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1. INTRODUCTION

In 1947, Choquet ([5]) introduced the concept of grill on a topological space. In ([5], [23], [32]) the concept ofgrill is
a powerful tool in nets and filters, deeply study of a topological notion such as proximity spaces, closurespaces, theory
of compactifications and extension problems of different kinds. In 2007, Roy and Mukherjee ([22])was defined and
studied a typical topology induced by grill. In 1970, Levine ([13]) introduced generalized closedsets in topological
space. In 2012, Shyamapada Modak and Sukalyan Mistry ([30]) introduced the generalized closed sets in grill
generalized topological space. In 2003, M. K. R. S. Veerakumar ([33]) introduced g-closed sets in topological spaces.
In 1998, Arockiarani ([1], [2]) studies on generalizations of generalized closed sets and maps in topology and explore
the concept of semi closed sets to define a new class of generalized semi closed sets via Grill. In this paper we define
u-Gg-closed in grill topological spaces and discuss the characterization ofu-G-regular and p-G-normal spaces.

Throughout this paper, X or (X, y, G) represent a grill topological space with no separation axioms assumed unless
explicitly stated. For a subset A of a space X, the closure of A and the interior of A are denoted by C,(A) and i,(A),

How to cite this article (APA): Anbarasan, R., and Anitha, M. (2024). Gg-Closed Sets in Grill Generalized Topological Spaces. 2453
ShodhKosh: Journal of Visual and Performing Arts, 5(1), 2453-2460. doi: 10.29121/shodhkosh.v5.i1.2024.2643


https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh
https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh
https://doi.org/10.29121/granthaalayah.v9.i6.2021.3923
https://dx.doi.org/10.29121/granthaalayah.v10.i3.2022.4503
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.2643
mailto:anbu.arasan1988@gmail.com
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.2643
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.2643
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.29121/shodhkosh.v5.i1.2024.2643&domain=pdf&date_stamp=2024-06-30
mailto:anbu.arasan1988@gmail.com
mailto:drmanitha10@gmail.com

Gg-Closed Sets in Grill Generalized Topological Spaces

respectively.

2. PRELIMINARIES
Definition 2.1[5, 22]. Anonempty collection G of nonempty subsets of a topological space (X, t) is called grill if (i) A€
GandACBCX=BeX and (ii))A,BSXandAUBeG= A€ GorBeg.IfGisgrill onX, then (X, t, §) is called a grill
topological space.
Definition 2.2 [22]. Let (X, T, G) be a grill topological space. An operator ®: exp(X) — exp(X) is called a local function
with respect to p and G is defined as follows: for A€ X, ®(A) (G, 1) =P(A)={x €eX: UN A €g for every U € 1 (x)}
where t(x) = {U € t: x € U}. Itis well known from [22], AN ®(A) = y(A) is a Kuratowsi closure operator.
Definition 2.3[22]. Corresponding to a grill on a topological space (X, t), there exists a unique topology g
onXgivenby t; ={U € X: (X - A) = (X-A)}, where for any A € X,1p(A) = AU @(A) = t4-cl(A).
Definition 2.4. [9] Let (X, T, G) be a grill topological space. A subset A of a grill topological space (X, T, G) is Tg4-closed
(resp. tg-dense in itself tg-perfect), if (A) = A or equivalently if ®(A) S A (resp. A € ®(A), A = ®(A))
Definition 2.5. [9] Let (X, T, G) be a grill topological space. A subset A of a grill topological space (X, T, G) is
g-closed with respect to the grill G (briefly, G-g-closed) if ®(A) S U whenever A € U and U is open in X.
Asubset A of X is said to be G-g-openif X-Ais G-g-closed.
Definition 2.6. [13] Let (X, t) be a topological space. A subset A of a space (X, t) is said to be g-closed setif (A) &
U whenever A € U and U is open.

Remark 2.1[9]. Every g-closed set is a G-g-closed but not vice versa.
Remark 2.2[31]. Every closed set is g - closed.
Remark 2.3[33]. Every closed set is g - closed.

Very interesting notion in literature has been introduced by Csaszar [6] on 1997. Using this notion topology has been
reconstructed. The concept is: A map t: exp(X) = exp(X) is possessing the property monotony (i.e., such that A € B
implies T (A) € T (B)). We denote by I'(X) the collections of all mapping having this property.

