

Original Article
ISSN (Online): 2582-7472

 ShodhKosh: Journal of Visual and Performing Arts

January 2024 5(1), 588–598

How to cite this article (APA): Justin, S., Waoo, A., and Waoo, A. A. (2024). Performance Analysis of Activation Functions in Neural
Networks. ShodhKosh: Journal of Visual and Performing Arts, 5(1), 588–598. doi: 10.29121/shodhkosh.v5.i1.2024.1908

588

PERFORMANCE ANALYSIS OF ACTIVATION FUNCTIONS IN NEURAL NETWORKS

Swapnil Justin 1, Aaradhya Waoo 2, Akhilesh A Waoo 3

1, 3 AKS University, SATNA, MP
2 JUET, Guna, MP

ABSTRACT
Activation functions are pivotal components in neural networks, serving as decision-
making units that evaluate the output of network nodes, thus influencing overall
performance. Selecting the appropriate activation function is crucial for neural network
effectiveness. While various activation functions exist, not all are suitable for every
scenario; some may be deprecated due to operational limitations. Characteristics like
monotonicity, derivatives, and range finiteness are crucial for effective learning. This
research assesses commonly used additive functions such as Swish, ReLU, and Sigmoid,
examining their properties, advantages, and disadvantages. Understanding activation
functions is vital in maximizing neural network (NN) performance. By exploring the
diverse types of activation functions and their respective merits and drawbacks,
researchers and practitioners can make informed choices to optimize NN efficacy across
different applications [1][2][3].

Corresponding Author
Akhilesh A Waoo,
akhileshwaoo@gmail.com
DOI
10.29121/shodhkosh.v5.i1.2024.190
8

Funding: This research received no
specific grant from any funding agency in
the public, commercial, or not-for-profit
sectors.

Copyright: © 2024 The Author(s).
This work is licensed under a Creative
Commons Attribution 4.0
International License.

With the license CC-BY, authors retain
the copyright, allowing anyone to
download, reuse, re-print, modify,
distribute, and/or copy their
contribution. The work must be
properly attributed to its author.

1. INTRODUCTION
Neural Networks (NN) have gained a lot of popularity recently and are being used in various applications. A lot of work
has been done to improve efficiency, different initialization techniques, weight adjustment algorithms, different
architectures, and more. However, one hyperparameter is usually left intact: the activation function [5].
In artificial neural networks (ANNs), neurons work with weights and bias, and through these neurons, the outputs get
generated from the inputs provided to them as shown in Fig. 1. Activation functions transform input signals into output
signals, which are then input to subsequent layers in artificial neural networks (ANNs). The process of building an ANN
involves calculating the sum of inputs and their weights with bias. Later in this calculation, the activation function
is used to determine the output of a particular layer. This result is then passed as input to the next layer of the network.
If there is no activation function, the output of each layer would be a linear function of the layer above, no matter how
many layers the ANN has. This is because, for complex problems, the data cannot be modeled well by a linear equation.
Without a non-linear activation function in the network, an ANN, no matter how many layers it had, would behave just
like a single-layer perceptron, because summing these layers would give you just another linear function.

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh
https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh
https://doi.org/10.29121/granthaalayah.v9.i6.2021.3923
https://dx.doi.org/10.29121/granthaalayah.v10.i3.2022.4503
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
mailto:akhileshwaoo@gmail.com
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.29121/shodhkosh.v5.i1.2024.1908&domain=pdf&date_stamp=2024-01-31
mailto:akhileshwaoo@gmail.com

Performance Analysis of Activation Functions in Neural Networks

ShodhKosh: Journal of Visual and Performing Arts 589

The prediction accuracy of a neural network is determined by the type of activation function used. The most commonly
used activation functions are non-linear.

Figure 1: The model of Artificial Neural Networks

In the past decades, many researchers researched several methods to improve the performance of artificial neural
networks by optimizing training methods, hyperparameter tuning, learned parameters, or network structures, but not
much attention. Activation functions have been paid for.
The purpose of this study is to provide a review of both classic and current activation functions for neural networks. This
involves looking at the mathematical formulations, characteristics, and historical evolution of various activation
functions. The goal is also to conduct a thorough examination of activation functions to find out their strengths,
boundaries, and performance characteristics. This analysis will compare activation functions using criteria such as
convergence speed, accuracy, computational efficiency, and robustness.

