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ABSTRACT 
The aim of this paper is to introduce 𝒢𝒢ĝ-closed sets in grill generalized topological spaces. 
Also, we investigate the properties of the μ‐𝒢𝒢ĝ-closed sets and discuss some 
characterization of μ-𝒢𝒢-regular and μ-𝒢𝒢-normal spaces. 
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1. INTRODUCTION 
In 1947, Choquet ([5]) introduced the concept of grill on a topological space. In ([5], [23], [32]) the concept of grill is 
a powerful tool in nets and filters, deeply study of a topological notion such as proximity spaces, closure spaces, theory 
of compactifications and extension problems of different kinds. In 2007, Roy and Mukherjee ([22]) was defined and 
studied a typical topology induced by grill. In 1970, Levine ([13]) introduced generalized closed sets in topological 
space. In 2012, Shyamapada Modak and Sukalyan Mistry ([30]) introduced the generalized closed sets in grill 
generalized topological space. In 2003, M. K. R. S. Veerakumar ([33]) introduced ĝ-closed sets in topological spaces. 
In 1998, Arockiarani ([1], [2]) studies on generalizations of generalized closed sets and maps in topology and explore 
the concept of semi closed sets to define a new class of generalized semi closed sets via Grill. In this paper we define 
μ-𝒢𝒢ĝ-closed in grill topological spaces and discuss the characterization of μ-𝒢𝒢-regular and μ-𝒢𝒢-normal spaces. 
Throughout this paper, X or (X, μ, 𝒢𝒢) represent a grill topological space with no separation axioms assumed unless 
explicitly stated. For a subset A of a space X, the closure of A and the interior of A are denoted by Cμ(A) and iμ(A), 
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respectively. 
 

2. PRELIMINARIES  
Definition 2.1[5, 22]. A nonempty collection 𝒢𝒢 of nonempty subsets of a topological space (X, τ) is called grill if (i) A ∈ 
𝒢𝒢 and A ⊆ B ⊆ X ⟹ B ∈ X, and (ii) A, B ⊆ X and A U B ∈ 𝒢𝒢 ⟹ A ∈ 𝒢𝒢 or B ∈ 𝒢𝒢. If 𝒢𝒢 is grill on X, then (X, τ, 𝒢𝒢) is called a grill 
topological space. 
Definition 2.2 [22]. Let (X, τ, 𝒢𝒢) be a grill topological space. An operator Φ: exp(X) → exp(X) is called a local function 
with respect to μ and 𝒢𝒢 is defined as follows: for A ⊆ X, Φ(A) (𝒢𝒢, τ) = Φ(A) = {𝑥𝑥 ∈ X: 𝑈𝑈 ∩ A ∈ 𝒢𝒢 for every 𝑈𝑈 ∈ τ (𝑥𝑥)} 
where τ(𝑥𝑥) = {𝑈𝑈 ∈ τ: 𝑥𝑥 ∈ 𝑈𝑈}. It is well known from [22], A ∩ Φ(A) = 𝜓𝜓(A) is a Kuratowsi closure operator. 
Definition 2.3[22]. Corresponding to a grill on a topological space (X, τ), there exists a unique topology τ𝒢𝒢 
on X given by τ𝒢𝒢 = {𝑈𝑈 ⊆ X:  𝜓𝜓(X – A) = (X – A)}, where for any A ⊆ X, 𝜓𝜓(A) = A 𝖴𝖴 Φ(A) = τ𝒢𝒢-𝑐𝑐𝑐𝑐(A). 
Definition 2.4. [9] Let (X, τ, 𝒢𝒢) be a grill topological space. A subset A of a grill topological space (X, τ, 𝒢𝒢) is τ𝒢𝒢-closed 
(resp. τ𝒢𝒢-dense in itself τ𝒢𝒢-perfect), if (A) = A or equivalently if Φ(A) ⊆ A (resp. A ⊆ Φ(A), A = Φ(A)) 
Definition 2.5. [9] Let (X, τ, 𝒢𝒢) be a grill topological space. A subset A of a grill topological space (X, τ, 𝒢𝒢) is  
𝑔𝑔- closed with respect to the grill 𝒢𝒢 (briefly, 𝒢𝒢-𝑔𝑔-closed) if Φ(A) ⊆ 𝑈𝑈 whenever A ⊆ 𝑈𝑈 and 𝑈𝑈 is open in X. 
A subset A of X is said to be 𝒢𝒢-𝑔𝑔-open if X − A is 𝒢𝒢-𝑔𝑔-closed. 
Definition 2.6. [13] Let (X, τ) be a topological space. A subset A of a space (X, τ) is said to be 𝑔𝑔-closed set if (A) ⊆ 
𝑈𝑈 whenever A ⊆ 𝑈𝑈 and 𝑈𝑈 is open. 
 