One of the consequences of the above notion is generalized topological space (GTS) [7,8], its formal definition is:
Definition 2.7. [7, 8, 19, 20] Let X be a non-empty set, and p € exp(X), u is called a generalized topological space (GTS)
on X if ¢ € p and the union of elements of p belongs to p. The member of p is called p -open set and the complement
of u -open set is called p -closed set. Again, cu is notation of u-closure.

Definition 2.8[21]. Let (X, 1) be a generalized topological space. Then the generalized kernel of A € X is denoted by g-
ker(A) and defined as g-ker(A) = N{G € p: A< G}.

Lemma 2.1 [21]. Let (X, u) be a generalized topological space and A € X. Then g-ker(A) = {x € X: ¢, ({x})
NA#}If GisagrillonX, then (X, u, G) is called a grill generalized topological space.

3. GRILL GENERALIZED TOPOLOGICAL SPACES (GGTS)
Definition 3.1. [7] Let (X, 4, G) be a grill generalized topological space. A mapping () *#: exp(X) — exp(X) is defined as

follows: (A)®x = (A)®u (G, u) ={x € X:AN U € G}, where U € y(x).
The mapping is called the local function associated with the grill G and generalized topology p.
Theorem 3.1. [7]. Let (X, 4, G) be a Grill Generalized Topological Spaces. Then

@) ()@ =.

(ii) forA,B € Xand A € B, (A)®«: € (B)%x,
(iii) (A)*» Sc, (A).

(iv) ((A)*)*) € c, (A).

(v) (A)®x is a u-closed set.

(vi) ((A)*1) ) S (A)w.
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(vii) for G € G1 implies (a)®w G122 (a)Pw ©).
(viii) forU € u,, UN (UNA)® S U N (A)%x
(ix) forG € G, (A-G)®e = (A)®x = (AU G) ®n

Proof: Obvious

Definition 3.2. Let (X, 1) be a GTS with a grill G on X. The set operator c®« is called a generalized ¢,-closure and is
defined as c®+ (A) = A U A%y, for A € X. We will denote by u® (u; G) the generalized structure, generatedby c®, thatis, u®

(wg)={UcX:c®u (X-U)=(X- U)}. u® (i; G) is called ®,-generalized structure with respect to y and G (in short ¢,-
generalized structure) which is finer than p. The element of p® (i; G) are called p®-open and the complement of p®-
open is called pu®-closed.

Theorem 3.2. [7]. The set operator c®» satisfy following conditions:
(i) ASc®u(A), forAcX.

(ii) c®~ () = ¢ and c®= (X) = X.

(iii) c®« (A) € c® (B) if AC B € X.
(iv) c®= (A) U c®r (B) < c®: (A U B).
(v) c®r € T(X).

Proof: Proofis obvious from Theorem 3.1.

Definition 3.3. Let (X, 1) be a Generalized Topological Space. A subset A of X is said to be gu-closed set[14] if ¢, (A)
C M whenever AC M and M € p.

Definition 3.4. A subset A of a GGTS (X, 4, G) is p®-dense in itself (resp. u®-perfect)if A< (A)®«(resp. (A) ®x=A).

Definition 3.5. [30] A subset A of a GGTS (X, y, G) is called u-G-generalized closed (briefly, u-Gg-closed) if (A)®« € U
whenever U is u-open and A € U. A subset A of a GGTS (X, u, G) is called u-G-generalized open (briefly, u- Gg-open) if
X-Ais p- Gg-closed.

Definition 3.6 [13]. Let (X, i, G) be a grill topological space on X. Then for any A, B € X the following statements
hold:

(i) (AU B) @ = A®u U Box
(i) ((A) o) *u) € A®e = c®u(A) € cy(A), and hence A®u is closed in (X, u), for allA € X.
(iii) A € B 2APu c BPw,

Definition 3.7[10] A subset A of a topological space X is said to be p-6-closed if A = p-6C,(A)where p-6C,(A) is
defined as p-8Cu(A) = {x € X - ¢, (U) NA # @}for every U € u and x € U.

Definition 3.8 [10] A subset A of X is said to be p-8-open if X - A is u-68-closed.

Definition 3.9.[10] A subset A of a topological space X is said to be p-8-closed if A = p-8C,(A) where p-6C,(A)
is defined as p-8Cu(A) = {x € X /i,C,(U)NA # @} for every U € pand x € U.

Definition 3.10[10]A subset A of X is said to be u-6-open if X - A is p-6-closed.

Definition 3.11. [10]A subset A of a topological space X is said to be p-8g-closed if p-6C,(A) €U wheneverA € U and
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U is p-open.

