Original Article ISSN (Online): 2582-7472

GG-CLOSED SETS IN GRILL GENERALIZED TOPOLOGICAL SPACES

R. Anbarasan¹, M. Anitha²

- ¹ Research Scholar (17231172091001) Affiliated to Manonmaniam Sundaranar University, Rani Anna Government College for Women, Tirunelveli, India, Assistant Professor, Department of Mathematics, PSN College of Engineering and Technology, Tirunelveli, India.
- ²Associate Professor, Department of Mathematics, Rani Anna Government College for Women, Tirunelveli, India

Corresponding Author

R. Anbarasan, anbu.arasan1988@gmail.com

DOI

10.29121/shodhkosh.v5.i1.2024.264

Funding: This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Copyright: © 2024 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License.

With the license CC-BY, authors retain the copyright, allowing anyone to download, reuse, re-print, modify, distribute, and/or copy their contribution. The work must be properly attributed to its author.

ABSTRACT

The aim of this paper is to introduce $\mathcal{G}\hat{g}$ -closed sets in grill generalized topological spaces. Also, we investigate the properties of the μ - $\mathcal{G}\hat{g}$ -closed sets and discuss some characterization of μ - \mathcal{G} -regular and μ - \mathcal{G} -normal spaces.

Keywords: Grill, topology Φμ, μ-gs-closed, μ-𝒢ĝ-closed.

Mathematical Subject Classification: 54C05, 54C08, 54D10.

1. INTRODUCTION

In 1947, Choquet ([5]) introduced the concept of grill on a topological space. In ([5], [23], [32]) the concept of grill is a powerful tool in nets and filters, deeply study of a topological notion such as proximity spaces, closurespaces, theory of compactifications and extension problems of different kinds. In 2007, Roy and Mukherjee ([22]) was defined and studied a typical topology induced by grill. In 1970, Levine ([13]) introduced generalized closedsets in topological space. In 2012, Shyamapada Modak and Sukalyan Mistry ([30]) introduced the generalized closed sets in grill generalized topological space. In 2003, M. K. R. S. Veerakumar ([33]) introduced \hat{g} -closed sets in topological spaces. In 1998, Arockiarani ([1], [2]) studies on generalizations of generalized closed sets and maps in topology and explore the concept of semi closed sets to define a new class of generalized semi closed sets via Grill. In this paper we define μ - $G\hat{g}$ -closed in grill topological spaces and discuss the characterization of μ -G-regular and μ -G-normal spaces. Throughout this paper, X or (X, μ , G) represent a grill topological space with no separation axioms assumed unless

explicitly stated. For a subset A of a space X, the closure of A and the interior of A are denoted by $C_{ij}(A)$ and $i_{ij}(A)$,

respectively.

2. PRELIMINARIES

Definition 2.1[5, 22]. A nonempty collection \mathcal{G} of nonempty subsets of a topological space (X, τ) is called grill if (i) $A \in \mathcal{G}$ and $A \subseteq B \subseteq X \Rightarrow B \in X$, and (ii) $A, B \subseteq X$ and $A \cup B \in \mathcal{G} \Rightarrow A \in \mathcal{G}$ or $B \in \mathcal{G}$. If \mathcal{G} is grill on X, then (X, τ, \mathcal{G}) is called a grill topological space.

Definition 2.2 [22]. Let (X, τ, \mathcal{G}) be a grill topological space. An operator $\Phi: \exp(X) \to \exp(X)$ is called a local function with respect to μ and \mathcal{G} is defined as follows: for $A \subseteq X$, $\Phi(A)$ $(\mathcal{G}, \tau) = \Phi(A) = \{x \in X: U \cap A \in \mathcal{G} \text{ for every } U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau: x \in U\}$. It is well known from [22], $A \cap \Phi(A) = \psi(A)$ is a Kuratowsi closure operator.

Definition 2.3[22]. Corresponding to a grill on a topological space (X, τ) , there exists a unique topology τ_g

on X given by $\tau_G = \{U \subseteq X : \psi(X - A) = (X - A)\}$, where for any $A \subseteq X$, $\psi(A) = A \cup \Phi(A) = \tau_G - cl(A)$.

Definition 2.4. [9] Let (X, τ, G) be a grill topological space. A subset A of a grill topological space (X, τ, G) is τ_G -closed (resp. τ_G -dense in itself τ_G -perfect), if (A) = A or equivalently if $\Phi(A) \subseteq A$ (resp. $A \subseteq \Phi(A)$, $A = \Phi(A)$)

Definition 2.5. [9] Let (X, τ, \mathcal{G}) be a grill topological space. A subset A of a grill topological space (X, τ, \mathcal{G}) is g-closed with respect to the grill \mathcal{G} (briefly, \mathcal{G} -g-closed) if $\Phi(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X. A subset A of X is said to be \mathcal{G} -g-open if X - A is \mathcal{G} -g-closed.

Definition 2.6. [13] Let (X, τ) be a topological space. A subset A of a space (X, τ) is said to be g-closed set if $(A) \subseteq U$ whenever $A \subseteq U$ and U is open.

Remark 2.1[9]. Every g-closed set is a G-g-closed but not vice versa.