Remark 2.1[9]. Every 𝑔𝑔-closed set is a 𝒢𝒢-𝑔𝑔-closed but not vice versa. 
 
Remark 2.2[31]. Every closed set is 𝑔𝑔 - closed. 
 
Remark 2.3[33]. Every closed set is ĝ - closed. 
 
Very interesting notion in literature has been introduced by Csaszar [6] on 1997. Using this notion topology has been 
reconstructed. The concept is: A map τ: exp(X) → exp(X) is possessing the property monotony (i.e., such that A ⊆ B 
implies τ (A) ⊆ τ (B)). We denote by Γ(X) the collections of all mapping having this property. 
One of the consequences of the above notion is generalized topological space (GTS) [7,8], its formal definition is: 
Definition 2.7. [7, 8, 19, 20] Let X be a non-empty set, and μ ⊆ exp(X), 𝜇𝜇 is called a generalized topological space (GTS) 
on X if ϕ ∈ μ and the union of elements of μ belongs to μ. The member of μ is called μ -open set and the complement 
of μ -open set is called μ -closed set. Again, cμ is notation of 𝜇𝜇-closure. 
Definition 2.8[21]. Let (X, 𝜇𝜇) be a generalized topological space. Then the generalized kernel of A ⊆ X is denoted by 𝑔𝑔-
ker(A) and defined as 𝑔𝑔-ker(A) = ⋂{𝒢𝒢 ∈ μ: A ⊆ 𝒢𝒢}. 
 
Lemma 2.1 [21]. Let (X, 𝜇𝜇) be a generalized topological space and A ⊆ X. Then 𝑔𝑔-ker(A) = {𝑥𝑥 ∈ X: 𝑐𝑐𝜇𝜇 ({𝑥𝑥}) 
∩ A ≠ ϕ}. If 𝒢𝒢 is a grill on X, then (X, 𝜇𝜇, 𝒢𝒢) is called a grill generalized topological space. 
 

3. GRILL GENERALIZED TOPOLOGICAL SPACES (GGTS) 
Definition 3.1. [7] Let (X, 𝜇𝜇, 𝒢𝒢) be a grill generalized topological space. A mapping () Φ𝜇𝜇: exp(X) → exp(X) is defined as 
follows: (A)Φ𝜇𝜇 = (A)Φ𝜇𝜇 (𝒢𝒢, 𝜇𝜇) = {𝑥𝑥 ∈ X: A ∩ 𝑈𝑈 ∈ 𝒢𝒢}, where 𝑈𝑈 ∈ 𝜓𝜓(𝑥𝑥). 
The mapping is called the local function associated with the grill 𝒢𝒢 and generalized topology μ. 
Theorem 3.1. [7]. Let (X, 𝜇𝜇, 𝒢𝒢) be a Grill Generalized Topological Spaces. Then 
(i) (ϕ) Φ𝜇𝜇 = ϕ. 
(ii) for A, 𝐵𝐵 ⊆ X and A ⊆ 𝐵𝐵, (A)Φ𝜇𝜇 ⊆ (𝐵𝐵)Φ𝜇𝜇. 
(iii) ( A)Φ𝜇𝜇 ⊆ 𝑐𝑐𝜇𝜇 (A). 
(iv) ((A)Φ𝜇𝜇)Φ𝜇𝜇) ⊆ 𝑐𝑐𝜇𝜇 (A). 
(v) (A)Φ𝜇𝜇 is a 𝜇𝜇-closed set. 
(vi) ((A)Φ𝜇𝜇)Φ𝜇𝜇) ⊆ (A)Φ𝜇𝜇. 
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(vii) for 𝒢𝒢 ⊆ 𝒢𝒢1 implies (A)Φ𝜇𝜇 (𝒢𝒢1) ⊇ (A)Φ𝜇𝜇 (𝒢𝒢). 
(viii) for 𝑈𝑈 ∈ 𝜇𝜇, 𝑈𝑈 ∩ (𝑈𝑈 ∩ A) Φ𝜇𝜇 ⊆ 𝑈𝑈 ∩ (A)Φ𝜇𝜇. 
(ix) for 𝐺𝐺 ∉ 𝒢𝒢, (A – G) Φ𝜇𝜇 = (A)Φ𝜇𝜇 = (A 𝖴𝖴 𝐺𝐺) Φ𝜇𝜇. 
       