Definition 3.12. [10]A subset A of a topological space X is said to be p-gB-closed if C,(A) €U wheneverA € U and U
is u-0-open.

Definition 3.13.[10]A subset A of a topological space X is said to be p-gb-open(u-6g-open) if X - A is p-g6-closed(p-
Bg-closed)

4. GENERALIZED M-SEMICLOSED SETS WITH RESPECT TO A GRILL
Definition 4.1. A subset A of a topological space X is said to be p-gs-closed if c,(A) € U whenever AcUand
U is p-semi open.
Definition 4.2. Let (X, y, G) bea grill topological space. Then a subset A of X is said to be p-Gg-closed if A®x €U
whenever AC U and U is p-semiopen in X.
Definition 4.3. A subset A of X is said to be u-Gg-open if X- A is p-Gg-closed.

Proposition 4.1. For a grill topological space (X, i, G) onX
(i) Every p-closed set in X is p-Gg-closed.

(ii) For any subset A in X, APu s n-Gg-closed.

(iii) Every ®p-closed set is p-Gg-closed.

(iv) Any non-member of G is p-Gg-closed.

(v) Every p-Gg-closed set is pu-Gg-closed.

(vi) Every p-gs-closed set is p-Gg-closed.

(vii) Every p-6-closed set in X is p-Gg-closed.

(viii) Every p-6-closed set in X is p-Gg-closed.

Proof.

(i) Let Abe a p-closed set then Cu(A) = A. Let U be a p-semi open set in X such that A€ U. Then, A*x € Cu(A))
=Ac U= A% cU=A is p-Gg-closed.

(ii) Let A be a subset in X. Then A%u (A®u) € A®u © U=>A% is pu-Gg-closed.

(iii) Let A be a @ p- closed set. Then C®+ (A))=A=>A U A®=A = A® S A Therefore, A® € U whenever A € U and
U is p-semi open in X. This implies A is p-Gg-closed.

(iv) LetA¢ G then A% = @ =A is p-Gg-closed.

(v) Let A be a p-Gg-closedand A €U and U is p-open in X, we get A®%« S U = A is u- Gg-closed.Therefore, every
n-Gg-closed setis u- Gg -closed.

(vi) Let A be a pu-gs-closed set and U be a p-semi open set in X, such that A € U, then cu(A) €U, consider Aex
cu(A) €U = Ais p-Gg-closed. Thus, every p-gs-closed set is p-Gg-closed.

(vii) Let A be p-6 closed. Then A = OCu(A). Let U be a p-semi open set in X such that A € U,then Ao < Cu(A)
€ 0Cpu(A)=A € U.Thus, A is p- Gg-closed.
(viii) Let A be p-8 closed. Then A = u-8Cp(A). Let U be a p-semi open set in X such that A € U,then A®:c Cu(A)
€ 8Cu(A) = A €U.Thus, A is p-Gg-closed.

Remark 4.1. The sets p-gb-closed and p-Gg-closed are independent from each other. Similarly, p-6g-closed and
u-Gg-closed are independent from each other.

Remark 4.2. Every p-gs-closed set is p-Gg-closed but the converse is not true as by the following example:

Example 4.1. Let X= {a,b,c,d}, p = {X {a b}, {b,d}, {a, b, d}}, G = {X, {c},{d}, {a, c}, {a, d}, {b, ¢}, {b, d}, {a, b, c}, {a,

b, d}, {a, ¢, d}, {b, ¢, d}}. Then (X, p) is a topological space and G is a grill on X.Let A = {a} then A®x = @. Therefore, A is
u-Gg-closed. But A € {a, b} and c,(A) = {a, c} does not a subset of
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{a, b}. Therefore, A is not p-gs-closed.

Definition 4.4. Let X be a space and (@ #) A € X. Then [A] ={B S X: ANB # @}is a grillon X, called the principal
grill generated by A.

Proposition 4.2. In the case of [X] principal grill generated by X, it is known that t = T[X] so that any [X]- u-gs-
closed setbecomes simply a p-gs-closed setand vice-versa.

Theorem 4.1. Let (X, i, G) be a grill topological space.If a subset A of X is p- G g-closed then c®: (A) € U whenever
AcU and U is p-semi open.

Proof. Let A be a p- Gg-closed setand U be a p-semi open in X such that Ac U thenA*c U= AU Adu
c U = c%: (A) € U. Thus, c®: (A) € U whenever A€ U and U is u-semi open.

Theorem 4.2. Let (X, p, G) be agrill topological space. If a subset A of X is u- Gg-closed then for allx € c ¢« (A),
c({fxh) nA=g.