Remark 2.2[31]. Every closed set is g - closed.

Remark 2.3[33]. Every closed set is \hat{g} - closed.

Very interesting notion in literature has been introduced by Csaszar [6] on 1997. Using this notion topology has been reconstructed. The concept is: A map τ : exp(X) \rightarrow exp(X) is possessing the property monotony (i.e., such that $A \subseteq B$ implies τ (A) $\subseteq \tau$ (B)). We denote by Γ (X) the collections of all mapping having this property.

One of the consequences of the above notion is generalized topological space (GTS) [7,8], its formal definition is:

Definition 2.7. [7, 8, 19, 20] Let X be a non-empty set, and $\mu \subseteq \exp(X)$, μ is called a generalized topological space (GTS) on X if $\varphi \in \mu$ and the union of elements of μ belongs to μ . The member of μ is called μ -open set and the complement of μ -open set is called μ -closed set. Again, c is notation of μ -closure.

Definition 2.8[21]. Let (X, μ) be a generalized topological space. Then the generalized kernel of $A \subseteq X$ is denoted by g-ker(A) and defined as g-ker $(A) = \bigcap \{ G \in \mu : A \subseteq G \}$.

Lemma 2.1 [21]. Let (X, μ) be a generalized topological space and $A \subseteq X$. Then g-ker $(A) = \{x \in X : c_{\mu}(\{x\}) \cap A \neq \emptyset\}$. If G is a grill on X, then (X, μ, G) is called a grill generalized topological space.

3. GRILL GENERALIZED TOPOLOGICAL SPACES (GGTS)

Definition 3.1. [7] Let (X, μ, \mathcal{G}) be a grill generalized topological space. A mapping $()^{\Phi\mu}: \exp(X) \to \exp(X)$ is defined as follows: $(A)^{\Phi\mu} = (A)^{\Phi\mu} (\mathcal{G}, \mu) = \{x \in X: A \cap U \in \mathcal{G}\}$, where $U \in \psi(x)$.

The mapping is called the local function associated with the grill \mathcal{G} and generalized topology μ .

Theorem 3.1. [7]. Let (X, μ, G) be a Grill Generalized Topological Spaces. Then

- (i) $(\Phi)^{\Phi\mu} = \Phi$.
- (ii) for $A, B \subseteq X$ and $A \subseteq B$, $(A)^{\Phi\mu} \subseteq (B)^{\Phi\mu}$.
- (iii) (A) $^{\Phi\mu} \subseteq c_{\mu}$ (A).
- (iv) $((A)^{\Phi\mu})^{\Phi\mu} \subseteq C_{\mu}(A)$.
- (v) (A) $^{\Phi\mu}$ is a μ -closed set.
- (vi) $((A)^{\Phi\mu})^{\Phi\mu} \subseteq (A)^{\Phi\mu}$.

(vii) for $G \subseteq G1$ implies $(A)^{\Phi_{\mu}}(G1) \supseteq (A)^{\Phi_{\mu}}(G)$.

(viii) for $U \in \mu$, $U \cap (U \cap A)^{\Phi\mu} \subseteq U \cap (A)^{\Phi\mu}$.

(ix) for $G \notin \mathcal{G}$, $(A - G)^{\Phi\mu} = (A)^{\Phi\mu} = (A \cup G)^{\Phi\mu}$.

Proof: Obvious

Definition 3.2. Let (X, μ) be a GTS with a grill G on X. The set operator $c^{\Phi\mu}$ is called a generalized Φ_{μ} -closure and is defined as $c^{\Phi\mu}$ (A) = A \cup A $^{\Phi\mu}$, for A \subseteq X. We will denote by μ^{Φ} (μ ; G) the generalized structure, generated by $c^{\Phi\mu}$, that is, μ^{Φ} (μ ; G) = { $U \subseteq X$: $c^{\Phi\mu}$ (X – U) = (X – U)}. μ^{Φ} (μ ; G) is called Φ_{μ} -generalized structure with respect to μ and G (in short G) generalized structure) which is finer than G0. The element of G0 are called G0-open and the complement of G0-open is called G0-closed.

Theorem 3.2. [7]. The set operator $c^{\Phi\mu}$ satisfy following conditions:

- (i) $A \subseteq c^{\Phi\mu}(A)$, for $A \subseteq X$.
- (ii) $c^{\Phi\mu}(\varphi) = \varphi$ and $c^{\Phi\mu}(X) = X$.
- (iii) $c^{\Phi\mu}(A) \subseteq c^{\Phi\mu}(B)$ if $A \subseteq B \subseteq X$.
- (iv) $c^{\Phi\mu}$ (A) U $c^{\Phi\mu}$ (B) $\subseteq c^{\Phi\mu}$ (A U B).
- (v) $c^{\Phi\mu} \in \Gamma(X)$.

Proof: Proof is obvious from Theorem 3.1.

Definition 3.3. Let (X, μ) be a Generalized Topological Space. A subset A of X is said to be $g\mu$ -closed set [14] if $c_{\mu}(A) \subseteq M$ whenever $A \subseteq M$ and $M \in \mu$.

