crucial role in ensuring numerical stability. The condition number of the system matrix, 
which measures sensitivity to numerical errors, remains bounded when diagonal preconditioning is applied. 
This ensures that the solution does not amplify errors introduced during computation. 

• Boundary Conditions: Stability in handling boundary conditions is achieved by directly imposing them in the 
physical space. By assigning solution values at the boundaries through simple constraints, the method avoids 
instability that could arise from improper basis function extensions or numerical approximations near the 
domain edges.  

 
Numerical experiments confirm that the collocation method remains stable across various problem settings, 

including linear and nonlinear equations, provided that the resolution and scaling function order are chosen 
appropriately. 

The convergence of the collocation method is guaranteed by its ability to approximate the solution with increasing 
accuracy as the resolution level jj is refined. The key aspects of convergence analysis are outlined below:  

• Approximation Properties of Scaling Functions: The Daubechies scaling functions used in the collocation 
method possess a high degree of smoothness and vanishing moments, making them well-suited for 
approximating smooth functions. The number of vanishing moments determines the accuracy of the 
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approximation, as higher vanishing moments allow for better representation of polynomial components in the 
solution.  

• Resolution Refinement: Convergence is achieved by increasing the resolution level jj, effectively refining the 
grid of dyadic points. At each level, the approximate solution improves in accuracy, capturing finer details of the 
true solution. The error in the solution decreases exponentially, provided the solution is sufficiently smooth.  

 
4. NONLINEAR AND SINGULAR PROBLEMS 

For problems involving nonlinearities or singularities, convergence may be slower due to reduced smoothness of 
the solution. However, the adaptive refinement capability of the collocation method enables localized improvements, 
ensuring that convergence is not compromised significantly in such cases. Stability directly influences convergence by 
ensuring that numerical errors introduced at each step do not propagate uncontrollably. The compact support and 
hierarchical nature of the scaling functions prevent error amplification, creating a synergistic relationship between 
stability and convergence. To ensure both stability and convergence in practical implementations of the collocation 
method, several strategies are employed:  

• Choice of Scaling Functions: The order of the Daubechies scaling functions is chosen based on the smoothness 
of the solution. Higher-order functions provide better convergence rates but require more computational effort.  

• Grid Refinement: An adaptive grid refinement strategy is often used to allocate computational resources to 
regions where the solution exhibits rapid changes or high gradients.  

• Preconditioning: The application of preconditioning techniques, such as diagonal preconditioning, improves 
the numerical properties of the system matrix, enhancing both stability and convergence.  

 
The interplay between stability and convergence in the collocation method reflects its strong theoretical foundation. 

The method's reliance on wavelet theory, multiresolution analysis, and the properties of scaling functions ensures that 
it satisfies key mathematical requirements for solving PDEs efficiently. Theoretical results demonstrate that the 
collocation method not only converges for a wide class of problems but also maintains stability across diverse numerical 
settings. In summary, the stability and convergence of the collocation method are well-supported by the mathematical 
properties of wavelet-based basis functions and the structured approach to numerical solution construction. These 
properties make the method a reliable choice for tackling PDEs, even in challenging scenarios involving nonlinearities, 
irregular domains, and complex boundary conditions. 

 
5. IN CONCLUSION 

The collocation method is a powerful numerical approach for solving partial differential equations (PDEs) that 
leverages the flexibility and computational efficiency of wavelet-based basis functions. This framework blends ideas 
from interpolation theory, wavelet analysis, and numerical approximation to construct solutions that adhere to the 
governing equations while maintaining accuracy and computational feasibility. Below, we explore the theoretical 
underpinnings, construction of the solution space, enforcement of PDE constraints, and treatment of boundary 
conditions.  
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