Proof. Let x € c®(A). If c, (x})) NA=0 = A<S X - c,({x}) then by Theorem 4.1, c®« (A) € X - c,({x}) which is a
contradiction to our assumption that x € c®«(A), Therefore, c,{x}) NA#@.

Theorem 4.3. Let (X, i, G) be a grill topological space. If a subset A of X is p- Gg-closed then c¢®(A) -A contains no non-
empty closed set of (X, W, G). Also, A%« - A contains no nonempty closed set of (X, 1, G).

Proof. Let F be a closed set contained in c®+ (A) - Aand letx €F, since FN A = @. we get c,({x}) N A = @ Which
is a contradiction to the fact that cu({x}) N A # @. c®« (A) - A contains no non-emptyclosed set of (X, y, G). Since A®«

- A=c®(A) - A A®: - A contains no non-empty closed set of (X, 1, G).

Corollary 4.1. Let (X, u, G) be a T1-space in grill on X. Then every p- Gg-closed set is ®p-closed.

Proof. Let A be a p-Gg-closed set and x € A% then x € c®« (A). By Theorem 4.2, c,({x}) NA %0,

{x}n A+ @, x €A. Therefore, A®# € AThus, A is ®p-closed.

Corollary 4.2. Let (X, p, G) be a T1-space in grill on X. Then A (€ X) is p-Gg-closed set iff A is ®p-closed.
Proposition 4.3. Let (X, p, G) be a grill topological space and A be a p-Gg-closed. Then thefollowing statements
are equivalent:

(i) A is Ppu-closed

(ii) c®(A)-A is closed in (X, W, §).

(iii) A% - A is closed in (X, y, G).

Proof.: (i) = (ii) Let A be ®p-closed. Then c®« (A) - A =@. so c® (A) - Ais aclosed set.

(ii) = (iii) Since c®: (A) —A = A% - A.

(iif)= (i) Let A®x — A be closed in (X, i, G). Since A is p-Gg-closed by Theorem 4.3, A*x-A=@.So0, A is ®p-closed.
Lemma 4.1. Let (X, , G) be a grill topological space. If A (€ X) is ®pu-dense in itself, then A®u = ¢, (A®H) = c®u(A)
= cu(A).

Proof. A is ®pu-dense in itself A € A®r = ¢, (A) € c (A%) = A% S ¢y (A) = cu(A) = A% = ¢, (A%) now by
definition c ®«(A) = AU A% = A U c,(A) =c(A).Therefore, A®x = ¢, (A®+) = c®u (A) = c,(A).

Theorem 4.4. Let (X, y, G) be a grill topological space. If A (€X) is ®u-dense in itself and p-Gg-closed,then A is p-
gs-closed.

Proof. Follows from Lemma 4.1.

Corollary 4.3. For a grill G on a space (X, p). Let A (€X) be ®p-dense in itself. Then A is u-Gg-closed if and only
ifitis A is p-gs closed.

Proof. Follows from Proposition 4.1(vi) and Theorem 4.4.

Theorem 4.5. For any grill G on a space (X, p) the following statements are equivalent:

(i) Every subset of X is p-Gg-closed;

(ii) Every semi open subset of (X, p) is ®p-closed.

Proof. (i) = (ii) Let A be p-semiopen in (X, ) then by (i), A is p-Gg-closed so that A®»x € A= A is ®p-closed.
(i) = (i) Let A €X and U be p-semi open in (X, p) such that A €U.Since U is p -semi open by (ii), UPH c U.Now A
€U =>AwmcUPMcU = A is p-Gg-closed.
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Theorem 4.6. For any subset A of a space (X, u) and a grill G on X. If Ais p-Gg-closed thenA U (X - A®H) is p-Gg-
closed.

Proof. Let A U (X-A®H) c U, where U is p-semi open in X. Then X-U € X~ (A U (X- A®)) = A% - A.Since A is
n-Gg-closed, by Theorem 3.2, we have X - U = @, i.e,, X = U. Since X is the only semiopen set containing AU (X - Aol),
AU (X-A®H) is p-Gg-closed.

Proposition 4.4. For any subset A of a space (X, y, G) be a grill G on X, the following statements are equivalent:
() AU (X~ A®4) is p-Gg-closed.

(ii) A®x - A is p-Gg-open.

Proof. Follows from the fact that X - (A®« - A) = AU (X - A®H).

