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ABSTRACT 
Activation functions are pivotal components in neural networks, serving as decision-
making units that evaluate the output of network nodes, thus influencing overall 
performance. Selecting the appropriate activation function is crucial for neural network 
effectiveness. While various activation functions exist, not all are suitable for every 
scenario; some may be deprecated due to operational limitations. Characteristics like 
monotonicity, derivatives, and range finiteness are crucial for effective learning. This 
research assesses commonly used additive functions such as Swish, ReLU, and Sigmoid, 
examining their properties, advantages, and disadvantages. Understanding activation 
functions is vital in maximizing neural network (NN) performance. By exploring the 
diverse types of activation functions and their respective merits and drawbacks, 
researchers and practitioners can make informed choices to optimize NN efficacy across 
different applications [1][2][3]. 

 

Corresponding Author 
Akhilesh A Waoo, 
akhileshwaoo@gmail.com  
DOI 
10.29121/shodhkosh.v5.i1.2024.190
8   

Funding: This research received no 
specific grant from any funding agency in 
the public, commercial, or not-for-profit 
sectors. 

Copyright: © 2024 The Author(s). 
This work is licensed under a Creative 
Commons Attribution 4.0 
International License. 

With the license CC-BY, authors retain 
the copyright, allowing anyone to 
download, reuse, re-print, modify, 
distribute, and/or copy their 
contribution. The work must be 
properly attributed to its author. 

 

 

 
 
 

1. INTRODUCTION 
Neural Networks (NN) have gained a lot of popularity recently and are being used in various applications. A lot of work 
has been done to improve efficiency, different initialization techniques, weight adjustment algorithms, different 
architectures, and more. However, one hyperparameter is usually left intact: the activation function [5]. 
In artificial neural networks (ANNs), neurons work with weights and bias, and through these neurons, the outputs get 
generated from the inputs provided to them as shown in Fig. 1. Activation functions transform input signals into output 
signals, which are then input to subsequent layers in artificial neural networks (ANNs). The process of building an ANN 
involves calculating the sum of inputs and their weights with bias. Later in this calculation, the activation function 
is used to determine the output of a particular layer. This result is then passed as input to the next layer of the network. 
If there is no activation function, the output of each layer would be a linear function of the layer above, no matter how 
many layers the ANN has. This is because, for complex problems, the data cannot be modeled well by a linear equation. 
Without a non-linear activation function in the network, an ANN, no matter how many layers it had, would behave just 
like a single-layer perceptron, because summing these layers would give you just another linear function.  
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The prediction accuracy of a neural network is determined by the type of activation function used. The most commonly 
used activation functions are non-linear. 

 
Figure 1: The model of Artificial Neural Networks 

In the past decades, many researchers researched several methods to improve the performance of artificial neural 
networks by optimizing training methods, hyperparameter tuning, learned parameters, or network structures, but not 
much attention. Activation functions have been paid for. 
The purpose of this study is to provide a review of both classic and current activation functions for neural networks. This 
involves looking at the mathematical formulations, characteristics, and historical evolution of various activation 
functions. The goal is also to conduct a thorough examination of activation functions to find out their strengths, 
boundaries, and performance characteristics. This analysis will compare activation functions using criteria such as 
convergence speed, accuracy, computational efficiency, and robustness. 
 

2. ROLE OF NEURAL 
Neural networks have become the cornerstone for image segmentation, with architectures like Convolutional Neural 
Networks (CNNs) and U-Net being particularly successful. Image segmentation involves classifying each pixel in an image 
into a specific category, which is crucial for tasks like medical imaging and object detection. U-Net, a CNN-based 
architecture, introduced by Ronneberger et al. (2015), has been highly influential due to its encoder-decoder structure 
that allows precise localization and context understanding in segmentation tasks. It utilizes down-sampling for feature 
extraction and up-sampling for generating detailed segmentations. The integration of skip connections in U-Net helps 
preserve spatial information, making it highly effective for biomedical image segmentation. The U-Net architecture has 
become a standard for various segmentation applications, significantly improving segmentation accuracy [6]. 
 

3. DIFFERENT TYPE OF ACTIVATION FUNCTIONS 
3.1 LINEAR ACTIVATION FUNCTION 

The Linear Activation Function is one of the simplest activation functions used in neural networks. It computes a linear 
transformation of the input data without altering it. This function is often employed in the output layer of regression 
models where the prediction output is directly proportional to the input. While less common in hidden layers due to its 
limited expressive power compared to non-linear activation functions, it finds utility in specific scenarios, especially 
when the network's output needs to be interpretable as a linear combination of inputs [7]. 
 

