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ABSTRACT 
In this work, we establish various functional-analytical features of these decompositions 
and demonstrate their applicability to wavelet and gabor systems. First, we demonstrate 
the stability of atomic decompositions and frames under minor perturbations. This is 
motivated by analogous classical perturbation outcomes for bases, such as the Kato 
perturbation theorem and the Paley-Wiener basis stability requirements. The 
methodological contributions are concentrated on creating confidence bands, change-
point tests, and two-sample tests because these procedures seem appropriate for the 
suggested situation. The reason for its selection and analysis in the thesis is its connection 
to operators. Frame sequences are created, and an investigation is conducted into a class 
of operators connected to a specific Bessel sequence, which turns it into a frame for every 
operator in the class. 
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1. INTRODUCTION 
Over a century since the introduction, the Fourier transform or Fourier series has been used as an important tool in 
analysis for approximating a function in the space of square integrable functions over the reals, which is denoted by 
𝐿𝐿2(𝑅𝑅). Though it has been an important tool, it has a significant lacking for signal analysis. A signal has two main 
components i.e. the intensity of the signal and the duration of the particular intensity. To know of a signal fully, one needs 
to get the information of the intensity and the duration of the signal. 
An application to annual temperature profiles and a simulation study are used to investigate the properties of the finite 
sample. The creation of statistical methodology for the analysis of functional data collected over time and/or space has 
been an active subject of research because to the recent significant evolution in improved data collection technologies. 
The majority of the research has focused on creating technique based on Hilbert space, for which a complete theory 
currently exists. Nonetheless, Ramsay and Silverman (2005) have extensively explored the crucial importance of 
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smoothness, and practically all functions that are fit in practice are at least continuous. In these situations, fully functional 
solutions may be more advantageous than dimension reduction strategies, which may result in a loss of information.  The 
required two-sample and change-point tests in Sections will be developed using the theoretical contributions. Here, the 
suggested method's utility is more obvious because it can be challenging to distinguish variations between two smooth 
curves in real-world scenarios. Furthermore, in many practical scenarios, minor differences might not even be 
significant.  
Consequently, the "relevant" setting is chosen, which permits predetermined departures from an assumed null function 
rather than attempting to test for precise equality under the null hypothesis.  
 
Example 1: If 𝜇𝜇1 and 𝜇𝜇2are the mean functions corresponding to two samples, and C([0,1]), the space of continuous 
functions on the compact interval [0,1], is endowed with the sup-norm ‖𝑓𝑓‖ = sup𝑡𝑡∈[0,1]  |𝑓𝑓(𝑡𝑡)|, then hypotheses of the 
type 

𝐻𝐻0: ‖𝜇𝜇1 − 𝜇𝜇2‖ ≤ Δ  and  𝐻𝐻1: ‖𝜇𝜇1 − 𝜇𝜇2‖ > Δ… … (1)  
where Δ ≥ 0 signifies a prespecified constant.  
Therefore, a particular case of (1) is the classical instance of verifying perfect equality, which is obtained by the choice Δ 
= 0. In applications, nevertheless, it could make sense to thoroughly consider your options and pinpoint the exact change 
size that you are truly interested in. Testing pertinent hypotheses specifically avoids the consistency issue that was noted 
by Berkson (1938), according to which, if the sample size is large enough, any consistent test will discover any arbitrary 
tiny change in the mean functions. This viewpoint can also be seen as a specific kind of bias-variance trade-off. A Monte 
Carlo simulation study is used in Section to assess the finite-sample qualities of the pertinent two-sample and change-
point tests and, in particular, the bootstrap techniques' performance. Several scenarios are examined, and the results 
indicate that the suggested methodology functions rather well. Additionally, a two-sample and change-point test 
application for an archetypal data example—annual temperature profiles obtained at Australian measurement 
stations—is provided in Section. 
 