Proof: Obvious 
 
Definition 3.2. Let (X, 𝜇𝜇) be a GTS with a grill 𝒢𝒢 on X. The set operator 𝑐𝑐Φ𝜇𝜇 is called a generalized ϕμ-closure and is 
defined as 𝑐𝑐Φ𝜇𝜇 (A) = A ⋃ AΦ𝜇𝜇, for A ⊆ X. We will denote by 𝜇𝜇Φ (𝜇𝜇; 𝒢𝒢) the generalized structure, generated by 𝑐𝑐Φ𝜇𝜇, that is, 𝜇𝜇Φ 
(𝜇𝜇; 𝒢𝒢) = {𝑈𝑈 ⊆ X: 𝑐𝑐Φ𝜇𝜇 (X − 𝑈𝑈) = (X − 𝑈𝑈)}. 𝜇𝜇Φ (𝜇𝜇; 𝒢𝒢) is called Φ𝜇𝜇-generalized structure with respect to 𝜇𝜇 and 𝒢𝒢 (in short ϕ𝜇𝜇-
generalized structure) which is finer than μ. The element of μΦ (𝜇𝜇; 𝒢𝒢) are called μΦ-open and the complement of μΦ-
open is called μΦ-closed. 
 
Theorem 3.2. [7]. The set operator 𝑐𝑐Φ𝜇𝜇 satisfy following conditions: 
 (i)  A ⊆ 𝑐𝑐Φ𝜇𝜇 (A), for A ⊆ X. 

(ii) 𝑐𝑐Φ𝜇𝜇 (ϕ) = ϕ and 𝑐𝑐Φ𝜇𝜇 (X) = X. 
(iii) 𝑐𝑐Φ𝜇𝜇 (A) ⊆ 𝑐𝑐Φ𝜇𝜇 (𝐵𝐵) if A ⊆ 𝐵𝐵 ⊆ X. 
(iv) 𝑐𝑐Φ𝜇𝜇 (A) 𝖴𝖴 𝑐𝑐Φ𝜇𝜇 (𝐵𝐵) ⊆ 𝑐𝑐Φ𝜇𝜇 (A 𝖴𝖴 B). 
(v) 𝑐𝑐Φ𝜇𝜇 ∈ Γ(X). 
 
Proof: Proof is obvious from Theorem 3.1. 
 
Definition 3.3. Let (X, 𝜇𝜇) be a Generalized Topological Space. A subset A of X is said to be 𝑔𝑔𝜇𝜇-closed set [14] if 𝑐𝑐𝜇𝜇 (A) 
⊆ 𝑀𝑀 whenever A ⊆ 𝑀𝑀 and 𝑀𝑀 ∈ μ. 
 
Definition 3.4. A subset A of a GGTS (X, 𝜇𝜇, 𝒢𝒢) is μ Φ -dense in itself (resp. 𝜇𝜇Φ -perfect) if A ⊆ (A)Φ𝜇𝜇 (resp. (A) Φ𝜇𝜇 = A). 
 
Definition 3.5. [30] A subset A of a GGTS (X, 𝜇𝜇, 𝒢𝒢) is called 𝜇𝜇-𝒢𝒢-generalized closed (briefly, 𝜇𝜇-𝒢𝒢𝑔𝑔-closed) if (A)Φ𝜇𝜇 ⊆ 𝑈𝑈 
whenever 𝑈𝑈 is 𝜇𝜇-open and A ⊆ U. A subset A of a GGTS (X, 𝜇𝜇, 𝒢𝒢) is called 𝜇𝜇-𝒢𝒢-generalized open (briefly, 𝜇𝜇- 𝒢𝒢𝑔𝑔-open) if 
X‐ A is 𝜇𝜇- 𝒢𝒢𝑔𝑔-closed. 
 
Definition 3.6 [13]. Let (X, 𝜇𝜇, 𝒢𝒢) be a grill topological space on X. Then for an y A, B ⊆ X the following statements 
hold: 
(i) (A ∪ B) Φ𝜇𝜇 = AΦ𝜇𝜇 𝖴𝖴 BΦ𝜇𝜇 
(ii) ((A) Φ𝜇𝜇) Φ𝜇𝜇) ⊆ AΦ𝜇𝜇   = cΦ𝜇𝜇(A) ⊆ cμ(A), and hence AΦμ   is closed in (X, μ), for all A ⊆ X. 
(iii) A ⊆ B ⇒AΦμ ⊆ BΦμ. 
 