Definition 3.4. A subset A of a GGTS (X, μ, G) is μ^{Φ} -dense in itself (resp. μ^{Φ} -perfect) if $A \subseteq (A)^{\Phi\mu}$ (resp. $(A)^{\Phi\mu} = A$).

Definition 3.5. [30] A subset A of a GGTS (X, μ, \mathcal{G}) is called μ - \mathcal{G} -generalized closed (briefly, μ - $\mathcal{G}g$ -closed) if $(A)^{\Phi\mu} \subseteq U$ whenever U is μ -open and $A \subseteq U$. A subset A of a GGTS (X, μ, \mathcal{G}) is called μ - \mathcal{G} -generalized open (briefly, μ - $\mathcal{G}g$ -open) if X-A is μ - $\mathcal{G}g$ -closed.

Definition 3.6 [13]. Let (X, μ, \mathcal{G}) be a grill topological space on X. Then for an y A, $B \subseteq X$ the following statements hold:

- (i) $(A \cup B)^{\Phi\mu} = A^{\Phi\mu} \cup B^{\Phi\mu}$
- (ii) $((A)^{\Phi\mu})^{\Phi\mu} \subseteq A^{\Phi\mu} = c^{\Phi\mu}(A) \subseteq c_{\mu}(A)$, and hence $A^{\Phi\mu}$ is closed in (X, μ) , for all $A \subseteq X$.
- (iii) $A \subseteq B \Rightarrow A^{\Phi_{\mu}} \subseteq B^{\Phi_{\mu}}$.

Definition 3.7[10] A subset A of a topological space X is said to be μ -θ-closed if $A = \mu$ -θC_{μ}(A) where μ -θC_{μ}(A) is defined as μ -θC_{μ}(A) = { $x \in X - c_{\mu}(U) \cap A \neq \emptyset$ } for every $U \in \mu$ and $x \in U$.

Definition 3.8 [10] A subset A of X is said to be μ -θ-open if X - A is μ -θ-closed.

Definition 3.9. [10] A subset A of a topological space X is said to be μ -δ-closed if $A = \mu$ -δC_{μ}(A) where μ -δC_{μ}(A) is defined as μ -δC μ (A) = { $x \in X / i_{\mu}C_{\mu}(U) \cap A \neq \emptyset$ } for every $U \in \mu$ and $x \in U$.

Definition 3.10[10] A subset A of X is said to be μ -δ-open if X - A is μ -δ-closed.

Definition 3.11. [10] A subset A of a topological space X is said to be μ - θ g-closed if μ - $\theta C_{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and

U is μ-open.

Definition 3.12. [10]A subset A of a topological space X is said to be μ -gθ-closed if $C_{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is μ -θ-open.

Definition 3.13. [10] A subset A of a topological space X is said to be μ -gθ-open(μ -θg-open) if X – A is μ -gθ-closed(μ -θg-closed)

4. GENERALIZED M-SEMICLOSED SETS WITH RESPECT TO A GRILL

Definition 4.1. A subset A of a topological space X is said to be μ -gs-closed if $c_{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is μ -semi open.

Definition 4.2. Let (X, μ, \mathcal{G}) be a grill topological space. Then a subset A of X is said to be μ - \mathcal{G} ĝ-closed if $A \Phi^{\mu} \subseteq U$ whenever $A \subseteq U$ and U is μ -semi open in X.

Definition 4.3. A subset A of X is said to be μ - $\mathcal{G}\hat{g}$ -open if X- A is μ - $\mathcal{G}\hat{g}$ -closed.

Proposition 4.1. For a grill topological space (X, μ, G) on X

- (i) Every μ -closed set in X is μ - $G\hat{g}$ -closed.
- (ii) For any subset A in X, $A^{\Phi_{\mu}}$ is μ -Gg-closed.
- (iii) Every Φ_{μ} -closed set is μ - $G\hat{g}$ -closed.
- (iv) Any non-member of G is μ - $G\hat{g}$ -closed.
- (v) Every μ - \mathcal{G} \hat{g} -closed set is μ - \mathcal{G} g-closed.
- (vi) Every μ -gs-closed set is μ - $G\hat{g}$ -closed.
- (vii) Every μ - θ -closed set in X is μ - \mathcal{G} \hat{g} -closed.
- (viii) Every μ - δ -closed set in X is μ - $G\hat{g}$ -closed.

Proof.