2. 𝑪𝑪(𝑻𝑻)-VALUED RANDOM VARIABLES 
The set of continuous functions from T into the real line R is denoted by C(T), and some fundamental information 
regarding central limit theorems and invariance principles for C(T)-valued random variables is given in this section. The 
sup norm ‖⋅‖, which is defined as‖𝑓𝑓‖ = sup𝑡𝑡∈𝑇𝑇 |𝑓𝑓(𝑡𝑡)|, will be applied to C(T) in the following, unless otherwise specified, 
making (𝐶𝐶(𝑇𝑇), ‖ ⋅ ‖) a Banach space.  
The open sets with respect to the sup norm ‖⋅‖ then generate the natural Borel σ-field B(T) over C(T). It is understood 
that the measurability of random variables on (Ω,𝒜𝒜,𝑃𝑃) having values in C(T) is related to B(T). It is assumed that the 
underlying probability space (Ω,𝒜𝒜,ℙ) is complete. Furthermore, it is assumed that (𝑇𝑇,𝜌𝜌) is completely limited in terms 
of a metric ρ on 𝑇𝑇. 𝑇𝑇 metrizability suggests that 𝐶𝐶(𝑇𝑇) is separable, avoiding problems with measurability. Moreover, 𝐶𝐶(𝑇𝑇)  
is tight for any random variable 𝑋𝑋.  
Assume that 𝑋𝑋 is a random variable with values in 𝐶𝐶(𝑇𝑇) and on (Ω,𝒜𝒜,𝑃𝑃). Formally, expectations and higher-order 
moments of random variables valued in Banach space can be introduced in many ways. Every time 𝔼𝔼[‖𝑋𝑋‖] < ∞, the 
expectation 𝔼𝔼[𝑋𝑋]  of a random variable 𝑋𝑋 in 𝐶𝐶(𝑇𝑇) exists as an element of 𝐶𝐶(𝑇𝑇). Every time 𝔼𝔼[‖𝑋𝑋‖𝑘𝑘] = 𝔼𝔼[sup𝑡𝑡∈𝑇𝑇 |𝑋𝑋(𝑡𝑡)|𝑘𝑘] <
∞ the k th moment is present. Point-wise evaluation can be used to calculate the kth order moments, which are expressed 
as 𝔼𝔼[𝑋𝑋(𝑡𝑡1)⋯𝑋𝑋(𝑡𝑡𝑘𝑘)]. Because it enables the point wise computation of covariance kernels, the case 𝑘𝑘 = 2 is significant. 
When a sequence of random variables (𝑋𝑋𝑛𝑛:𝑛𝑛 ∈ ℕ) is asymptotically tight and its finite-dimensional distributions 
converge weakly to the finite-dimensional distributions of a random variable 𝑋𝑋 in 𝐶𝐶(𝑇𝑇), that is, 

�𝑋𝑋𝑛𝑛(𝑡𝑡1), … ,𝑋𝑋𝑛𝑛(𝑡𝑡𝑘𝑘)� ⇒ �𝑋𝑋(𝑡𝑡1), … ,𝑋𝑋(𝑡𝑡𝑘𝑘)�…..(1(a)) 
for every 𝑡𝑡1, … , 𝑡𝑡𝑘𝑘 ∈ 𝑇𝑇 and whichever 𝑘𝑘 ∈ ℕ, where the sign " ⇒ " designates convergence in distribution in ℝ𝑘𝑘 . For every 
𝑡𝑡1, … , 𝑡𝑡𝑘𝑘 , �𝑋𝑋(𝑡𝑡1), … ,𝑋𝑋(𝑡𝑡𝑘𝑘)� ∼ 𝒩𝒩𝑘𝑘(0, Σ), where the (𝑖𝑖, 𝑗𝑗) th entry of the covariance matrix Σ is given by 𝔼𝔼�𝑋𝑋(𝑡𝑡𝑖𝑖)𝑋𝑋�𝑡𝑡𝑗𝑗��, 𝑖𝑖, 𝑗𝑗 =
1, … , 𝑘𝑘, then a centred random variable 𝑋𝑋 in 𝐶𝐶(𝑇𝑇) is said to be Gaussian if its finite-dimensional distributions are 
multivariate normal. Thus, the covariance function 𝑘𝑘(𝑡𝑡, 𝑡𝑡′) = 𝔼𝔼[𝑋𝑋(𝑡𝑡)𝑋𝑋(𝑡𝑡′)] fully characterises the distribution of 𝑋𝑋.; 
Deriving conditions under which the central limit theorem (CLT) applies in generic Banach spaces is a challenging issue, 
notably more intricate than its counterpart for real-valued random variables. The finiteness of the underlying random 
variables' second moments does not offer a necessary and sufficient condition in Banach spaces. In order to overcome 
the problem, complex theory was developed, leading to the concepts of type 2 and cotype 2 Banach spaces (for a 
summary, refer to Ledoux and Talagrand's 1991 book). To achieve the CLT, however, additional assumptions are 
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required because the Banach space of continuous functions on a compact interval lacks the necessary type and cotype 
qualities. This is particularly true when integrating time series of continuous functions into the framework. The idea of 
φ-mixing sequences �𝜂𝜂𝑗𝑗: 𝑗𝑗 ∈ ℕ� of 𝐶𝐶(𝑇𝑇)-valued random variables is proposed to explain the dependence of the 
observations. Firstly, for any two σ-fields ℱ and 𝒢𝒢, define 

𝜙𝜙(ℱ,𝒢𝒢) = sup{|ℙ(𝐺𝐺 ∣ 𝐹𝐹) − ℙ(𝐺𝐺)|:𝐹𝐹 ∈ ℱ,𝐺𝐺 ∈ 𝒢𝒢,ℙ(𝐹𝐹) > 0}…….(2) 
where ℙ(𝐺𝐺 ∣ 𝐹𝐹) indicates the conditional likelihood of 𝐺𝐺 specified 𝐹𝐹. Subsequent, signify by ℱ𝑘𝑘𝑘𝑘

′  the 𝜎𝜎-field created by 
�𝜂𝜂𝑗𝑗: 𝑘𝑘 ≤ 𝑗𝑗 ≤ 𝑘𝑘′�. Then describe the 𝜑𝜑-mixing measurement as 

𝜑𝜑(𝑘𝑘) = sup
𝑘𝑘′∈ℕ

 𝜙𝜙�ℱ1𝑘𝑘
′ ,ℱ𝑘𝑘′+𝑘𝑘

∞ �…..(3) 

and call the sequence �𝜂𝜂𝑗𝑗: 𝑗𝑗 ∈ ℕ�𝜑𝜑-mixing every time lim𝑘𝑘→∞ 𝜑𝜑(𝑘𝑘) = 0. 
The following requirements are enforced to get a CLT and an invariance principle for sequences of φ-mixing random 
elements in 𝐶𝐶(𝑇𝑇). 
 