2. ROLE OF NEURAL
Neural networks have become the cornerstone for image segmentation, with architectures like Convolutional Neural
Networks (CNNs) and U-Net being particularly successful. Image segmentation involves classifying each pixel in an image
into a specific category, which is crucial for tasks like medical imaging and object detection. U-Net, a CNN-based
architecture, introduced by Ronneberger et al. (2015), has been highly influential due to its encoder-decoder structure
that allows precise localization and context understanding in segmentation tasks. It utilizes down-sampling for feature
extraction and up-sampling for generating detailed segmentations. The integration of skip connections in U-Net helps
preserve spatial information, making it highly effective for biomedical image segmentation. The U-Net architecture has
become a standard for various segmentation applications, significantly improving segmentation accuracy [6].

3. DIFFERENT TYPE OF ACTIVATION FUNCTIONS
3.1 LINEAR ACTIVATION FUNCTION

The Linear Activation Function is one of the simplest activation functions used in neural networks. It computes a linear
transformation of the input data without altering it. This function is often employed in the output layer of regression
models where the prediction output is directly proportional to the input. While less common in hidden layers due to its
limited expressive power compared to non-linear activation functions, it finds utility in specific scenarios, especially
when the network's output needs to be interpretable as a linear combination of inputs [7].

3.2 NONLINEAR ACTIVATION FUNCTION
Nonlinear activation functions are crucial components in neural networks that introduce nonlinearities into the network,
enabling it to learn complex patterns in data. These functions allow neural networks to approximate highly nonlinear
relationships between input and output data. Examples of nonlinear activation functions include ReLU (Rectified Linear
Unit), sigmoid, tanh (hyperbolic tangent), Leaky ReLU, ELU (Exponential Linear Unit), and many others. Each of these
functions has unique properties that impact the network's performance, such as addressing the vanishing gradient
problem, enabling faster convergence, or ensuring bounded output values[8][9][10][11][12][13].

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh

Swapnil Justin, Aaradhya Waoo, Akhilesh A Waoo

ShodhKosh: Journal of Visual and Performing Arts 590

Linear and piece-wise linear functions Linear function Φ(x) = x is the simplest form of activation function. It has a
constant gradient, and the descent is based on this constant value of gradient. The range of linear function is (−∞, ∞),
and has a C1 order of continuity. The piece-wise linear activation can be defined as

Where b is a constant. The derivative of piece-wise linear activation is not defined at x = ±b, and it is zero for x < −b and
x > b. The linear function has a C0 order of continuity and a range of [0, 1][44v].
Step function
Step function It is also known as Heaviside or the unit step function and is defined as

The step function is one of the most basic forms of activation function. The derivative of a step function is zero when x
6= 0, and it is not defined when x ≠ 0. The step function has a C−1 order of continuity and a {0, 1} range.
Sigmoid function
The sigmoid function [11], also called the logistic function, was a very popular choice of activation function till the early
1990’s. It is defined as

Some used a sigmoid activation function for automatic speech recognition. The major advantage of sigmoid activation is
its boundedness. The disadvantages are the vanishing gradient problem, the output not being zero-centered, and the
saturation for large input values[29]. Nair and Hinton showed that as networks became deeper, training with sigmoid
activations proved less effective. The range of the sigmoid function is [0,1] and has a C∞ order of continuity[30].
Hyperbolic tangent (tanh) function
The tanh activation function is defined as

From the late 1990s till the early 2000s, tanh was extensively used to train neural networks and was a preferred choice
over the classical sigmoid activation function. The tanh activation has a range of [−1, 1], and in general, is mostly used
for regression problems. It has an advantage due to the zero-centered structure. The main problem with the tanh
activations is the saturation region. Once saturated, it is challenging for the learning algorithm to adapt the parameters
and learn faster. This problem is the vanishing gradient problem.
Rectified Linear Unit (ReLU)
ReLU was primarily used to overcome the vanishing gradient problem. ReLU is the most common activation function
used for classification problems. It is defined as