3.2 NONLINEAR ACTIVATION FUNCTION 
Nonlinear activation functions are crucial components in neural networks that introduce nonlinearities into the network, 
enabling it to learn complex patterns in data. These functions allow neural networks to approximate highly nonlinear 
relationships between input and output data. Examples of nonlinear activation functions include ReLU (Rectified Linear 
Unit), sigmoid, tanh (hyperbolic tangent), Leaky ReLU, ELU (Exponential Linear Unit), and many others. Each of these 
functions has unique properties that impact the network's performance, such as addressing the vanishing gradient 
problem, enabling faster convergence, or ensuring bounded output values[8][9][10][11][12][13].  
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Linear and piece-wise linear functions Linear function Φ(x) = x is the simplest form of activation function. It has a 
constant gradient, and the descent is based on this constant value of gradient. The range of linear function is (−∞, ∞), 
and has a C1 order of continuity. The piece-wise linear activation can be defined as  

 
Where b is a constant. The derivative of piece-wise linear activation is not defined at x = ±b, and it is zero for x < −b and 
x > b. The linear function has a C0 order of continuity and a range of [0, 1][44v]. 
Step function 
Step function It is also known as Heaviside or the unit step function and is defined as 

 
The step function is one of the most basic forms of activation function. The derivative of a step function is zero when x 
6= 0, and it is not defined when x ≠ 0. The step function has a C−1 order of continuity and a {0, 1} range. 
Sigmoid function 
The sigmoid function [11], also called the logistic function, was a very popular choice of activation function till the early 
1990’s. It is defined as 

 
Some used a sigmoid activation function for automatic speech recognition. The major advantage of sigmoid activation is 
its boundedness. The disadvantages are the vanishing gradient problem, the output not being zero-centered, and the 
saturation for large input values[29]. Nair and Hinton showed that as networks became deeper, training with sigmoid 
activations proved less effective. The range of the sigmoid function is [0,1] and has a C∞ order of continuity[30].  
Hyperbolic tangent (tanh) function  
The tanh activation function is defined as 

 
From the late 1990s till the early 2000s, tanh was extensively used to train neural networks and was a preferred choice 
over the classical sigmoid activation function. The tanh activation has a range of [−1, 1], and in general, is mostly used 
for regression problems. It has an advantage due to the zero-centered structure. The main problem with the tanh 
activations is the saturation region. Once saturated, it is challenging for the learning algorithm to adapt the parameters 
and learn faster. This problem is the vanishing gradient problem. 
Rectified Linear Unit (ReLU)  
ReLU was primarily used to overcome the vanishing gradient problem. ReLU is the most common activation function 
used for classification problems. It is defined as 

 
The derivative of ReLU is zero when x < 0, unity when x > 0, and at x = 0, the derivative is not defined. The ReLU function 
has a range from [0, ∞) and has a C 0 order of continuity. Apart from overcoming the vanishing gradient problem, the 
implementation of ReLU is very easy and thus cheaper, unlike tanh and sigmoid, where an exponential function is needed. 
Despite having some advantages over classical activations, ReLU still has a saturation region, which can prevent the 
learning of the networks. In particular, ReLU always discards the negative values. This makes the neurons stop 
responding to the gradient-based optimizer. This problem is known as the dead or dying ReLU problem [14][15], 
meaning the neurons stop outputting other than zero. This is one of the serious problems for ReLU, where most of the 
neurons become dead, especially when using a high learning rate. To overcome these problems, various variants of ReLU 
have been proposed. 
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Leaky ReLU:  
The Leaky ReLU (Leaky Rectified Linear Unit) activation function is a variant of the normal ReLU intended to overcome 
the "dead neuron" problem, in which neurons become inactive and cease to learn. All negative input values in ReLU 
produce a zero output, which can cause gradients to evaporate, thereby rendering certain neurons inactive. 
Leaky ReLU changes this by permitting a tiny, non-zero slope for negative input values. The mathematical definition is 
as follows: 

 
Here, α is a small constant (usually set to 0.01), which controls the slope for negative values. This ensures that even for 
negative inputs, the neuron can still pass a small gradient, avoiding the complete shutdown of neurons and improving 
learning efficiency in deeper networks [14][17]. 
 