ASSUMPTION 1: �𝑋𝑋𝑛𝑛,𝑗𝑗:𝑛𝑛 ∈ ℕ, 𝑗𝑗 = 1, … ,𝑛𝑛� is an selection of 𝐶𝐶(𝑇𝑇)-valued arbitrary variables where, for some 𝑗𝑗 = 1, … ,𝑛𝑛 
and 𝑛𝑛 ∈ ℕ, 

𝑋𝑋𝑛𝑛,𝑗𝑗 = 𝜂𝜂𝑗𝑗 + 𝜇𝜇𝑛𝑛,𝑗𝑗 … … . . (4)  
with outlooks 𝔼𝔼�𝑋𝑋𝑛𝑛,𝑗𝑗� = 𝜇𝜇𝑛𝑛,𝑗𝑗  and error procedure �𝜂𝜂𝑗𝑗: 𝑗𝑗 ∈ ℕ� ⊂ 𝐶𝐶(𝑇𝑇). Additionally, the subsequent conditions are 
expected to hold: (A1) There is a continuous 𝐾𝐾 s.t., for all 𝑗𝑗 ∈ ℕ, 

𝔼𝔼 ��𝜂𝜂𝑗𝑗�
2+𝜈𝜈� ≤ 𝐾𝐾,  𝔼𝔼 ��𝜂𝜂𝑗𝑗�

𝐽𝐽� < ∞……(5) 
for certain 𝑣𝑣 > 0 and some straight integer 𝐽𝐽 ≥ 2. (A2) The miscalculation procedure �𝜂𝜂𝑗𝑗: 𝑗𝑗 ∈ ℕ� is stationary. There 
occurs a real-valued nonnegative arbitrary variable 𝑀𝑀 with 𝔼𝔼[𝑀𝑀𝐽𝐽] < ∞, s.t., for some 𝑛𝑛 ∈ ℕ and 𝑗𝑗 = 1, … ,𝑛𝑛, the disparity 

�𝑋𝑋𝑛𝑛,𝑗𝑗(𝑡𝑡) − 𝑋𝑋𝑛𝑛,𝑗𝑗(𝑡𝑡′)� ≤ 𝑀𝑀𝑀𝑀(𝑡𝑡, 𝑡𝑡′)…..(6) 
holds almost confidently for all 𝑡𝑡, 𝑡𝑡′ ∈ 𝑇𝑇. The continuous 𝐽𝐽 is the identical as in (A1). 
(A4) �𝜂𝜂𝑗𝑗: 𝑗𝑗 ∈ ℕ� is 𝜑𝜑-mixing through mixing coefficients sustaining for particular 𝜏𝜏‾ ∈ (1/(2 + 2𝑣𝑣),1/2 ) the circumstance 

∑  ∞
𝑘𝑘=1 𝑘𝑘1/(1/2−𝜏𝜏‾)𝜑𝜑(𝑘𝑘)1/2 < ∞,  ∑  ∞

𝑘𝑘=1 (𝑘𝑘 + 1)𝐽𝐽/2−1𝜑𝜑(𝑘𝑘)1/𝐽𝐽 < ∞……..(7) 
where the coefficients 𝑣𝑣 and 𝐽𝐽 are the similar as in (A1). It should be noted that similar presumptions can be made for 
random variable sequences (𝑋𝑋𝑛𝑛:𝑛𝑛 ∈ ℕ ) in 𝐶𝐶(𝑇𝑇). The covariance structure is the same in every row for triangular arrays 
that satisfy Assumption 1 since they only differ in their means from row to row. 

Cov �𝑋𝑋𝑛𝑛,𝑗𝑗(𝑡𝑡),𝑋𝑋𝑛𝑛,𝑗𝑗′(𝑡𝑡′)� = Cov �𝜂𝜂𝑗𝑗(𝑡𝑡), 𝜂𝜂𝑗𝑗′(𝑡𝑡′)� = 𝛾𝛾(𝑗𝑗 − 𝑗𝑗′, 𝑡𝑡, 𝑡𝑡′)…..(8) 
for all 𝑛𝑛 ∈ ℕ and 𝑗𝑗, 𝑗𝑗′ = 1, … ,𝑛𝑛 (note that 𝛾𝛾(−𝑗𝑗, 𝑡𝑡, 𝑡𝑡′) = 𝛾𝛾(𝑗𝑗, 𝑡𝑡′, 𝑡𝑡) ). The CLT that follows is implied by Assumption 1 and 
is demonstrated in Section. In this chapter, 𝐷𝐷(𝜔𝜔,𝜌𝜌) is the packing number with respect to the metric ρ, which is the 
maximal number of ω-separated points in 𝑇𝑇. The symbol ⇝ indicates weak convergence in (𝐶𝐶(𝑇𝑇))𝑘𝑘 or (𝐶𝐶([0,1] × 𝑇𝑇))𝑘𝑘for 
some 𝑘𝑘 ∈ ℕ 
 