Definition 3.7[10] A subset A of a topological space X is said to be μ-θ-closed if A = μ-θCμ(A) where μ-θCμ(A) is 
defined as μ-θCμ(A) = {𝑥𝑥 ∈ X – cμ(U) ∩A ≠ Ø} for every U ∈ 𝜇𝜇 and 𝑥𝑥 ∈ U. 
 
Definition 3.8 [10] A subset A of X is said to be μ-θ-open if X ‐ A is μ-θ-closed. 
 
Definition 3.9. [10] A subset A of a topological space X is said to be μ-δ-closed if A = μ-δCμ(A) where μ-δCμ(A) 
is defined as μ-δCμ(A) = {𝑥𝑥 ∈ X / iμCμ(U) ∩A ≠ Ø} for every U ∈ 𝜇𝜇 and 𝑥𝑥 ∈ U. 
 
Definition 3.10[10]A subset A of X is said to be μ-δ-open if X ‐ A is μ-δ-closed. 
 
Definition 3.11. [10]A subset A of a topological space X is said to be μ-θg-closed if μ-θCμ(A) ⊆U whenever A ⊆ U and 
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U is μ-open. 
 
Definition 3.12. [10]A subset A of a topological space X is said to be μ-gθ-closed if Cμ(A) ⊆U whenever A ⊆ U and U 
is μ-θ-open. 
 
Definition 3.13. [10]A subset A of a topological space X is said to be μ-gθ-open(μ-θg-open) if X – A is μ-gθ- closed(μ-
θg-closed) 
 

4. GENERALIZED Μ-SEMICLOSED SETS WITH RESPECT TO A GRILL 
Definition 4.1. A subset A of a topological space X is said to be μ-gs-closed if cμ(A) ⊆ U whenever         A ⊆ U and 
U is μ-semi open. 
Definition 4.2. Let (X, μ, 𝒢𝒢) be a grill topological space. Then a subset A of X is said to be μ-𝒢𝒢ĝ-closed if     A Φ𝜇𝜇 ⊆ U 
whenever A ⊆ U and U is μ-semi open in X. 
Definition 4.3. A subset A of X is said to be μ-𝒢𝒢ĝ-open if X‐ A is μ-𝒢𝒢ĝ-closed. 

Proposition 4.1. For a grill topological space (X, μ, 𝒢𝒢) on X 
(i)   Every μ-closed set in X is μ-𝒢𝒢ĝ-closed. 
(ii)  For any subset A in X, AΦμ is μ-Gĝ-closed. 
(iii)  Every Φμ-closed set is μ-𝒢𝒢ĝ-closed. 
(iv)  Any non-member of 𝒢𝒢 is μ-𝒢𝒢ĝ-closed. 
(v)   Every μ-𝒢𝒢ĝ-closed set is μ-𝒢𝒢g-closed. 
(vi)  Every μ-gs-closed set is μ-𝒢𝒢ĝ-closed. 
(vii) Every μ-θ-closed set in X is μ-𝒢𝒢ĝ-closed. 
(viii) Every μ-δ-closed set in X is μ-𝒢𝒢ĝ-closed. 
 
Proof.  
(i) Let A be a μ-closed set then Cμ(A) = A. Let U be a μ-semi open set in X such that A ⊆ U. Then, A Φ𝜇𝜇 ⊆ Cμ(A)) 
= A ⊆ U ⇒ A Φ𝜇𝜇 ⊆U ⇒A is μ-𝒢𝒢ĝ-closed. 
(ii) Let A be a subset in X. Then A Φ𝜇𝜇 (A Φ𝜇𝜇) ⊆ A Φ𝜇𝜇 ⊆ U ⇒A Φ𝜇𝜇 is μ-𝒢𝒢ĝ-closed.  
(iii) Let A be a Φ μ- closed set. Then C Φ𝜇𝜇 (A)) = A ⇒ A ∪ A Φ𝜇𝜇 = A ⇒ A Φ𝜇𝜇 ⊆ A. Therefore, A Φ𝜇𝜇 ⊆ U whenever A ⊆ U and 
U is μ-semi open in X. This implies A is μ-𝒢𝒢ĝ-closed. 
(iv) Let A ∉ 𝒢𝒢 then A Φ𝜇𝜇 = Ø ⇒A is μ-𝒢𝒢ĝ-closed. 
(v) Let A be a μ-𝒢𝒢ĝ-closed and A ⊆ U and U is μ-open in X, we get A Φ𝜇𝜇 ⊆ U ⇒ A is 𝜇𝜇- 𝒢𝒢𝑔𝑔-closed. Therefore, every 
μ-𝒢𝒢ĝ-closed set is 𝜇𝜇- 𝒢𝒢𝑔𝑔 -closed. 
(vi) Let A be a μ-gs-closed set and U be a μ-semi open set in X, such that A ⊆ U, then cμ(A) ⊆ U, consider A Φ𝜇𝜇 ⊆ 
cμ(A) ⊆ U ⇒ A is μ-𝒢𝒢ĝ-closed. Thus, every μ-gs-closed set is μ-𝒢𝒢ĝ-closed. 