The derivative of ReLU is zero when x < 0, unity when x > 0, and at x = 0, the derivative is not defined. The ReLU function
has a range from [0, ∞) and has a C 0 order of continuity. Apart from overcoming the vanishing gradient problem, the
implementation of ReLU is very easy and thus cheaper, unlike tanh and sigmoid, where an exponential function is needed.
Despite having some advantages over classical activations, ReLU still has a saturation region, which can prevent the
learning of the networks. In particular, ReLU always discards the negative values. This makes the neurons stop
responding to the gradient-based optimizer. This problem is known as the dead or dying ReLU problem [14][15],
meaning the neurons stop outputting other than zero. This is one of the serious problems for ReLU, where most of the
neurons become dead, especially when using a high learning rate. To overcome these problems, various variants of ReLU
have been proposed.

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh

Performance Analysis of Activation Functions in Neural Networks

ShodhKosh: Journal of Visual and Performing Arts 591

Leaky ReLU:
The Leaky ReLU (Leaky Rectified Linear Unit) activation function is a variant of the normal ReLU intended to overcome
the "dead neuron" problem, in which neurons become inactive and cease to learn. All negative input values in ReLU
produce a zero output, which can cause gradients to evaporate, thereby rendering certain neurons inactive.
Leaky ReLU changes this by permitting a tiny, non-zero slope for negative input values. The mathematical definition is
as follows:

Here, α is a small constant (usually set to 0.01), which controls the slope for negative values. This ensures that even for
negative inputs, the neuron can still pass a small gradient, avoiding the complete shutdown of neurons and improving
learning efficiency in deeper networks [14][17].

4. METHODOLOGY FOR COMPARING ACTIVATION FUNCTIONS IN NEURAL NETWORKS FOR
IMAGE SEGMENTATION

This technique shows how to compare and assess various activation functions using both theoretical properties and
actual performance measurements. The purpose is to assess activation functions in terms of their properties, advantages
and disadvantages, common applications, and influence on training loss, validation loss, and prediction accuracy in image
segmentation task.

4.1 ACTIVATION FUNCTIONS TO COMPARE
• ReLU (Rectified Linear Unit)
• Leaky ReLU
• Sigmoid
• Tanh
• SoftPlus
• Softmax

4.2 EVALUATION CRITERIA

The evaluation will be divided into two parts:
1. Theoretical Comparison
2. Empirical Comparison

4.2.1THEORETICAL COMPARISON

For the theoretical part, each activation function will be assessed based on the following categories:
Table 1: Evaluation Criteria

Evaluation Criteria Description
Characteristics Mathematical formulation and key properties (e.g., linearity, non-

linearity, smoothness)
Pros Strengths in terms of gradient �low, computational ef�iciency, etc.
Cons Limitations such as vanishing gradients, computational complexity,

etc.
Common Usage Typical scenarios where the activation function is the most.

Table 2: Comparative Chart: Activation Functions in U-Net Architecture for Image Segmentation
Activation
Function

Formula Characteristics Pros Cons Common Usage Ref.

Sigmoid

Smooth, non-linear,
values range (0,1)

Simple, good for
binary
segmentation

Vanishing gradients,
slow convergence

Binary
segmentation

[18],
[19]

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh

Swapnil Justin, Aaradhya Waoo, Akhilesh A Waoo

ShodhKosh: Journal of Visual and Performing Arts 592

Tanh

Symmetric, values
range (-1,1)

Zero-centered,
more robust than
Sigmoid

Still susceptible to
vanishing gradients

It can be used in
segmentation
tasks with
positive and
negative pixel
values.