THEOREM 1: Let �𝑋𝑋𝑛𝑛,𝑗𝑗:𝑛𝑛 ∈ ℕ, 𝑗𝑗 = 1, … ,𝑛𝑛� denote a triangular selection of arbitrary variables in 𝐶𝐶(𝑇𝑇) with outlooks 
𝐸𝐸�𝑋𝑋𝑛𝑛,𝑗𝑗� = 𝜇𝜇𝑛𝑛,𝑗𝑗  s.t. Assumption 4.1 is fulfilled and ∫0

𝜏𝜏 𝐷𝐷(𝜔𝜔,𝜌𝜌)1/𝐽𝐽𝑑𝑑𝑑𝑑 < ∞ for some 𝜏𝜏 > 0. Before 
𝐺𝐺𝑛𝑛 = 1

√𝑛𝑛
∑  𝑛𝑛
𝑗𝑗=1 �𝑋𝑋𝑛𝑛,𝑗𝑗 − 𝜇𝜇𝑛𝑛,𝑗𝑗� ⇝ 𝑍𝑍…..(9) 

in 𝐶𝐶(𝑇𝑇), where 𝑍𝑍 exists a centered Gaussian arbitrary variable with covariance function 

𝐶𝐶(𝑠𝑠, 𝑡𝑡) = Cov�𝑍𝑍(𝑠𝑠),𝑍𝑍(𝑡𝑡)� = �  
∞

𝑖𝑖=−∞

 𝛾𝛾(𝑖𝑖, 𝑠𝑠, 𝑡𝑡) … … (10)  

REMARK 1: 
(a) For φ-mixing processes with exponentially diminishing mixing coefficients, that is, 𝜑𝜑(𝑘𝑘) ≤ 𝑐𝑐𝑎𝑎𝑘𝑘(𝑘𝑘 ∈ ℕ) for some 

𝑎𝑎 ∈ (0,1), Assumption 4.1 condition (A4) is satisfied. 
(b) The interval 𝑇𝑇 = [0,1] equipped with the metric 𝜌𝜌(𝑠𝑠, 𝑡𝑡) = |𝑠𝑠 − 𝑡𝑡|𝜃𝜃for a positive constant 𝜃𝜃 ∈ (0,1] is the subject 

of the sections that follow. The packing number in this instance satisfies 𝐷𝐷(𝜔𝜔,𝜌𝜌) ≲ �𝜏𝜏−1/𝜃𝜃�, suggesting 

∫  𝜏𝜏0 𝐷𝐷(𝜔𝜔,𝜌𝜌)1/𝐽𝐽𝑑𝑑𝑑𝑑 ≲ ∫  𝜏𝜏0 �𝜔𝜔−1/𝜃𝜃�1/𝐽𝐽𝑑𝑑𝑑𝑑 ≲ 𝜏𝜏1−1/(𝐽𝐽𝐽𝐽)

1−1/(𝐽𝐽𝐽𝐽)
< ∞…..(11) 

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh


Introduce Some Concepts of the Frames in Hilbert and Banach Spaces in Random Variables 

ShodhKosh: Journal of Visual and Performing Arts 1771 
 

whenever the even integer 𝐽𝐽 fulfills 𝐽𝐽 > 1/𝜃𝜃. Thus, under this assumption, Theorem 1 is applicable to Hölder continuous 
processes. For every 𝜃𝜃 ∈ (0,1/2), for instance, the trajectories of the Brownian motion on the interval [0,1] are Hölder 
continuous of order θ; in this scenario, we must suppose 𝐽𝐽 ≥ 4 in Assumption 1. Generally speaking, a larger summability 
condition on the mixing coefficients is needed for less smoothness. 𝐽𝐽 = 2  is enough to obtain the CLT in Theorem 1 for 
processes with Hölder continuous routes with 𝜃𝜃 > 1/2, which includes Lipschitz continuity. The process �𝕍̂𝕍𝑛𝑛:𝑛𝑛 ∈ ℕ� 
will then have a weak invariance principle verified by 

𝕍̂𝕍𝑛𝑛(𝑠𝑠) =
1
√𝑛𝑛

�  
⌊𝑠𝑠𝑠𝑠⌋

𝑗𝑗=1

 �𝑋𝑋𝑛𝑛,𝑗𝑗 − 𝜇𝜇𝑛𝑛,𝑗𝑗�… … . . (12)

 +√𝑛𝑛 �𝑠𝑠 −
⌊𝑠𝑠𝑠𝑠⌋
𝑛𝑛
� �𝑋𝑋𝑛𝑛,⌊𝑠𝑠𝑠𝑠⌋+1 − 𝜇𝜇𝑛𝑛,⌊𝑠𝑠𝑠𝑠⌋+1�… … (13)