(vii) Let A be μ-θ closed. Then A = θCμ(A). Let U be a μ-semi open set in X such that A ⊆ U, then      A Φ𝜇𝜇 ⊆ Cμ(A) 
⊆ θCμ(A)= A ⊆ U. Thus, A is μ- 𝒢𝒢ĝ-closed. 

(viii) Let A be μ-δ closed. Then A = μ-δCμ(A). Let U be a μ -semi open set in X such that A ⊆ U, then      A Φ𝜇𝜇 ⊆ Cμ(A) 
⊆ δCμ(A) = A ⊆U. Thus, A is μ-𝒢𝒢ĝ-closed. 
 
Remark 4.1. The sets μ-gθ-closed and μ-𝒢𝒢ĝ-closed are independent from each other. Similarly, μ-θg- closed and 
μ-𝒢𝒢ĝ-closed are independent from each other. 
 
Remark 4.2. Every μ-gs-closed set is μ-𝒢𝒢ĝ-closed but the converse is not true as by the following example: 
 
Example 4.1. Let X = {a, b, c, d}, μ = {X, {a, b}, {b, d}, {a, b, d}}, 𝒢𝒢 = {X, {c}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {a, b, c}, {a, 
b, d}, {a, c, d}, {b, c, d}}. Then (X, μ) is a topological space and 𝒢𝒢 is a grill on X.         Let A = {a} then AΦ𝜇𝜇 = Ø. Therefore, A is 
μ-𝒢𝒢ĝ-closed. But A ⊆ {a, b} and cμ( A ) = {a, c} does not a subset of  
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{a, b}. Therefore, A is not μ-gs-closed. 
Definition 4.4. Let X be a space and (Ø ≠) A ⊆ X. Then [A] = {B ⊆ X: A ∩B ≠ Ø} is a grill                          on X, called the principal 
grill generated by A. 
Proposition 4.2. In the case of [X] principal grill generated by X, it is known that τ = τ[X] so that any [X]- μ-gs-
closed set becomes simply a μ-gs-closed set and vice-versa. 
Theorem 4.1. Let (X, μ, 𝒢𝒢) be a grill topological space. If a subset A of X is μ- 𝒢𝒢 ĝ-closed then cΦ𝜇𝜇 (A) ⊆ U whenever 
A ⊆ U and U is μ-semi open. 
Proof. Let A be a μ- 𝒢𝒢ĝ-closed set and U be a μ-semi open in X such that A ⊆ U then AΦ𝜇𝜇 ⊆ U ⇒                A ∪ AΦ𝜇𝜇 

⊆ U ⇒ cΦ𝜇𝜇 (A) ⊆ U. Thus, cΦ𝜇𝜇 (A) ⊆ U whenever A ⊆ U and U is μ-semi open. 

Theorem 4.2. Let (X, μ, 𝒢𝒢) be a grill topological space. If a subset A of X is μ- 𝒢𝒢ĝ-closed then for all                             𝑥𝑥 ∈ c Φ𝜇𝜇 (A), 
cμ({𝑥𝑥}) ∩ A ≠ Ø. 
Proof. Let 𝑥𝑥 ∈ cΦ(A). If cμ ({𝑥𝑥}) ∩ A = Ø ⇒ A ⊆ X – cμ({𝑥𝑥}) then by Theorem 4.1, c Φ𝜇𝜇 (A) ⊆ X – cμ({x}) which is a 
contradiction to our assumption that 𝑥𝑥 ∈ cΦ𝜇𝜇 (A), Therefore, cμ{𝑥𝑥}) ∩ A ≠ Ø. 
Theorem 4.3. Let (X, μ, 𝒢𝒢) be a grill topological space. If a subset A of X is μ- 𝒢𝒢ĝ-closed then cΦ(A) −A contains no non-
empty closed set of (X, μ, 𝒢𝒢). Also, AΦ𝜇𝜇 − A contains no nonempty closed set of (X, μ, 𝒢𝒢). 
Proof. Let F be a closed set contained in cΦ𝜇𝜇 (A) − A and let 𝑥𝑥 ∈ F, since F ∩ A = Ø. we get cμ({𝑥𝑥}) ∩ A = Ø Which 
is a contradiction to the fact that cμ({𝑥𝑥}) ∩ A ≠ Ø. c Φ𝜇𝜇 (A) − A contains no non-empty                     closed set of (X, μ, 𝒢𝒢). Since AΦ𝜇𝜇 

− A = cΦ(A) − A, AΦ𝜇𝜇 − A contains no non-empty closed set of (X, μ, 𝒢𝒢). 
 