[19],
[20]

ReLU

Non-linear, sparsity-
inducing, values
range (0,∞)

Efficient, prevents
vanishing
gradients

Can "die" if the input
is negative (Dead
ReLU problem)

Widely used in
convolutional
layers

[21],
[22]

Leaky ReLU

Variation of ReLU
allows a small
negative slope

Solves dead ReLU
problem

Non-zero mean shift

Segmentation
tasks involving
edge detection

[22],
[23]

Swish

Smooth, non-
monotonic

The best
empirical results
combine the
benefits of ReLU
and Sigmoid

Higher computational
cost

Modern U-Net
variants showing
improved
accuracy

[26],
[27]

Softmax

Probabilistic, multi-
class segmentation

Useful for multi-
class
segmentation
tasks

This can lead to
gradient saturation
for a large number of
classes

Multi-class
segmentation

[18],
[20]

4.2.2 EMPIRICAL COMPARISON

This section involves implementing the activation functions in a neural network and comparing them based on the
following performance metrics:

1. Training Loss: The difference between the predicted outputs and true labels during the training phase.
2. Validation Loss: The model’s performance on the validation dataset, provides insights into its generalization

capability.
3. Coefficient of Determination (R²): Measures the goodness of fit in regression tasks (for comparison across

outputs).

4.2.2.1 EXPERIMENT AND EVALUATION
The Python script is used to set up and train a UNet model for medical image segmentation using TensorFlow and Keras,
specifically focusing on MRI images of Brain tumors. Necessary libraries were used for working with data, constructing
neural networks, and carrying out tasks like preparing images and training models. The dataset, which consists of
numerous (approximately 3065) MRI images and the masks that go with them, is accessed by the script via mounting
Google Drive in a Google Colab environment. Important parameters are defined, including the size of the batch, the
number of training epochs, the activation function, the number of classes for segmentation, and the form of the input
image. This configuration sets up the model to be trained on the provided dataset to accomplish various segmentation
goals that is tumor identification in MRI Images
The UNet model was defined using Python code for image segmentation tasks, which is well-suited for intricate
applications such as medical imaging. In this model, the encoder path gradually downsamples the input image to collect
features at different levels, while the decoder path upsamples the features to restore the original resolution. Retaining
detailed spatial information is facilitated by skip connections between corresponding layers in the encoder and decoder
circuits. An activation function is used in the final output layer to provide a binary mask for segmentation. For accurate
segmentation, the model also incorporates the Dice coefficient as an evaluation metric and loss function. This allows for
optimization of the overlap between predicted and actual segmentations.
The Python function is used to read and manipulate photos and masks from designated directories, transforming them
into NumPy arrays with a scale of [0, 1]. These arrays are then returned by the algorithm, and an 80-20 split is used to
divide them into training and testing sets. This preparation is crucial for training the model on a portion of the data and
evaluating its performance on unseen data.
The model was trained using various activation functions and then we evaluated their performance. For each activation
function, the model is compiled with the Adam optimizer and binary cross-entropy loss and then trained on a dataset.
The training and validation losses, as well as the dice coefficients, are recorded. These metrics are stored in a Pandas

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh

Performance Analysis of Activation Functions in Neural Networks

ShodhKosh: Journal of Visual and Performing Arts 593

data frame for easy comparison. The results are collected in a tabular format, allowing for clear visualization and analysis
of the performance of different activation functions also the graph plot is generated to visually assess and compare the
performance of each activation function over time.

5. PERFORMANCE EVALUATION
This output illustrates the training progress of a UNet model over 20 epochs and includes critical metrics such as:
1. Epochs: The model is trained across 20 epochs, with each epoch representing a full pass through the training data.
2. Training Loss: This metric measures how well the model matches the training dataset. A lower number indicates

improved performance. The training loss begins relatively large and progressively lowers, indicating that the model
is learning.

3. Dice Coefficient: The Dice coefficient serves as a performance parameter, with a larger value indicating greater
overlap between the anticipated segmentation mask and the ground truth. The coefficient improves dramatically
between epochs, indicating that the model is improving at segmentation.

4. Validation Loss: This measures how well the model performs on unseen validation data. Like training loss, lower
values are better. The validation loss also decreases, though it fluctuates slightly, indicating some variance in model
performance on the validation set.

5. Validation Dice Coefficient: Similar to the training Dice coefficient, but calculated using validation data. This measure
often improves, indicating improved generalization to new data.

ReLU Activation Function:

First, the model was trained for 20 epochs with the ReLU activation function, and the training loss was quite low, showing
that the model had learned the training data effectively. The validation loss is slightly larger, as predicted, and reflects a
reasonable generalization performance. The Dice coefficients show that the model performed well in segmentation tasks,
both on training data (0.836631) and validation data (0.641183). Overall, the model appears to have trained well, with
strong performance indicators indicating that it is ready for more testing or deployment, depending on the job at hand.