 

useful for the change-point analysis suggested. Letter that the procedure �𝕍𝕍�𝑛𝑛(𝑠𝑠): 𝑠𝑠 ∈ [0,1]) is an division of the Banach 
space 𝐶𝐶([0,1],𝐶𝐶(𝑇𝑇)) = {𝜙𝜙: [0,1] → 𝐶𝐶(𝑇𝑇) ∣ 𝜙𝜙 is continuous}, where the norm on this space is specified by 

sup
𝑠𝑠∈[0,1]

 sup
𝑡𝑡∈𝑇𝑇

 |𝜙𝜙(𝑠𝑠, 𝑡𝑡)| = ‖𝜙𝜙‖𝐶𝐶([0,1]×𝑇𝑇) … … . (14)  
Observe moreover that the quantity 𝜙𝜙(𝑠𝑠) for each s in the interval 𝑠𝑠 ∈ [0,1] is an element of 𝐶𝐶(𝑇𝑇), a real-valued 
continuous function whose domain is T. Express the value of ϕ(s) at the point t∈T as 𝜙𝜙(𝑠𝑠, 𝑡𝑡). Additionally, every element 
in 𝐶𝐶([0,1],𝐶𝐶(𝑇𝑇))  can also be thought of as an element in 𝐶𝐶([0,1] × 𝑇𝑇).. The notation ‖⋅‖ is used here and throughout the 
chapter to indicate any of the arising standards because the context will indicate which space corresponds to it. 
Additionally, we utilise the notation 𝑠𝑠 ∧ 𝑠𝑠′ = min{𝑠𝑠, 𝑠𝑠′} quite a bit. 
 
THEOREM 2: Assume that Theorem 1 premises are met. The weak invariance principle is then valid, which means 

𝕍̂𝕍𝑛𝑛 ⇝ 𝕍𝕍… … (4.15)  
in 𝐶𝐶([0,1] × 𝑇𝑇), where 𝕍𝕍 stays a centered Gaussian portion on 𝐶𝐶([0,1] × 𝑇𝑇) categorized by 

Cov�𝕍𝕍(𝑠𝑠, 𝑡𝑡),𝕍𝕍(𝑠𝑠′, 𝑡𝑡′)� = (𝑠𝑠 ∧ 𝑠𝑠′)𝐶𝐶(𝑡𝑡, 𝑡𝑡′) … … (4.16)  
and long-run covariance function 𝐶𝐶 is specified in (11). 
 
REMARK 2: 𝐿𝐿𝑝𝑝-m-approximability is another concept of dependency that is commonly applied to Hilbert space valued 
time series. A similar notion may be defined for the case of 𝐶𝐶(𝑇𝑇)-valued time series that we study here, where we 
essentially need that an m-dependent process be able to approximate the error process in model (1). More specifically, 
this means that it admits a representation of the form 𝜂𝜂𝑗𝑗 = 𝑓𝑓�𝜀𝜀𝑗𝑗 , 𝜀𝜀𝑗𝑗−1, 𝜀𝜀𝑗𝑗−2, … � with a sequence (𝜀𝜀𝑛𝑛:𝑛𝑛 ∈ ℕ) of random 
variables and that there exists, for each j, an independent copy of �𝜀𝜀𝑛𝑛

(𝑗𝑗):𝑛𝑛 ∈ ℕ� of (𝜀𝜀𝑛𝑛:𝑛𝑛 ∈ ℕ) s.t. the random variables 

𝜂𝜂𝑗𝑗,𝑚𝑚 = 𝑓𝑓 �𝜀𝜀𝑗𝑗 , … , 𝜀𝜀𝑗𝑗−𝑚𝑚+1, 𝜀𝜀𝑗𝑗−𝑚𝑚
(𝑗𝑗) , 𝜀𝜀𝑗𝑗−𝑚𝑚−1

(𝑗𝑗) , … � satisfy 

∑  ∞
𝑚𝑚=1 𝔼𝔼 ��𝜂𝜂𝑚𝑚 − 𝜂𝜂𝑚𝑚,𝑚𝑚�

2�
1/2

< ∞…..(17) 
(note that ‖ ⋅ ‖ is the sup-norm on 𝐶𝐶(𝑇𝑇) ). Substituting in Assumption 1 the state (A4) by 

�  
∞

𝑚𝑚=1

𝑚𝑚1/(1/2−𝜏𝜏‾)𝔼𝔼 ��𝜂𝜂𝑚𝑚 − 𝜂𝜂𝑚𝑚,𝑚𝑚�
2�
1/2

< ∞ 

∑  ∞
𝑚𝑚=1 (𝑚𝑚 + 1)𝐽𝐽/2−1𝔼𝔼 ��𝜂𝜂𝑚𝑚 − 𝜂𝜂𝑚𝑚,𝑚𝑚�

𝐽𝐽�
1/𝐽𝐽

< ∞…..(18) 
a CLT can be demonstrated for Banach space-valued phase series of the procedure (1) through an 𝑚𝑚 approximable error 
method in 𝐶𝐶(𝑇𝑇). These findings can then be applied to m-approximable 𝐶𝐶([0,1])-valued time series to construct a 
statistical approach similar to that described in Section. Furthermore, it is demonstrated using comparable arguments 
to those presented in Hörmann and Kokoszka (2010)'s Example 4.1 that this dependency model encompasses fAR(1) 
processes. 
 