Theorem 4.7. Let (X, u, G) be a grill topological space and A, B be subsets of X such that A€ B € c®(A). If A is p-
Gg-closed, then B is p-Gg-closed.

Proof. Let B €U, where U is p-semi open in X. Since A is p-Gg-closed, A% €U = c®: (A) € U.Now, A S B Cc®
(A) = c® (A) S c® (B) S c® (A). Thus,c® (B) € U and hence B is p-Gg- closed.

Corollary 4.4. ®p-closure of every p- Gg-closed set is p- Gg-closed.

Theorem 4.8. Let (X, u, G) be agrill topological space and A, B be subsets of X such thatA € B € A®u. If A is p-
Gg-closed. Then A and B are p-gs-closed.

Proof. ASBCES A®*» > AS B S c%: (A)and hence by Theorem 4.7, B is p-Gg-closed. Again, A € B € A% = A% C Boxu
C ((A)®w) *u € A®u = A®u = B®« Thus, A and B are ®u-dense in itself and hence by Theorem 4.4, A and B are
n-gs-closed.

Theorem 4.9. Let (X, p, G) be a grill topological space. Then a subset A of X is p-Gg-open if and only if F € i®« (A)
whenever F € A and F is p-closed.

Proof. Let A be p-Gg-open and F € A, where Fis p-closed in (X, 1, §). Then X -ASX-F=>®(X-A)cX-F=
c®u (X -A) S X-F=FCci®A. Conversely, X - A € Uwhere Uisopenin (X, 1) >X-UC it (A)=>co (X-A) S
U. Thus (X - A) is p-Gg-closed and hence A is p-Gg-open.

5. SOME CHARACTERIZATIONS OF M-REGULAR AND M-NORMAL SPACES
Theorem 5.1. Let X be a p- normal space and G be a grill on X then for each pair of disjoint closed sets F and K,
there exist disjoint p-Gg-open sets U and V such that FE Uand KE V.

Proof. It is obvious, since every open set is u-Gg-open.
Theorem 5.2. Let X be a p- normal space and G be a grill on X then for each closed set F and any open set V

containing F, there exist a u-Gg-open set U such that F€ U c c®« (U) € V.

Proof. Let F be a closed set and V be an open set in (X, u) such that F €V. Then F and X - V are disjoint closed
sets. By Theorem 5.1, there exist disjoint p-Gg-open sets U and W such that F € U and X -V € W. Since W is p-Gg-
open and X-V €W where X -V is closed, X-V Si®(W). So, X - i®« (W) € V. Again, UNW =@ =U ni® (W) =
@.Hence c®« (U)< X -i%% (W) € V.Thus FEU S c®: (V) €V, where U is a p-Gg-open set.

The following theorems gives characterizations of a pu- normal space in terms of p-Gg-open sets. Which are the
consequence of Theorems 5.1, 5.2 and proposition 4.2 if one takes G = [X]

Theorem 5.3. Let X be a normal space and G be a grill on X then for each pair of disjointclosed sets F and

K, there exist disjoint p-Gg-open sets U and V such that FC U and KS V.

Theorem 5.4. Let X be a normal space and G be a grill on X then for each closed set F and any open set V
containing F, there exist a p-Gg-open set U suchthatF C U € C% (U)C V.

Theorem 5.5. Let X is regular and G be a grill on a space (X, ). Then for each closed set F and each x € X-F,
there exist disjoint p-Gg-open sets U and V such that x €U andF € V.

Proof. The proof is obvious.

Theorem 5.6. Let X be a regular space and G be a grill on a space (X, p). Then for each open setV of (X, p) and

each point x € V there exista p-Gg-open set U such thatxeU S c® (U) € V.
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Proof. Let V be any semi-open set in (X, u) containing a point X of X. Then by Theorem 5.5, there exist disjoint p-
Gg-open sets U and W such that x € U and X-V € W.Now, UNnW = @ implies c®« (U) € X-W S V. Thus x €U
Cchu(U)cV.

The following theorems gives characterizations of a regular space in terms of p-Gg-open sets which are the consequence of
Theorems 5.5,5.6 and Proposition 4.2 if one takes G = [X].

Theorem 5.7. Let X be a regular and G be a grill on a space (X, n). Then for each closed set Fand each x € X- F,
there exist disjoint p-Gg-open sets U and V such that x eU and F C V.

Theorem 5.8.Let X be a regular space and G be a grill on a space (X, p). Then for each openset V of (X, 1) and
each point x € V there exist a p-Gg-open set U such thatx €U C c®(U)C V.
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