- (i) Let A be a μ -closed set then $C_{\mu}(A) = A$. Let U be a μ -semi open set in X such that $A \subseteq U$. Then, $A^{\Phi_{\mu}} \subseteq C_{\mu}(A)$ = $A \subseteq U \Rightarrow A^{\Phi_{\mu}} \subseteq U \Rightarrow A$ is μ - $G\hat{g}$ -closed.
- (ii) Let A be a subset in X. Then $A^{\Phi\mu}(A^{\Phi\mu}) \subseteq A^{\Phi\mu} \subseteq U \Rightarrow A^{\Phi\mu}$ is μ -Gĝ-closed.
- (iii) Let A be a $\Phi \mu$ closed set. Then $C^{\Phi \mu}(A) = A \Rightarrow A \cup A^{\Phi \mu} = A \Rightarrow A^{\Phi \mu} \subseteq A$. Therefore, $A^{\Phi \mu} \subseteq U$ whenever $A \subseteq U$ and U is μ -semi open in X. This implies A is μ - $G\hat{g}$ -closed.
- (iv) Let $A \notin G$ then $A^{\Phi\mu} = \emptyset \Rightarrow A$ is μ - $G\hat{g}$ -closed.
- (v) Let A be a μ - $G\hat{g}$ -closed and A \subseteq U and U is μ -open in X, we get $A \oplus \mu \subseteq U \Rightarrow A$ is μ -Gg-closed. Therefore, every μ - $G\hat{g}$ -closed set is μ -Gg-closed.
- (vi) Let A be a μ -gs-closed set and U be a μ -semi open set in X, such that $A \subseteq U$, then $c_{\mu}(A) \subseteq U$, consider $A \circ_{\mu} \subseteq c_{\mu}(A) \subseteq U \Rightarrow A$ is μ - $G\hat{g}$ -closed. Thus, every μ -gs-closed set is μ - $G\hat{g}$ -closed.
- (vii) Let A be μ - θ closed. Then $A = \theta C \mu(A)$. Let U be a μ -semi open set in X such that $A \subseteq U$, then $A \circ_{\mu} \subseteq C \mu(A) \subseteq \theta C \mu(A) = A \subseteq U$. Thus, A is μ - $G \circ_{\theta} = C \circ_{\theta} =$
- (viii) Let A be μ - δ closed. Then $A = \mu$ - $\delta C\mu(A)$. Let U be a μ -semi open set in X such that $A \subseteq U$, then $A^{\Phi\mu} \subseteq C\mu(A) \subseteq \delta C\mu(A) = A \subseteq U$. Thus, A is μ - $G\hat{g}$ -closed.
- **Remark 4.1.** The sets μ -g θ -closed and μ - $G\hat{g}$ -closed are independent from each other. Similarly, μ - θ g-closed and μ - $G\hat{g}$ -closed are independent from each other.
- **Remark 4.2.** Every μ -gs-closed set is μ - $\mathcal{G}\hat{g}$ -closed but the converse is not true as by the following example:

Example 4.1. Let $X = \{a, b, c, d\}$, $\mu = \{X, \{a, b\}, \{b, d\}, \{a, b, d\}\}$, $G = \{X, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, b, d\}\}$, $\{a, c, d\}$, $\{b, c, d\}$. Then $\{X, \mu\}$ is a topological space and G is a grill on X.Let $A = \{a\}$ then $A^{\Phi\mu} = \emptyset$. Therefore, A is μ - $G\hat{g}$ -closed. But $A \subseteq \{a, b\}$ and $c_{\mu}(A) = \{a, c\}$ does not a subset of

{a, b}. Therefore, A is not μ -gs-closed.

Definition 4.4. Let X be a space and $(\emptyset \neq)$ A \subseteq X. Then [A] = {B \subseteq X: A \cap B \neq \emptyset } is a grillon X, called the principal grill generated by A.

Proposition 4.2. In the case of [X] principal grill generated by X, it is known that $\tau = \tau[X]$ so that any [X]- μ -gs-closed set becomes simply a μ -gs-closed set and vice-versa.

Theorem 4.1. Let (X, μ, \mathcal{G}) be a grill topological space. If a subset A of X is μ - \mathcal{G} \hat{g} -closed then $c^{\Phi\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is μ -semi open.

Proof. Let A be a μ - $G\hat{g}$ -closed set and U be a μ -semi open in X such that $A \subseteq U$ then $A^{\Phi\mu} \subseteq U \Rightarrow A \cup A^{\Phi\mu} \subseteq U \Rightarrow c^{\Phi\mu}(A) \subseteq U$. Thus, $c^{\Phi\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is μ -semi open.

Theorem 4.2. Let (X, μ, \mathcal{G}) be a grill topological space. If a subset A of X is μ - $\mathcal{G}\hat{g}$ -closed then for all $x \in c^{\Phi\mu}(A)$, $c_{\mu}(x) \cap A \neq \emptyset$.

Proof. Let $x \in c^{\Phi}(A)$. If $c_{\mu}(\{x\}) \cap A = \emptyset \Rightarrow A \subseteq X - c_{\mu}(\{x\})$ then by Theorem 4.1, $c^{\Phi_{\mu}}(A) \subseteq X - c_{\mu}(\{x\})$ which is a contradiction to our assumption that $x \in c^{\Phi_{\mu}}(A)$, Therefore, $c_{\mu}\{x\} \cap A \neq \emptyset$.

Theorem 4.3. Let (X, μ, \mathcal{G}) be a grill topological space. If a subset A of X is μ - $\mathcal{G}\hat{g}$ -closed then $c^{\Phi}(A)$ –A contains no nonempty closed set of (X, μ, \mathcal{G}) . Also, $A^{\Phi\mu}$ – A contains no nonempty closed set of (X, μ, \mathcal{G}) .