3. THE TWO-SAMPLE PROBLEM 
Moving forward, the situation 𝑇𝑇 = [0,1] will be considered, as this is the standard option for functional data analysis. For 
every ∈(0,1]), the equivalent metric is 𝜌𝜌(𝑠𝑠, 𝑡𝑡) = |𝑠𝑠 − 𝑡𝑡|𝜃𝜃 . Statistics has a long history with two-sample problems, and the 
corresponding tests are among the most widely used statistical techniques. Numerous contributions have also been 
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made for the functional setting. In the current context, two are noteworthy. The impact of smoothing while transforming 
discrete observations into functional data was examined by Hall and van Keilegom (2007). Based on Hilbert-space 
theory, Horváth et al. (2013) presented two-sample tests for 𝐿𝐿𝑝𝑝 − 𝑚𝑚 approximable functional time series.  In the Banach-
space framework of Section, a two-sample test is proposed here. In order to achieve this, take two independent samples 
of 𝐶𝐶([0,1])- valued random variables, 𝑋𝑋1, … ,𝑋𝑋𝑚𝑚 and 𝑌𝑌1, … ,𝑌𝑌𝑛𝑛. Assumption 1 (A2) states that expectation functions and 
covariance kernels exist. They are represented by the notations 𝜇𝜇1 = 𝔼𝔼[𝑋𝑋1] and 𝜇𝜇2 = 𝔼𝔼[𝑌𝑌1],, and the formulas 𝑘𝑘1(𝑡𝑡, 𝑡𝑡′) =
Cov�𝑋𝑋1(𝑡𝑡),𝑋𝑋1(𝑡𝑡′)� and 𝑘𝑘2(𝑡𝑡, 𝑡𝑡′) = Cov�𝑌𝑌1(𝑡𝑡),𝑌𝑌1(𝑡𝑡′)�, respectively. The magnitude of the highest deviation is thus of 
interest. 

𝑑𝑑∞ = ‖𝜇𝜇1 − 𝜇𝜇2‖ = sup
𝑡𝑡∈[0,1]

 |𝜇𝜇1(𝑡𝑡) − 𝜇𝜇2(𝑡𝑡)|…..(19) 

between the two mean curves, or in evaluating the theories regarding a meaningful difference 
𝐻𝐻0:𝑑𝑑∞ ≤ Δ  versus  𝐻𝐻1:𝑑𝑑∞ > Δ… … (20)  

where Δ ≥ 0 is a predetermined constant that the test's user determines. Again, take note that this setup contains the 
exceptional case Δ=0 for the "classical" two-sample problem 𝐻𝐻0: 𝜇𝜇1 = 𝜇𝜇2 vs 𝐻𝐻0: 𝜇𝜇1 ≠ 𝜇𝜇2--which, to the best of our 
knowledge, has not yet been studied for 𝐶𝐶([0,1])--valued data. Note that studies looking for significant variations 
between two finite-dimensional characteristics that relate to various populations have primarily been examined in the 
literature on biostatistics, as demonstrated by Wellek (2010). The samples are considered to be balanced in this section 
in the sense that 

𝑚𝑚
𝑛𝑛 + 𝑚𝑚

⟶ 𝜆𝜆 ∈ (0,1) … . . (21)  

as 𝑚𝑚,𝑛𝑛 → ∞. Furthermore, let 𝑋𝑋1, … ,𝑋𝑋𝑚𝑚 and 𝑌𝑌1, … ,𝑌𝑌𝑛𝑛 be sampled as of independent period series �𝑋𝑋𝑗𝑗: 𝑗𝑗 ∈ ℕ� and 
�𝑌𝑌𝑗𝑗: 𝑗𝑗 ∈ ℕ� that content Assumption 1 with 𝐽𝐽 > 1/𝜃𝜃. Under given these prerequisites, both functional time series meet 
the CLT, and Theorem 1 therefore dictates that 

√𝑛𝑛 + 𝑚𝑚�
1
𝑚𝑚
� 
𝑚𝑚

𝑗𝑗=1

 �𝑋𝑋𝑗𝑗 − 𝜇𝜇1�,
1
𝑛𝑛
�  
𝑛𝑛

𝑗𝑗=1

 �𝑌𝑌𝑗𝑗 − 𝜇𝜇2��

 ⇝ �
1
√𝜆𝜆

𝑍𝑍1,
1

√1 − 𝜆𝜆
𝑍𝑍2� , … . . (22)

 

where 𝑍𝑍1 and 𝑍𝑍2 are independent, scattered Gaussian processes retaining covariance functions 