4. METHODOLOGY FOR COMPARING ACTIVATION FUNCTIONS IN NEURAL NETWORKS FOR 
IMAGE SEGMENTATION 

This technique shows how to compare and assess various activation functions using both theoretical properties and 
actual performance measurements. The purpose is to assess activation functions in terms of their properties, advantages 
and disadvantages, common applications, and influence on training loss, validation loss, and prediction accuracy in image 
segmentation task. 
 

4.1 ACTIVATION FUNCTIONS TO COMPARE 
• ReLU (Rectified Linear Unit) 
• Leaky ReLU 
• Sigmoid 
• Tanh 
• SoftPlus 
• Softmax 

 
4.2 EVALUATION CRITERIA 

The evaluation will be divided into two parts: 
1. Theoretical Comparison 
2. Empirical Comparison 

 
4.2.1THEORETICAL COMPARISON 

For the theoretical part, each activation function will be assessed based on the following categories: 
Table 1: Evaluation Criteria 

Evaluation Criteria Description 
Characteristics Mathematical formulation and key properties (e.g., linearity, non-

linearity, smoothness) 
Pros Strengths in terms of gradient �low, computational ef�iciency, etc. 
Cons Limitations such as vanishing gradients, computational complexity, 

etc. 
Common Usage Typical scenarios where the activation function is the most. 

 

Table 2: Comparative Chart: Activation Functions in U-Net Architecture for Image Segmentation 
Activation 
Function 

Formula Characteristics Pros Cons Common Usage Ref. 

Sigmoid 
 

Smooth, non-linear, 
values range (0,1) 

Simple, good for 
binary 
segmentation 

Vanishing gradients, 
slow convergence  

Binary 
segmentation 

[18], 
[19] 
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Tanh 

 

Symmetric, values 
range (-1,1)  

Zero-centered, 
more robust than 
Sigmoid 

Still susceptible to 
vanishing gradients
  

It can be used in 
segmentation 
tasks with 
positive and 
negative pixel 
values. 

[19], 
[20] 

ReLU 

 

Non-linear, sparsity-
inducing, values 
range (0,∞)  

Efficient, prevents 
vanishing 
gradients 

Can "die" if the input 
is negative (Dead 
ReLU problem)  

Widely used in 
convolutional 
layers 

[21], 
[22] 

Leaky ReLU 

 

Variation of ReLU 
allows a small 
negative slope  

Solves dead ReLU 
problem 

Non-zero mean shift
  

Segmentation 
tasks involving 
edge detection 

[22], 
[23] 

Swish 

 

Smooth, non-
monotonic 

The best 
empirical results 
combine the 
benefits of ReLU 
and Sigmoid 

Higher computational 
cost 

Modern U-Net 
variants showing 
improved 
accuracy 

[26], 
[27] 

Softmax 

 

Probabilistic, multi-
class segmentation 

Useful for multi-
class 
segmentation 
tasks 

This can lead to 
gradient saturation 
for a large number of 
classes 

Multi-class 
segmentation 

[18], 
[20] 

 
4.2.2 EMPIRICAL COMPARISON 

This section involves implementing the activation functions in a neural network and comparing them based on the 
following performance metrics: 

1. Training Loss: The difference between the predicted outputs and true labels during the training phase. 
2. Validation Loss: The model’s performance on the validation dataset, provides insights into its generalization 

capability. 
3. Coefficient of Determination (R²): Measures the goodness of fit in regression tasks (for comparison across 

outputs). 
 

4.2.2.1 EXPERIMENT AND EVALUATION 
The Python script is used to set up and train a UNet model for medical image segmentation using TensorFlow and Keras, 
specifically focusing on MRI images of Brain tumors. Necessary libraries were used for working with data, constructing 
neural networks, and carrying out tasks like preparing images and training models. The dataset, which consists of 
numerous (approximately 3065) MRI images and the masks that go with them, is accessed by the script via mounting 
Google Drive in a Google Colab environment. Important parameters are defined, including the size of the batch, the 
number of training epochs, the activation function, the number of classes for segmentation, and the form of the input 
image. This configuration sets up the model to be trained on the provided dataset to accomplish various segmentation 
goals that is tumor identification in MRI Images 
The UNet model was defined using Python code for image segmentation tasks, which is well-suited for intricate 
applications such as medical imaging. In this model, the encoder path gradually downsamples the input image to collect 
features at different levels, while the decoder path upsamples the features to restore the original resolution. Retaining 
detailed spatial information is facilitated by skip connections between corresponding layers in the encoder and decoder 
circuits. An activation function is used in the final output layer to provide a binary mask for segmentation. For accurate 
segmentation, the model also incorporates the Dice coefficient as an evaluation metric and loss function. This allows for 
optimization of the overlap between predicted and actual segmentations. 
The Python function is used to read and manipulate photos and masks from designated directories, transforming them 
into NumPy arrays with a scale of [0, 1]. These arrays are then returned by the algorithm, and an 80-20 split is used to 
divide them into training and testing sets. This preparation is crucial for training the model on a portion of the data and 
evaluating its performance on unseen data. 
The model was trained using various activation functions and then we evaluated their performance. For each activation 
function, the model is compiled with the Adam optimizer and binary cross-entropy loss and then trained on a dataset. 
The training and validation losses, as well as the dice coefficients, are recorded. These metrics are stored in a Pandas 
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data frame for easy comparison. The results are collected in a tabular format, allowing for clear visualization and analysis 
of the performance of different activation functions also the graph plot is generated to visually assess and compare the 
performance of each activation function over time. 
 