Corollary 4.1. Let (X, μ, 𝒢𝒢) be a T1-space in grill on X. Then every μ- 𝒢𝒢ĝ-closed set is Φμ-closed. 
Proof. Let A be a μ-𝒢𝒢ĝ-closed set and 𝑥𝑥 ∈ AΦ𝜇𝜇 then x ∈ cΦ𝜇𝜇 (A). By Theorem 4.2, cμ({𝑥𝑥}) ∩ A ≠ Ø, 
{𝑥𝑥}∩ A ≠ Ø, x ∈A. Therefore, A Φ𝜇𝜇 ⊆ A. Thus, A is Φμ-closed. 
Corollary 4 .2. Let (X, μ, 𝒢𝒢) be a T1-space in grill on X. Then A (⊆ X) is μ-𝒢𝒢ĝ-closed set iff A is Φμ- closed. 
Proposition 4.3. Let (X, μ, 𝒢𝒢) be a grill topological space and A be a μ-𝒢𝒢ĝ-closed. Then the                       following statements 
are equivalent: 
(i) A is Φμ-closed 
(ii) cΦ(A)−A is closed in (X, μ, 𝒢𝒢).  
(iii) A Φ𝜇𝜇 − A is closed in (X, μ, 𝒢𝒢). 
Proof.: (i) ⇒ (ii) Let A be Φμ-closed. Then cΦ𝜇𝜇 (A) − A = Ø. so cΦ𝜇𝜇 (A) − A is a closed set. 
(ii) ⇒ (iii) Since cΦ𝜇𝜇 (A) −A = AΦ𝜇𝜇 − A. 
(iii)⇒ (i) Let A Φ𝜇𝜇 − A be closed in (X, μ, 𝒢𝒢). Since A is μ-𝒢𝒢ĝ-closed by Theorem 4.3, A Φ𝜇𝜇 −A=Ø. So, A is Φμ-closed. 
Lemma 4.1. Let (X, μ, 𝒢𝒢) be a grill topological space. If A (⊆ X) is Φμ-dense in itself, then AΦ𝜇𝜇 = cμ(AΦ𝜇𝜇) = cΦ𝜇𝜇(A) 
= cμ(A). 
Proof. A is Φμ-dense in itself ⇒A ⊆ AΦ𝜇𝜇  ⇒ cμ(A) ⊆ cμ(AΦ𝜇𝜇) = AΦ𝜇𝜇 ⊆ cμ(A) ⇒ cμ(A) = AΦ𝜇𝜇  =   cμ(AΦ𝜇𝜇) now by 
definition c Φ𝜇𝜇(A) = A ∪ AΦ𝜇𝜇 = A ∪ cμ(A) =c(A). Therefore, AΦ𝜇𝜇 = cμ (AΦ𝜇𝜇) = c Φ𝜇𝜇 (A) = cμ(A). 
Theorem 4.4. Let (X, μ, 𝒢𝒢) be a grill topological space. If A (⊆ X) is Φμ-dense in itself and μ-𝒢𝒢ĝ-closed, then A is μ-
gs-closed. 
Proof. Follows from Lemma 4.1. 
Corollary 4.3. For a grill 𝒢𝒢 on a space (X, μ). Let A (⊆X) be Φμ-dense in itself. Then A is μ-𝒢𝒢ĝ-closed if and only 
if it is A is μ-gs closed. 
Proof. Follows from Proposition 4.1(vi) and Theorem 4.4. 
Theorem 4.5. For any grill 𝒢𝒢 on a space (X, μ) the following statements are equivalent: 
 (i)  Every subset of X is μ-𝒢𝒢ĝ-closed; 
 (ii) Every semi open subset of (X, μ) is Φμ-closed. 
Proof. (i) ⇒ (ii) Let A be μ -semi open in (X, μ) then by (i), A is μ-𝒢𝒢ĝ-closed so that AΦ𝜇𝜇   ⊆ A ⇒ A is Φμ-closed. 
(ii) ⇒ (i) Let A ⊆X and U be μ -semi open in (X, μ) such that A ⊆U. Since U is μ -semi open by (ii), UΦμ  ⊆  U. Now A 
⊆ U ⇒ AΦ𝜇𝜇 ⊆ U Φ𝜇𝜇 ⊆ U ⇒ A is μ-𝒢𝒢ĝ-closed. 
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Theorem 4.6. For any subset A of a space (X, μ) and a grill G on X. If A is μ-𝒢𝒢ĝ-closed then A ∪ (X – A Φ𝜇𝜇) is μ-𝒢𝒢ĝ-
closed. 
Proof. Let A ∪ (X – AΦ𝜇𝜇) ⊆ U, where U is μ-semi open in X. Then X – U ⊆ X – (A ∪ (X – AΦ𝜇𝜇)) = AΦ𝜇𝜇 – A. Since A is 
μ-𝒢𝒢ĝ-closed, by Theorem 3.2, we have X – U = Ø, i.e., X = U. Since X is the only   semiopen set containing A ∪ (X – AΦ𝜇𝜇), 
A ∪ (X – A Φ𝜇𝜇) is μ-𝒢𝒢ĝ-closed. 
Proposition 4.4. For any subset A of a space (X, μ, 𝒢𝒢) be a grill 𝒢𝒢 on X, the following statements are  equivalent: 
 (i) A ∪ (X – AΦ𝜇𝜇) is μ-𝒢𝒢ĝ-closed. 
 (ii) AΦ𝜇𝜇 – A is μ-𝒢𝒢ĝ-open. 
Proof. Follows from the fact that X – (AΦ𝜇𝜇 – A) = A ∪ (X – A Φ𝜇𝜇). 
Theorem 4.7. Let (X, μ, 𝒢𝒢) be a grill topological space and A, B be subsets of X such that A ⊆ B ⊆ cΦ(A). If A is μ-
𝒢𝒢ĝ-closed, then B is μ-𝒢𝒢ĝ-closed. 
Proof. Let B ⊆ U, where U is μ -semi open in X. Since A is μ-𝒢𝒢ĝ-closed, AΦ𝜇𝜇 ⊆ U ⇒ cΦ𝜇𝜇 (A) ⊆ U. Now, A ⊆ B ⊆ cΦ𝜇𝜇 
(A) ⇒ c Φ𝜇𝜇 (A) ⊆ c Φ𝜇𝜇 (B) ⊆ c Φ𝜇𝜇 (A). Thus, c Φ𝜇𝜇 (B) ⊆ U and hence B is μ-𝒢𝒢ĝ- closed. 
Corollary 4.4. Φμ-closure of every μ- 𝒢𝒢ĝ-closed set is μ- 𝒢𝒢ĝ-closed. 
Theorem 4.8. Let (X, μ, 𝒢𝒢) be a grill topological space and A, B be subsets of X such that                  A ⊆ B ⊆ AΦ𝜇𝜇. If A is μ-
𝒢𝒢ĝ-closed. Then A and B are μ-gs-closed. 
Proof. A ⊆ B ⊆ AΦ𝜇𝜇 ⇒ A ⊆ B ⊆ c Φ𝜇𝜇 (A) and hence by Theorem 4.7, B is μ-𝒢𝒢ĝ-closed. Again, A ⊆ B ⊆ AΦ𝜇𝜇 ⇒ AΦ𝜇𝜇 ⊆ BΦ𝜇𝜇 