Proof. Let F be a closed set contained in $c^{\Phi\mu}(A)$ – A and let $x \in F$, since $F \cap A = \emptyset$. we get $c_{\mu}(\{x\}) \cap A = \emptyset$ Which is a contradiction to the fact that $c_{\mu}(\{x\}) \cap A \neq \emptyset$. $c^{\Phi\mu}(A)$ – A contains no non-emptyclosed set of (X, μ, \mathcal{G}) . Since $A^{\Phi\mu}$ – $A = c^{\Phi}(A)$ – A, $A^{\Phi\mu}$ – A contains no non-empty closed set of (X, μ, \mathcal{G}) .

Corollary 4.1. Let (X, μ, \mathcal{G}) be a T₁-space in grill on X. Then every μ - $\mathcal{G}\hat{g}$ -closed set is Φ_{μ} -closed.

Proof. Let A be a μ - $\mathcal{G}\hat{g}$ -closed set and $x \in A^{\Phi\mu}$ then $x \in c^{\Phi\mu}(A)$. By Theorem 4.2, $c_{\mu}(\{x\}) \cap A \neq \emptyset$,

 $\{x\} \cap A \neq \emptyset$, $x \in A$. Therefore, $A \circ \mu \subseteq A$ Thus, A is $\Phi \mu$ -closed.

Corollary 4.2. Let (X, μ, \mathcal{G}) be a T1-space in grill on X. Then $A \subseteq X$ is μ - \mathcal{G} g-closed set iff A is Φ_{μ} -closed.

Proposition 4.3. Let (X, μ, \mathcal{G}) be a grill topological space and A be a μ - $\mathcal{G}\hat{g}$ -closed. Then the following statements are equivalent:

- (i) A is Φu-closed
- (ii) $c^{\Phi}(A)$ -A is closed in (X, μ, \mathcal{G}) .
- (iii) $A^{\Phi\mu}$ A is closed in (X, μ, \mathcal{G}) .

Proof.: (i) \Rightarrow (ii) Let A be Φ_{μ} -closed. Then $c^{\Phi_{\mu}}(A) - A = \emptyset$. so $c^{\Phi_{\mu}}(A) - A$ is a closed set.

- (ii) \Rightarrow (iii) Since $c^{\Phi\mu}(A) A = A^{\Phi\mu} A$.
- (iii) \Rightarrow (i) Let $A^{\phi\mu} A$ be closed in (X, μ, G) . Since A is μ -Gê-closed by Theorem 4.3, $A^{\phi\mu}$ -A=Ø.So, A is $\Phi\mu$ -closed.

Lemma 4.1. Let (X, μ, \mathcal{G}) be a grill topological space. If $A \subseteq X$ is $\Phi\mu$ -dense in itself, then $A^{\Phi\mu} = c_{\mu}(A^{\Phi\mu}) = c^{\Phi\mu}(A) = c_{\mu}(A)$.

Proof. A is $\Phi\mu$ -dense in itself \Rightarrow A \subseteq A $^{\Phi\mu}$ \Rightarrow $c_{\mu}(A) \subseteq c_{\mu}(A^{\Phi\mu}) = A^{\Phi\mu} \subseteq c_{\mu}(A) \Rightarrow c_{\mu}(A) = A^{\Phi\mu} = c_{\mu}(A^{\Phi\mu})$ now by definition $c^{\Phi\mu}(A) = A \cup A^{\Phi\mu} = A \cup c_{\mu}(A) = c(A)$. Therefore, $A^{\Phi\mu} = c_{\mu}(A^{\Phi\mu}) = c^{\Phi\mu}(A) = c_{\mu}(A)$.

Theorem 4.4. Let (X, μ, \mathcal{G}) be a grill topological space. If $A \subseteq X$ is Φ_{μ} -dense in itself and μ - \mathcal{G} \hat{g} -closed, then A is μ -gs-closed.

Proof. Follows from Lemma 4.1.

Corollary 4.3. For a grill G on a space (X, μ) . Let $A \subseteq X$ be Φ_{μ} -dense in itself. Then A is μ -Gĝ-closed if and only if it is A is μ -Gg closed.

Proof. Follows from Proposition 4.1(vi) and Theorem 4.4.

Theorem 4.5. For any grill \mathcal{G} on a space (X, μ) the following statements are equivalent:

- (i) Every subset of X is μ - $G\hat{g}$ -closed;
- (ii) Every semi open subset of (X, μ) is $\Phi\mu$ -closed.

Proof. (i) \Rightarrow (ii) Let A be μ -semi open in (X, μ) then by (i), A is μ - $\mathcal{G}\hat{g}$ -closed so that $A^{\Phi\mu} \subseteq A \Rightarrow A$ is $\Phi\mu$ -closed. (ii) \Rightarrow (i) Let A $\subseteq X$ and U be μ -semi open in (X, μ) such that A $\subseteq U$. Since U is μ -semi open by (ii), $U^{\Phi\mu} \subseteq U$. Now A $\subseteq U \Rightarrow A^{\Phi\mu} \subseteq U \Rightarrow A$ is μ - $\mathcal{G}\hat{g}$ -closed.