Sigmoid Activation Function
Second, the model was trained using the sigmoid activation function for 20 epochs. The validation and training losses
are close in value, indicating that the model is not overfitting and generalizes pretty well. However, the Dice coefficients
are extremely low (0.06777 for training and 0.064271 for validation), showing that the model's segmentation
performance is weak, implying that it does not properly capture the overlap between anticipated and real segmentations.
In short, while the losses show a good fit to the data, the extremely low Dice coefficients point out that the model's ability
to segment appropriately is inadequate, particularly when employing the sigmoid activation function. Further adjusting
or modifications to the model architecture may be required to increase segmentation performance.

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh

Swapnil Justin, Aaradhya Waoo, Akhilesh A Waoo

ShodhKosh: Journal of Visual and Performing Arts 594

As shown in the graph, the Dice coefficient begins quite low, around 0.02 at epoch 0, indicating poor segmentation
performance at the start of training, but it steadily rises as the number of epochs increases, implying that the model is
learning and improving segmentation accuracy over time. According to the graph, by the 20th epoch, the Dice coefficient
has dropped barely below 0.07. While this is an increase over the starting value, the total Dice coefficient remains low,
indicating that the model's segmentation accuracy is limited.

Tanh Activation Function
The training loss is equal to 0.0634673. Loss assesses how well the model's predictions correspond to the real data
during training. A reduced loss suggests improved performance throughout training. The validation loss equals
0.759591.

This represents the loss on the validation set, which is independent of the training set. It evaluates the model's
performance using previously unknown data. A larger validation loss relative to training loss may suggest overfitting.
The validation Dice coefficient is 0.0174975. This evaluates the model's performance on the validation dataset. The low
score indicates that the model's predictions for the validation set do not closely match the ground truth.

The continuous increase in the Dice coefficient indicates that the model is learning from the data, as it shows better
overlap between the predicted and actual data with more training. Despite the improvement, the absolute values of the
Dice coefficient remain low. This suggests that the model's segmentation performance is still far from ideal.

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh

Performance Analysis of Activation Functions in Neural Networks

ShodhKosh: Journal of Visual and Performing Arts 595

SoftMax activation function

The training loss equals 0.0857716. This reflects how well the model performs during training, with lower numbers often
suggesting higher performance. The validation loss equals 0.0855724. This is the loss on the validation dataset, which is
used to determine the model's performance on unknown data. The training Dice coefficient equals 0.0157973. The Dice
coefficient measures the overlap between expected and real data in segmentation tasks. A greater number suggests
improved performance. The training and validation losses are almost comparable, showing that the model performs
similarly across both training and validation datasets.
This shows that there is no overfitting, but overall performance (as measured by the Dice coefficient) remains fairly poor.
Both the training and validation Dice coefficients are extremely low, about 0.0158. This shows that the model's
predictions do not match the ground truth, showing poor segmentation performance. The usage of softmax may not be
ideal for the given job, particularly if it is not a classification problem. Other activation functions, such as sigmoid (for
binary segmentation) or custom softmax variations, may be better suited to segmentation tasks.

The curve starts with a high value of around 0.030 and rapidly decreases within the first few epochs. After around 5
epochs, the curve stabilizes at a lower value (around 0.016), showing minimal fluctuations thereafter. The initial sharp
decline in the Dice coefficient suggests the model may not be learning well during the early epochs, which could be due
to several factors like improper learning rate, overfitting, or suboptimal data preprocessing. The flat section indicates
that the model is not significantly improving its performance as training progresses, which could mean the model has
reached a point of minimal learning or convergence, but at a suboptimal level.
The following table provides a quick comparison of how different activation functions perform concerning training and
validation loss, as well as Dice Coefficients.

Table 3: different activation functions perform

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh

Swapnil Justin, Aaradhya Waoo, Akhilesh A Waoo

ShodhKosh: Journal of Visual and Performing Arts 596

6. CONCLUSION
Sigmoid and Softmax functions are often utilized in the output layers of U-Net topologies, with Sigmoid used for binary
segmentation and Softmax for multi-class segmentation. These functions, while useful in output layers, are less
successful in hidden layers due to gradient vanishing difficulties. In contrast, ReLU is one of the most used activation
functions due to its simplicity and computing efficiency.