⊆ ((A)Φ𝜇𝜇) Φ𝜇𝜇 ⊆ AΦ𝜇𝜇 ⇒ AΦ𝜇𝜇 = BΦ𝜇𝜇. Thus, A and B are Φμ-dense in itself and hence by Theorem 4.4, A and B are 
μ-gs-closed. 
Theorem 4.9. Let (X, μ, 𝒢𝒢) be a grill topological space. Then a subset A of X is μ-𝒢𝒢ĝ-open if and only if F ⊆ iΦ𝜇𝜇 (A) 
whenever F ⊆ A and F is μ-closed. 
Proof. Let A be μ-𝒢𝒢ĝ-open and F ⊆ A, where F is μ-closed in (X, μ, 𝒢𝒢). Then X − A ⊆ X − F ⇒ Φ(X − A) ⊆ X − F ⇒ 
cΦ𝜇𝜇 (X − A) ⊆ X − F ⇒ F ⊆iΦ𝜇𝜇 A. Conversely, X − A ⊆ U where U is open in (X, τ) ⇒ X − U ⊆ iΦ𝜇𝜇 (A) ⇒ cΦ𝜇𝜇 (X − A) ⊆ 
U. Thus (X − A) is μ-𝒢𝒢ĝ-closed and hence A is μ-𝒢𝒢ĝ-open. 
 