𝐶𝐶1(𝑡𝑡, 𝑡𝑡′) = �  
∞

𝑗𝑗=−∞

 𝛾𝛾1(𝑗𝑗, 𝑡𝑡, 𝑡𝑡′)  and  𝐶𝐶2(𝑡𝑡, 𝑡𝑡′) = �  
∞

𝑗𝑗=−∞

 𝛾𝛾2(𝑗𝑗, 𝑡𝑡, 𝑡𝑡′) … … (23)  

here, 𝛾𝛾1 and 𝛾𝛾2 are specified in the discussion that follows Assumption 4.1 and correspond to the corresponding 
sequences �𝑋𝑋𝑗𝑗: 𝑗𝑗 ∈ ℕ� and �𝑌𝑌𝑗𝑗: 𝑗𝑗 ∈ ℕ�. Currently, the samples' independence and the modest convergence in (4.23) 
suggest right away that 

𝑍𝑍𝑚𝑚,𝑛𝑛 = √𝑛𝑛 + 𝑚𝑚�
1
𝑚𝑚
�  
𝑚𝑚

𝑗𝑗=1

 𝑋𝑋𝑗𝑗 −
1
𝑛𝑛
�  
𝑛𝑛

𝑗𝑗=1

 𝑌𝑌𝑗𝑗 − (𝜇𝜇1 − 𝜇𝜇2)� ⇝ 𝑍𝑍… … (24)  

in 𝐶𝐶([0,1]) as 𝑚𝑚,𝑛𝑛 → ∞, anywhere 𝑍𝑍 = 𝑍𝑍1/√𝜆𝜆 + 𝑍𝑍2/√1 − 𝜆𝜆 is a centered Gaussian procedure thru covariance function 

𝐶𝐶(𝑡𝑡, 𝑡𝑡′) = Cov�𝑍𝑍(𝑡𝑡),𝑍𝑍(𝑡𝑡′)� =
1
𝜆𝜆
𝐶𝐶1(𝑡𝑡, 𝑡𝑡′) +

1
1 − 𝜆𝜆

𝐶𝐶2(𝑡𝑡, 𝑡𝑡′) … … (25)  

Beneath the merging in (24), the measurement 

𝑑̂𝑑∞ = �
1
𝑚𝑚
�  
𝑚𝑚

𝑗𝑗=1

 𝑋𝑋𝑗𝑗 −
1
𝑛𝑛
�  
𝑛𝑛

𝑗𝑗=1

 𝑌𝑌𝑗𝑗�… … . . (26)  

is a plausible estimator of the maximal deviation 𝑑𝑑∞ = ‖𝜇𝜇1 − 𝜇𝜇2‖, and for large values of 𝑑̂𝑑∞, the null hypothesis in (4.3) 
is rejected. To create a test with a predefined asymptotic level, the following steps are taken to establish the limit 
distribution of 𝑑̂𝑑∞. In order to achieve this, let 

ℰ± = {𝑡𝑡 ∈ [0,1]: 𝜇𝜇1(𝑡𝑡) − 𝜇𝜇2(𝑡𝑡) = ±𝑑𝑑∞} … … . (27)  
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if 𝑑𝑑∞ > 0, and outline ℰ+ = ℰ− = [0,1] if 𝑑𝑑∞ = 0. In conclusion, signify by ℰ = ℰ+ ∪ ℰ−the set of extremal points of the 
variance 𝜇𝜇1 − 𝜇𝜇2 of the dual mean functions. The principal main outcome establishes the asymptotic circulation of the 
statistic 𝑑̂𝑑∞. 
 
THEOREM 4.3:  If 𝑋𝑋1, … ,𝑋𝑋𝑚𝑚 and 𝑌𝑌1, … ,𝑌𝑌𝑛𝑛 are sampled as of independent time series �𝑋𝑋𝑗𝑗: 𝑗𝑗 ∈ ℕ� and �𝑌𝑌𝑗𝑗: 𝑗𝑗 ∈ ℕ� in 𝐶𝐶([0,1]), 
both sustaining Assumption 4.1 thru metric 𝜌𝜌(𝑠𝑠, 𝑡𝑡) = |𝑠𝑠 − 𝑡𝑡|𝜃𝜃 ,𝜃𝜃 ∈ (0,1], 𝐽𝐽𝐽𝐽 > 1, then 

𝑇𝑇𝑚𝑚,𝑛𝑛 = √𝑛𝑛 + 𝑚𝑚�𝑑̂𝑑∞ − 𝑑𝑑∞�→
𝒟𝒟 
𝑇𝑇(ℰ) … … (28)  

Anywhere 
𝑇𝑇(ℰ) = max �sup

𝑡𝑡∈ℰ+
 𝑍𝑍(𝑡𝑡), sup

𝑡𝑡∈ℰ−
 − 𝑍𝑍(𝑡𝑡)�… … (29)  

and the centered Gaussian procedure 𝑍𝑍 is specified by (27) and sets ℰ+and ℰ−are distinct in (29). It is important to note 
that even with i.i.d. data, the limit distribution is not distribution-free because it depends intricately on the set E of 
extremal points of the difference 𝜇𝜇1 − 𝜇𝜇2. Specifically, two sets of processes with matching mean functions 𝜇𝜇1, 𝜇𝜇2 and 
𝜇̃𝜇1, 𝜇̃𝜇2 are possible, such that ‖𝜇𝜇1 − 𝜇𝜇2‖ = ‖𝜇̃𝜇1 − 𝜇̃𝜇2‖. However, if the corresponding sets of extremal points E and E ˜ do 
not coincide, then the respective limit distributions in Theorem 3 will disagree completely. Theorem 3 proof is provided 
in Section, For the random variable ([0,1]) , it follows in Theorem 4.3 that in the case 𝑑𝑑∞ = 0,ℰ+ = ℰ− = [0,1]. 