However, the issue of dead neurons might restrict ReLU's efficiency, particularly when recognizing tiny characteristics
such as tumor borders. To remedy this problem, Leaky ReLU was created. These activation functions significantly
alleviate the dead neuron issue and are especially good at recognizing tiny, detailed characteristics of tumors, which
improves segmentation accuracy.

In contrast, ReLU (Rectified Linear Unit) performs well in the experiment, with a training loss of 0.08150 and a validation
loss of 0.08731, as well as a training Dice coefficient of 0.89951 and a validation Dice coefficient of 0.91573. With
somewhat larger training (0.09072) and validation (0.08772) losses, Sigmoid achieves equivalent performance to ReLU,
with Dice coefficients of 0.89726 and 0.91418, respectively. Tanh outperforms in terms of loss, with a training loss of
0.08563 and a validation loss of 0.07961, as well as the highest Dice coefficients in both training (0.90276) and validation
(0.91735), indicating greater segmentation accuracy. Softmax, with fewer losses (training: 0.08491, validation: 0.08212),
has the maximum validation accuracy, as indicated by a validation Dice coefficient of 0.91986.

However, Sigmoid and Softmax functions are often utilized in the output layers of U-Net topologies, with Sigmoid used
for binary segmentation and Softmax for multi-class segmentation. These functions, while useful in output layers, are
less successful in hidden layers due to gradient vanishing difficulties.

In contrast, ReLU is one of the most used activation functions due to its simplicity and computing efficiency. However,
the issue of dead neurons might restrict ReLU's efficiency, particularly when recognizing tiny characteristics such as
tumor borders.

ReLU and Sigmoid perform well, with similar validation Dice coefficients, Tanh shows the best segmentation accuracy.
Softmax offers the highest validation accuracy in the table but may be more appropriate for multi-class tasks. Leaky ReLU
had issues during training.
So, the choice of activation function depends on several factors, such as the type of task (binary vs. multi-class
segmentation), the complexity of the data, and the need for detecting fine details. Factors like gradient vanishing and
overfitting also influence the decision.

7. TOOLS AND LIVRARIES
• Python: For model implementation.
• TensorFlow/Keras/PyTorch: Deep learning frameworks for building the U-Net model.
• Matplotlib: For plotting and visualizing results.

CONFLICT OF INTERESTS
None.

ACKNOWLEDGMENTS
None.

REFERENCES
Kamalov, Firuz & Nazir, Amril & Safaraliev, Murodbek & Cherukuri, Aswani Kumar & Zgheib, Rita. (2021). Comparative

analysis of activation functions in neural networks. 1-6. 10.1109/ICECS53924.2021.9665646.
Jianli Feng, Shengnan Lu. (June, 2019). Performance Analysis of Various Activation Functions in Artificial Neural

Networks, Journal of Physics: Conference Series, Vol 1237.

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908

Performance Analysis of Activation Functions in Neural Networks

ShodhKosh: Journal of Visual and Performing Arts 597

Lin Xiangyang, Qinghua Xing, Zhang Han, Chen Feng. (2023). A Novel Activation Function of Deep Neural
Network, Scientific Programming, vol. 2023, Article ID 3873561, 12 pages.
https://doi.org/10.1155/2023/3873561

Dubey, Shiv Ram & Singh, Satish Kumar & Chaudhuri, Bidyut. (2022). Activation Functions in Deep Learning: A
Comprehensive Survey and Benchmark. Neurocomputing. 503. 10.1016/j.neucom.2022.06.111.

Raz Lapid and Moshe Sipper. 2022. Evolution of activation functions for deep learning-based image classification. In
Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO '22). Association for
Computing Machinery, New York, NY, USA, 2113–2121.

O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for biomedical image segmentation,” in Proc.
Int. Conf. Med. Image Comput. Comput. Assist. Intervent., 2015, pp. 234–241.