Theorem 4.6. For any subset A of a space (X, μ) and a grill G on X. If A is μ - $\mathcal{G}\hat{g}$ -closed then $A \cup (X - A^{\Phi \mu})$ is μ - $\mathcal{G}\hat{g}$ -closed.

Proof. Let $A \cup (X - A^{\Phi \mu}) \subseteq U$, where U is μ -semi open in X. Then $X - U \subseteq X - (A \cup (X - A^{\Phi \mu})) = A^{\Phi \mu} - A$. Since A is μ - $G\hat{g}$ -closed, by Theorem 3.2, we have $X - U = \emptyset$, i.e., X = U. Since X is the only semiopen set containing $A \cup (X - A^{\Phi \mu})$, $A \cup (X - A^{\Phi \mu})$ is μ - $G\hat{g}$ -closed.

Proposition 4.4. For any subset A of a space (X, μ, \mathcal{G}) be a grill \mathcal{G} on X, the following statements are equivalent: (i) $A \cup (X - A^{\Phi_{\mu}})$ is μ - $\mathcal{G}\hat{g}$ -closed.

(ii) $A^{\Phi\mu}$ – A is μ -Gĝ-open.

Proof. Follows from the fact that $X - (A^{\Phi\mu} - A) = A \cup (X - A^{\Phi\mu})$.

Theorem 4.7. Let (X, μ, \mathcal{G}) be a grill topological space and A, B be subsets of X such that $A \subseteq B \subseteq c^{\Phi}(A)$. If A is μ - $\mathcal{G}\hat{g}$ -closed, then B is μ - $\mathcal{G}\hat{g}$ -closed.

Proof. Let $B \subseteq U$, where U is μ -semi open in X. Since A is μ - $\mathcal{G}\hat{g}$ -closed, $A^{\Phi\mu} \subseteq U \Rightarrow c^{\Phi\mu}$ (A) $\subseteq U$. Now, $A \subseteq B \subseteq c^{\Phi\mu}$ (A) $\Rightarrow c^{\Phi\mu}$ (B) $\subseteq C^{\Phi\mu}$ (B) \subseteq

Corollary 4.4. Φ_{μ} -closure of every μ - $G\hat{g}$ -closed set is μ - $G\hat{g}$ -closed.

Theorem 4.8. Let (X, μ, \mathcal{G}) be a grill topological space and A, B be subsets of X such that $A \subseteq B \subseteq A^{\Phi\mu}$. If A is μ - \mathcal{G} ĝ-closed. Then A and B are μ -gs-closed.

Proof. $A \subseteq B \subseteq A^{\Phi\mu} \Rightarrow A \subseteq B \subseteq c^{\Phi\mu}$ (A) and hence by Theorem 4.7, B is μ - $G\hat{g}$ -closed. Again, $A \subseteq B \subseteq A^{\Phi\mu} \Rightarrow A^{\Phi\mu} \subseteq B^{\Phi\mu} \subseteq ((A)^{\Phi\mu})^{\Phi\mu} \subseteq A^{\Phi\mu} \Rightarrow A^{\Phi\mu} = B^{\Phi\mu}$. Thus, A and B are $\Phi\mu$ -dense in itself and hence by Theorem 4.4, A and B are μ -gs-closed.

Theorem 4.9. Let (X, μ, \mathcal{G}) be a grill topological space. Then a subset A of X is μ - \mathcal{G} \hat{g} -open if and only if $F \subseteq i^{\Phi_{\mu}}(A)$ whenever $F \subseteq A$ and F is μ -closed.

Proof. Let A be μ - $G\hat{g}$ -open and $F \subseteq A$, where F is μ -closed in (X, μ, G) . Then $X - A \subseteq X - F \Rightarrow \Phi(X - A) \subseteq X - F \Rightarrow c^{\Phi\mu}(X - A) \subseteq X - F \Rightarrow F \subseteq i^{\Phi\mu}(X - A) \subseteq X - F \Rightarrow G^{\Phi\mu}(X - A) \subseteq X - G^{\Phi\mu}(X - A) \subseteq X$

5. SOME CHARACTERIZATIONS OF M-REGULAR AND M-NORMAL SPACES

Theorem 5.1. Let X be a μ - normal space and G be a grill on X then for each pair of disjoint closed sets F and K, there exist disjoint μ -Gĝ-open sets U and V such that $F \subseteq U$ and $K \subseteq V$.

Proof. It is obvious, since every open set is μ - $G\hat{g}$ -open.

Theorem 5.2. Let X be a μ -normal space and \mathcal{G} be a grill on X then for each closed set F and any open set V containing F, there exist a μ - $\mathcal{G}\hat{g}$ -open set U such that $F \subseteq U \subseteq c^{\Phi_{\mu}}(U) \subseteq V$.

Proof. Let F be a closed set and V be an open set in (X, μ) such that $F \subseteq V$. Then F and X - V are disjoint closed sets. By Theorem 5.1, there exist disjoint μ - $G\hat{g}$ -open sets U and W such that $F \subseteq U$ and $X - V \subseteq W$. Since W is μ - $G\hat{g}$ -open and $X - V \subseteq W$ where X - V is closed, $X - V \subseteq I^{\Phi}(W)$. So, $X - I^{\Phi\mu}(W) \subseteq V$. Again, $U \cap W = \emptyset \Rightarrow U \cap I^{\Phi\mu}(W) = \emptyset$. Hence $c^{\Phi\mu}(U) \subseteq X - I^{\Phi\mu}(W) \subseteq V$. Thus $F \subseteq U \subseteq c^{\Phi\mu}(V) \subseteq V$, where U is a μ - $G\hat{g}$ -open set.