5. PERFORMANCE EVALUATION  
This output illustrates the training progress of a UNet model over 20 epochs and includes critical metrics such as: 
1. Epochs: The model is trained across 20 epochs, with each epoch representing a full pass through the training data.  
2. Training Loss: This metric measures how well the model matches the training dataset. A lower number indicates 

improved performance. The training loss begins relatively large and progressively lowers, indicating that the model 
is learning.  

3. Dice Coefficient: The Dice coefficient serves as a performance parameter, with a larger value indicating greater 
overlap between the anticipated segmentation mask and the ground truth. The coefficient improves dramatically 
between epochs, indicating that the model is improving at segmentation. 

4. Validation Loss: This measures how well the model performs on unseen validation data. Like training loss, lower 
values are better. The validation loss also decreases, though it fluctuates slightly, indicating some variance in model 
performance on the validation set. 

5. Validation Dice Coefficient: Similar to the training Dice coefficient, but calculated using validation data. This measure 
often improves, indicating improved generalization to new data. 

 
ReLU Activation Function: 

 
First, the model was trained for 20 epochs with the ReLU activation function, and the training loss was quite low, showing 
that the model had learned the training data effectively. The validation loss is slightly larger, as predicted, and reflects a 
reasonable generalization performance. The Dice coefficients show that the model performed well in segmentation tasks, 
both on training data (0.836631) and validation data (0.641183). Overall, the model appears to have trained well, with 
strong performance indicators indicating that it is ready for more testing or deployment, depending on the job at hand. 
 
Sigmoid Activation Function 
Second, the model was trained using the sigmoid activation function for 20 epochs. The validation and training losses 
are close in value, indicating that the model is not overfitting and generalizes pretty well. However, the Dice coefficients 
are extremely low (0.06777 for training and 0.064271 for validation), showing that the model's segmentation 
performance is weak, implying that it does not properly capture the overlap between anticipated and real segmentations. 
In short, while the losses show a good fit to the data, the extremely low Dice coefficients point out that the model's ability 
to segment appropriately is inadequate, particularly when employing the sigmoid activation function. Further adjusting 
or modifications to the model architecture may be required to increase segmentation performance. 
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As shown in the graph, the Dice coefficient begins quite low, around 0.02 at epoch 0, indicating poor segmentation 
performance at the start of training, but it steadily rises as the number of epochs increases, implying that the model is 
learning and improving segmentation accuracy over time. According to the graph, by the 20th epoch, the Dice coefficient 
has dropped barely below 0.07. While this is an increase over the starting value, the total Dice coefficient remains low, 
indicating that the model's segmentation accuracy is limited.  
 
Tanh Activation Function 
The training loss is equal to 0.0634673. Loss assesses how well the model's predictions correspond to the real data 
during training. A reduced loss suggests improved performance throughout training. The validation loss equals 
0.759591.  

 
This represents the loss on the validation set, which is independent of the training set. It evaluates the model's 
performance using previously unknown data. A larger validation loss relative to training loss may suggest overfitting. 
The validation Dice coefficient is 0.0174975. This evaluates the model's performance on the validation dataset. The low 
score indicates that the model's predictions for the validation set do not closely match the ground truth. 