5. SOME CHARACTERIZATIONS OF Μ-REGULAR AND Μ-NORMAL SPACES 
Theorem 5.1. Let X be a μ- normal space and 𝒢𝒢 be a grill on X then for each pair of disjoint closed sets F and K, 
there exist disjoint μ-𝒢𝒢ĝ-open sets U and V such that F ⊆ U and K ⊆ V. 
Proof. It is obvious, since every open set is μ-𝒢𝒢ĝ-open. 
Theorem 5.2. Let X be a μ- normal space and 𝒢𝒢 be a grill on X then for each closed set F and any open set V 
containing F, there exist a μ-𝒢𝒢ĝ-open set U such that F ⊆ U ⊆ cΦ𝜇𝜇 (U) ⊆ V. 
 Proof. Let F be a closed set and V be an open set in (X, μ) such that F ⊆V. Then F and X − V are   disjoint closed 
sets. By Theorem 5.1, there exist disjoint μ-𝒢𝒢ĝ-open sets U and W such that F ⊆ U and X − V ⊆ W. Since W is μ-𝒢𝒢ĝ-
open and X−V ⊆ W where X − V is closed, X−V ⊆iΦ(W). So, X − iΦ𝜇𝜇 (W) ⊆ V. Again, U ∩ W = Ø ⇒ U ∩ iΦ𝜇𝜇 (W) = 
Ø. Hence cΦ𝜇𝜇 (U) ⊆ X − iΦ𝜇𝜇 (W) ⊆ V. Thus F ⊆ U ⊆ cΦ𝜇𝜇 (V) ⊆ V, where U is a μ-𝒢𝒢ĝ-open set. 
The following theorems gives characterizations of a μ- normal space in terms of μ-𝒢𝒢ĝ-open sets. Which are the 
consequence of Theorems 5.1, 5.2 and proposition 4.2 if one takes 𝒢𝒢 = [X] 
Theorem 5.3. Let X be a normal space and 𝒢𝒢 be a grill on X then for each pair of disjoint closed sets F and 
K, there exist disjoint μ-𝒢𝒢ĝ-open sets U and V such that F ⊆ U and K ⊆ V. 
Theorem 5.4. Let X be a normal space and 𝒢𝒢 be a grill on X then for each closed set F and any open set V 
containing F, there exist a μ-𝒢𝒢ĝ-open set U such that F ⊆ U ⊆ C Φ𝜇𝜇 (U) ⊆ V. 
Theorem 5.5. Let X is regular and 𝒢𝒢 be a grill on a space (X, μ). Then for each closed set F and each 𝑥𝑥 ∈ X−F, 
there exist disjoint μ-𝒢𝒢ĝ-open sets U and V such that 𝑥𝑥 ∈ U and F ⊆ V. 
Proof. The proof is obvious. 
Theorem 5.6. Let X be a regular space and 𝒢𝒢 be a grill on a space (X, μ). Then for each open set V of (X, μ) and 
each point 𝑥𝑥 ∈ V there exist a μ-𝒢𝒢ĝ-open set U such that x ∈ U ⊆ c Φ𝜇𝜇 (U) ⊆ V.  
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Proof. Let V be any semi-open set in (X, μ) containing a point x of X. Then by Theorem 5.5, there exist disjoint μ-
𝒢𝒢ĝ-open sets U and W such that 𝑥𝑥 ∈ U and X − V ⊆ W. Now, U ∩ W = Ø implies c  Φ𝜇𝜇 (U) ⊆ X−W ⊆ V. Thus 𝑥𝑥 ∈ U 
⊆ cΦ𝜇𝜇 (U) ⊆ V. 
The following theorems gives characterizations of a regular space in terms of μ-𝒢𝒢ĝ-open sets which are the consequence of 
Theorems 5.5,5.6 and Proposition 4.2 if one takes 𝒢𝒢 = [X]. 
Theorem 5.7. Let X be a regular and 𝒢𝒢 be a grill on a space (X, μ). Then for each closed set F and each 𝑥𝑥 ∈ X− F, 
there exist disjoint μ-𝒢𝒢ĝ-open sets U and V such that 𝑥𝑥 ∈ U and F ⊆ V. 
Theorem 5.8. Let X be a regular space and 𝒢𝒢 be a grill on a space (X, μ). Then for each open set V of (X, μ) and 
each point 𝑥𝑥 ∈ V there exist a μ-𝒢𝒢ĝ-open set U such that 𝑥𝑥 ∈ U ⊆ cΦ(U) ⊆ V. 
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