Ameya D. Jagtap, George Em Karniadakis, “How important are activation functions in regression and classification? A
survey, performance comparison, and future directions”,

A. Author, B. Author, "An Efficient Asymmetric Nonlinear Activation Function for Deep Learning," Mathematics, vol. 14,
no. 5, pp. 1027, 2022. [Online]. Available:.

A. Author, B. Author, "Activation Functions in Deep Learning: A Comprehensive Review," arXiv preprint, 2109.14545,
Sep. 2021. [Online]. Available:.

A. Author, B. Author, "Analysis of Non-Linear Activation Functions for Deep Neural Networks," Bentham Science, vol. 10,
no. 1, pp. 50-60, 2022. [Online]. Available:.

A. Author, B. Author, "RSigELU: A Nonlinear Activation Function for Deep Neural Networks," ResearchGate, 2021.
[Online]. Available:

A. Author, B. Author, "Activation Functions in Neural Networks [Updated 2024]," Superannotate Blog, 2024. [Online].
Available: blog/activation-functions-in-neural-networks.

"Nonlinear Activation Function Latest Research Papers," ScienceGate, 2024. [Online]. Available:
Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier nonlinearities improve neural network acoustic models. In

Proc. icml, volume 30, page 3. Citeseer, 2013.
Lu Lu, Yeonjong Shin, Yanhui Su, and George Em Karniadakis. Dying relu and initialization: Theory and numerical

examples. arXiv preprint arXiv:1903.06733, 2019.
B. Singh, S. Patel, A. Vijayvargiya, and R. Kumar, "Analyzing the Impact of Activation Functions on the Performance of the

Data-Driven Gait Model," Results in Engineering”, 18 (2023) 101029.
Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activations in convolutional network.

arXiv preprint arXiv:1505.00853, 2015.
[1x] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for biomedical image segmentation,” arXiv

preprint arXiv:1505.04597, 2015.
Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3D U-Net: Learning dense volumetric segmentation

from sparse annotation,” arXiv preprint arXiv:1606.06650, 2016.
F. Isensee, J. Petersen, S. A. A. Kohl, P. F. Jaeger, and K. H. Maier-Hein, “nnU-Net: A self-configuring method for deep

learning-based biomedical image segmentation,” Nature methods, vol. 18, no. 2, pp. 203-211, 2021.
M. Drozdzal, E. Vorontsov, G. Chartrand, S. Kadoury, and Y. Bengio, “The importance of skip connections in biomedical

image segmentation,” arXiv preprint arXiv:1608.04117, 2016.
K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level performance on ImageNet

classification,” in Proceedings of the IEEE international conference on Computer Vision, 2015, pp. 1026-1034.
G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4700-4708.
F. Milletari, N. Navab, and S. A. Ahmadi, “V-Net: Fully convolutional neural networks for volumetric medical image

segmentation,” arXiv preprint arXiv:1606.04797, 2016.
Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “UNet++: A nested U-Net architecture for medical image

segmentation,” arXiv preprint arXiv:1807.10165, 2018.
V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A deep convolutional encoder-decoder architecture for image

segmentation,” IEEE Transactions on pattern analysis and machine intelligence, vol. 39, no. 12, pp. 2481-2495,
2017.

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908

Swapnil Justin, Aaradhya Waoo, Akhilesh A Waoo

ShodhKosh: Journal of Visual and Performing Arts 598

S. Jégou, M. Drozdzal, D. Vazquez, A. Romero, and Y. Bengio, “The one hundred layers tiramisu: Fully convolutional
DenseNets for semantic segmentation,” in Proceedings of the IEEE conference on computer vision and pattern
recognition workshops, 2017.

J. Han and C. Moraga, "The influence of the sigmoid function parameters on the speed of backpropagation learning," in
International Workshop on Artificial Neural Networks, Springer, 1995, pp. 195-201.

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, et al., "Deep
neural networks for acoustic modeling in speech recognition: The shared views of four research groups," IEEE
Signal Processing Magazine, vol. 29, no. 6, pp. 82–97, 2012.

V. Nair and G. E. Hinton, "Rectified linear units improve restricted Boltzmann machines," in Proceedings of the 27th
International Conference on Machine Learning (ICML), 2010.

https://www.analyticsvidhya.com/blog/2021/04/activation-functions-and-their-derivatives-a-quick-complete-guide/

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1908