The following theorems gives characterizations of a μ - normal space in terms of μ - $\mathcal{G}\hat{g}$ -open sets. Which are the consequence of Theorems 5.1, 5.2 and proposition 4.2 if one takes $\mathcal{G} = [X]$

Theorem 5.3. Let X be a normal space and \mathcal{G} be a grill on X then for each pair of disjointclosed sets F and K, there exist disjoint μ - \mathcal{G} \hat{g} -open sets U and V such that $F \subseteq U$ and $K \subseteq V$.

Theorem 5.4. Let X be a normal space and \mathcal{G} be a grill on X then for each closed set F and any open set V containing F, there exist a μ - \mathcal{G} \hat{g} -open set U such that $F \subseteq U \subseteq C^{\Phi\mu}(U) \subseteq V$.

Theorem 5.5. Let X is regular and G be a grill on a space (X, μ) . Then for each closed set F and each $x \in X - F$, there exist disjoint μ -Gĝ-open sets U and V such that $x \in U$ and $F \subseteq V$.

Proof. The proof is obvious.

Theorem 5.6. Let X be a regular space and G be a grill on a space (X, μ) . Then for each open setV of (X, μ) and each point $x \in V$ there exist a μ - $G_{\hat{g}}$ -open set U such that $x \in U \subseteq c^{\Phi_{\mu}}(U) \subseteq V$.

Proof. Let V be any semi-open set in (X, μ) containing a point x of X. Then by Theorem 5.5, there exist disjoint μ - \mathcal{G} \hat{g} -open sets U and W such that $x \in U$ and $X - V \subseteq W$. Now, $U \cap W = \emptyset$ implies $c^{\Phi\mu}(U) \subseteq X - W \subseteq V$. Thus $x \in U \subseteq c^{\Phi\mu}(U) \subseteq V$.

The following theorems gives characterizations of a regular space in terms of μ - $G\hat{g}$ -open sets which are the consequence of Theorems 5.5,5.6 and Proposition 4.2 if one takes G = [X].

Theorem 5.7. Let X be a regular and G be a grill on a space (X, μ) . Then for each closed set Fand each $x \in X$ – F, there exist disjoint μ - $G_{\hat{g}}$ -open sets U and V such that $x \in U$ and $F \subseteq V$.

Theorem 5.8. Let X be a regular space and G be a grill on a space (X, μ) . Then for each open set V of (X, μ) and each point $x \in V$ there exist a μ - $G_{\hat{x}}$ -open set U such that $x \in U \subseteq C^{\Phi}(U) \subseteq V$.

CONFLICT OF INTERESTS

None.

ACKNOWLEDGMENTS

None.

REFERENCES

- I. Arockiarani, Studies on generalizations of generalized closed sets and maps in topological spaces, Ph. D thesis., 1998.
- I. Arockiarani and V. Vinodhini A new class of generalized semi closed sets using grills, ScientiaMagna., 2(8) (2012), 8-14.
- K. C. Chattopadhyay, O. Njastad and W. J. Thron, Merotopic spaces and extensions of closure spaces, Can. J. Math., 4(1983), 613-629.
- K. C. Chattopadhyay and W. J. Thron, Extensions of closure spaces, Can. J.Math., 6(1977), 1277-1286.
- G. Choquet, Sur les notions de filter et grills, Comptes Rendus Acad. Sci. Paris., 224(1947), 171-173.

Csaszar, Generalized open sets, Acta Math. Hungar., 75(1-2) (1997), 65-87.

Csaszar, Generalized topology, generalized continuity, Acta Math. Hungar., 94(4) (2002), 351-357.

Csaszar, Generalized open sets in generalized topologies, Acta Math. Hungar., 106(1-2) (2005),57-66.

Dhananjoy Mandal and M. N. Mukherjee, On a type of generalized closed sets, Bol.Soc.Paran.Mat., 30(2) (2012), 67-76.