𝑇𝑇 = max
𝑡𝑡∈[0,1]

 |𝑍𝑍(𝑡𝑡)| … … (30)  
This is a straightforward outcome of the continuous mapping theorem and the weak convergence (4.24) of the process 
𝑍𝑍𝑚𝑚,𝑛𝑛.  

Asymptotic inference: Testing the classical hypothesis 𝐻𝐻0: 𝜇𝜇1 ≡ 𝜇𝜇2.  
Theorem 3 also affords the asymptotic circulations of the test measurement 𝑑̂𝑑∞ in the case of dual identical mean 
functions, that is, if 𝜇𝜇1 ≡ 𝜇𝜇2. At this time, it agrees to the special case Δ = 0, and thus 𝑑𝑑∞ = 0,ℰ± = [0,1]. Thus, 

𝑇𝑇𝑚𝑚,𝑛𝑛→
𝒟𝒟 
𝑇𝑇 (𝑚𝑚,𝑛𝑛 → ∞)……(31) 

where the arbitrary variable 𝑇𝑇 is definite in (4.30). An asymptotic level 𝛼𝛼 test aimed at the standard hypotheses 
𝐻𝐻0: 𝜇𝜇1 = 𝜇𝜇2  versus  𝐻𝐻1: 𝜇𝜇1 ≠ 𝜇𝜇2 … … (32)  

may hence be attained by rejecting 𝐻𝐻0 when 
𝑑̂𝑑∞ >

𝑢𝑢1−𝛼𝛼
√𝑛𝑛 + 𝑚𝑚

… … . (33)  

where 𝑢𝑢1−𝛼𝛼 is the distribution's (1 − 𝛼𝛼)-quantile for the random variable T, which is defined in (30). Keep in mind that 
the long-run covariance operator, which must be determined in applications, is the only dependency this quantile 
possesses. It is simple to see that the test defined by (33) has asymptotic level α and is consistent with Theorem 3. 
 
THEOREM 4: Assume that Theorem 3 conditions are met. Then, for 𝛼𝛼 ∈ (0,1), identify the (1 − 𝛼𝛼)-quantile of the random 
variable T as defined in (30) by 𝑢𝑢1−𝛼𝛼 , and construct the functions 

𝜇𝜇𝑚𝑚,𝑛𝑛
± (𝑡𝑡) = 1

𝑚𝑚
∑  𝑚𝑚
𝑗𝑗=1 𝑋𝑋𝑗𝑗 −

1
𝑛𝑛
∑  𝑛𝑛
𝑗𝑗=1 𝑌𝑌𝑗𝑗 ± 𝑢𝑢1−𝛼𝛼

√𝑛𝑛+𝑚𝑚
….(34) 

Then the established 
𝐶𝐶𝛼𝛼,𝑚𝑚,𝑛𝑛 = �𝜇𝜇 ∈ 𝐶𝐶([0,1]): 𝜇𝜇𝑚𝑚,𝑛𝑛

− (𝑡𝑡) ≤ 𝜇𝜇(𝑡𝑡) ≤ 𝜇𝜇𝑚𝑚,𝑛𝑛
+ (𝑡𝑡) for all 𝑡𝑡 ∈ [0,1]� 

defines a instantaneous asymptotic (1 − 𝛼𝛼) self-assurance band aimed at 𝜇𝜇1 − 𝜇𝜇2, that is, 
lim

𝑚𝑚,𝑛𝑛→∞
 ℙ�𝜇𝜇1 − 𝜇𝜇2 ∈ 𝐶𝐶𝛼𝛼,𝑚𝑚,𝑛𝑛� = 1 − 𝛼𝛼….(35) 

It should be noted that the simultaneous confidence bands presented in Theorem 4 apply for all 𝑡𝑡 ∈ [0,1] and not only 
practically everywhere, in contrast to their counterparts in Hilbert space. This property makes the suggested bands 
easier to understand and potentially more effective for applications. 
 

4. CONCLUSION 
For a series of continuous linear functionals constructed on a Banach space, the concept of frames for operators is 
introduced. It has been demonstrated that the new idea is a logical development of the Banach frames that Casazza et al. 
defined in 2005. Results on generating frames for operators are provided, along with the necessary and sufficient 
conditions that must be met. Furthermore, unless the corresponding sequence spaces fail to meet certain additional 
constraints, it is demonstrated that the concepts of "atomic systems" and "frame for operators" as stated in the thesis 
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are not generally identical. Frame sequences are created, and an investigation is conducted into a class of operators 
connected to a specific Bessel sequence, which turns it into a frame for every operator in the class. 
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