 
The continuous increase in the Dice coefficient indicates that the model is learning from the data, as it shows better 
overlap between the predicted and actual data with more training. Despite the improvement, the absolute values of the 
Dice coefficient remain low. This suggests that the model's segmentation performance is still far from ideal.  
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SoftMax activation function 

 
The training loss equals 0.0857716. This reflects how well the model performs during training, with lower numbers often 
suggesting higher performance. The validation loss equals 0.0855724. This is the loss on the validation dataset, which is 
used to determine the model's performance on unknown data. The training Dice coefficient equals 0.0157973. The Dice 
coefficient measures the overlap between expected and real data in segmentation tasks. A greater number suggests 
improved performance. The training and validation losses are almost comparable, showing that the model performs 
similarly across both training and validation datasets.  
This shows that there is no overfitting, but overall performance (as measured by the Dice coefficient) remains fairly poor. 
Both the training and validation Dice coefficients are extremely low, about 0.0158. This shows that the model's 
predictions do not match the ground truth, showing poor segmentation performance. The usage of softmax may not be 
ideal for the given job, particularly if it is not a classification problem. Other activation functions, such as sigmoid (for 
binary segmentation) or custom softmax variations, may be better suited to segmentation tasks. 

 
The curve starts with a high value of around 0.030 and rapidly decreases within the first few epochs. After around 5 
epochs, the curve stabilizes at a lower value (around 0.016), showing minimal fluctuations thereafter. The initial sharp 
decline in the Dice coefficient suggests the model may not be learning well during the early epochs, which could be due 
to several factors like improper learning rate, overfitting, or suboptimal data preprocessing. The flat section indicates 
that the model is not significantly improving its performance as training progresses, which could mean the model has 
reached a point of minimal learning or convergence, but at a suboptimal level. 
The following table provides a quick comparison of how different activation functions perform concerning training and 
validation loss, as well as Dice Coefficients. 

 
Table 3: different activation functions perform 
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6. CONCLUSION 
Sigmoid and Softmax functions are often utilized in the output layers of U-Net topologies, with Sigmoid used for binary 
segmentation and Softmax for multi-class segmentation. These functions, while useful in output layers, are less 
successful in hidden layers due to gradient vanishing difficulties. In contrast, ReLU is one of the most used activation 
functions due to its simplicity and computing efficiency.  
 
However, the issue of dead neurons might restrict ReLU's efficiency, particularly when recognizing tiny characteristics 
such as tumor borders. To remedy this problem, Leaky ReLU was created. These activation functions significantly 
alleviate the dead neuron issue and are especially good at recognizing tiny, detailed characteristics of tumors, which 
improves segmentation accuracy.  
 
In contrast, ReLU (Rectified Linear Unit) performs well in the experiment, with a training loss of 0.08150 and a validation 
loss of 0.08731, as well as a training Dice coefficient of 0.89951 and a validation Dice coefficient of 0.91573. With 
somewhat larger training (0.09072) and validation (0.08772) losses, Sigmoid achieves equivalent performance to ReLU, 
with Dice coefficients of 0.89726 and 0.91418, respectively. Tanh outperforms in terms of loss, with a training loss of 
0.08563 and a validation loss of 0.07961, as well as the highest Dice coefficients in both training (0.90276) and validation 
(0.91735), indicating greater segmentation accuracy. Softmax, with fewer losses (training: 0.08491, validation: 0.08212), 
has the maximum validation accuracy, as indicated by a validation Dice coefficient of 0.91986.  
 
However, Sigmoid and Softmax functions are often utilized in the output layers of U-Net topologies, with Sigmoid used 
for binary segmentation and Softmax for multi-class segmentation. These functions, while useful in output layers, are 
less successful in hidden layers due to gradient vanishing difficulties. 
 
In contrast, ReLU is one of the most used activation functions due to its simplicity and computing efficiency. However, 
the issue of dead neurons might restrict ReLU's efficiency, particularly when recognizing tiny characteristics such as 
tumor borders.  
 
ReLU and Sigmoid perform well, with similar validation Dice coefficients, Tanh shows the best segmentation accuracy. 
Softmax offers the highest validation accuracy in the table but may be more appropriate for multi-class tasks. Leaky ReLU 
had issues during training. 
So, the choice of activation function depends on several factors, such as the type of task (binary vs. multi-class 
segmentation), the complexity of the data, and the need for detecting fine details. Factors like gradient vanishing and 
overfitting also influence the decision. 
 

7. TOOLS AND LIVRARIES 
• Python: For model implementation. 
• TensorFlow/Keras/PyTorch: Deep learning frameworks for building the U-Net model. 
• Matplotlib: For plotting and visualizing results. 
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