- J. Dontchev, M. Ganster and T. Noiri, Unified operation approach of generalized closed sets viaTopological ideals, Math. Japonica., 49(1999), 395 401.
- E. Hayashi, Topologies defined by local properties, Math. Ann., 156(1964), 205 -215.K. Kuratowski, Topology, Vol. I, Academic Press (New York).
- N. Levine, Generalized closed sets in topology, Rent. Circ. Mat. Palermo. 2(19) (1970).89-96.
- S. Maragathavalli, M. Sheik John and D. Sivaraj, On g-closed sets in generalized topological spaces, J. Adv.Res. Pure maths., 2(1) (2010), 57-64.
- H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α -closed setsand α -generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 15(1994), 51-63.
- S. Mashhour, I. A. Hasanein and S. N. El-Deeb, On pre-continuous and weak pre-continuous mappings, Proc. Math. and Phys. Soc. Egypt., 53(1982), 47-53.
- O. Njastad, On some classes of nearly open sets, Pacific Journal of Mathematics., 3 (15) (1965),961-970.
- T. Noiri, Almost αg-closed functions and separation axioms, Acta. Math. Hungar., 3(82) (1999),193-205.
- T. Noiri and V. Popa, Between closed sets and g-closed sets, Rend. Circ. Mat. Palermo., 2(55) (2006), 175-184.
- T. Noiri and B. Roy, Unification of generalized open sets on topological spaces, Acta Math. Hungar.,130(4) (2011), 349 357.
- Roy, On generalized R₀ and R₁ spaces, Acta Math. Hungar., 127(3) (2010), 291-300.
- Roy and M. N. Mukherjee, On typical topology induced by a grill, Soochow J. Math., 4(33)(2007),771-786.
- Roy and M. N. Mukherjee, Concerning topologies induces by principal grills, An. Stiint. Univ. AL. I.Cuza Iasi. Mat. (N.S.), 2(55) (2009), 285-294.
- B. Roy M. N. Mukherjee and S. K. Ghosh, On a Subclass of preopen sets via grills, Stud. Si Cercet. Stiint. Ser. Mat. Univ. Bacau., 18(2008), 255-266.

- D. Saravanakumar, N. Kalaivani, On grill sp-open set in grill topological spaces, J. New Theory, 23(4) (2018), 85-92.
- D. Saravanakumar, N. Kalaivani, Gs_{α} -open sets in grill topological spaces, Mat. Bilten,1(44) (2020), 79-90.
- D. Saravanakumar, N. Kalaivani, G. Sai Sundrara Krishnan, On $\tilde{\mu}$ -open sets in generalized topological spaces, Malaya J. Mat., 3(3) (2015), 268-276.
- M.S. Sarsak, Weak separation axioms in generalized topological spaces, Acta Math. Hun-Gar.,131(1-2) (2011), 110-121.
- Shyamapada Modak & Sukalyan Mistry "Continuities on Ideal Minimal Spaces" Aryabhatta J. of Maths & informatics vol. 5 (1) (2013), 101-106.
- Shyamapada Modak & Sukalyan Mistry "Grill on generalized Topological spaces" Aryabhatta J. of Maths & Sukalyan Mistry (Grill on generalized Topological spaces) Aryabhatta J. of Maths & Sukalyan Mistry (Grill on generalized Topological spaces) Aryabhatta J. of Maths & Sukalyan Mistry (Grill on generalized Topological spaces) Aryabhatta J. of Maths & Sukalyan Mistry (Grill on generalized Topological spaces) Aryabhatta J. of Maths & Sukalyan Mistry (Grill on generalized Topological spaces) Aryabhatta J. of Maths & Sukalyan Mistry (Grill on generalized Topological spaces) Aryabhatta J. of Maths & Sukalyan Mistry (Grill on generalized Topological spaces) Aryabhatta J. of Maths & Sukalyan Mistry (Grill on generalized Topological spaces) Aryabhatta J. of Maths & Sukalyan Mistry (Grill on generalized Topological spaces) Aryabhatta J. of Maths & Sukalyan Mistry (Grill on generalized Topological spaces) Aryabhatta J. of Maths & Sukalyan Mistry (Grill on generalized Topological spaces) Aryabhatta J. of Maths & Sukalyan Mistry (Grill on generalized Topological spaces) Aryabhatta J. of Maths & Sukalyan Mistry (Grill on generalized Topological spaces) Aryabhatta J. of Maths & Sukalyan Mistry (Grill on generalized Topological spaces) Aryabhatta J. of Maths & Sukalyan Mistry (Grill on generalized Topological spaces) Aryabhatta J. of Maths & Sukalyan Mistry (Grill on generalized Topological spaces) Aryabhatta J. of Maths & Sukalyan Mistry (Grill on generalized Topological spaces) Aryabhatta J. of Maths & Sukalyan Mistry (Grill on generalized Topological spaces) Aryabhatta J. of Maths & Sukalyan Mistry (Grill on generalized Topological spaces) Aryabhatta J. of Maths & Sukalyan Mistry (Grill on generalized Topological spaces) Aryabhatta J. of Maths & Sukalyan Mistry (Grill on generalized Topological spaces) Aryabhatta J. of Maths & Sukalyan Mistry (Grill on generalized Topological spaces) Aryabhatta Mistry (Grill on generalized Topological spaces) Aryabhatta Mistry (Grill on generalized Topological spaces) Aryabhatta Mistry (Gril
- R. Vaidyanathaswamy, The localization theory in set topology, Proc. Indian Acad. Sci. Sect A., 20 (1944), 51-61.
- W. J. Thron, Proximity structures and grills, Math. Ann., 206(1973), 35-62.
- M. K. R. S. Veerakumar, ĝ-closed sets in topological spaces, Bull. Allah. Math. Soc, 18(2003), 99-112.
- N. V. Velicko H-closed topological spaces, Math. Sb., 70(112) (1966), 98-112, AMS. Trans., (1968),103-118.