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ABSTRACT 
This study delves into the revolutionary possibilities of merging IoT and ML in intelligent 
agriculture, specifically looking at ways to improve crop selection and soil nutrient 
management. The need for more effective, data-driven farming methods is greater than 
ever before due to the rising worldwide demand for food and the severity of 
environmental concerns. In order to monitor the soil, weather, and crop health in real-
time, IoT devices like weather stations and soil sensors gather data. In order to help 
farmers make educated judgements about crop selection and precise control of soil 
nutrients, powerful ML algorithms evaluate this data and deliver them relevant 
recommendations. By lowering environmental impact and maximising resource 
efficiency, these technologies not only improve agricultural yields but also encourage 
sustainable farming practices. This study delves into the importance of this technique, 
the advantages it might provide, and the obstacles that need to be overcome for it to be 
properly used in contemporary agriculture. 
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1. INTRODUCTION 
As technology transforms sectors worldwide, agriculture is adopting smarter, more efficient techniques. The 
combination of IoT and ML is leading this change, delivering innovative solutions to agricultural problems. These 
innovative technologies allow farmers to use data to improve soil health, optimise fertiliser management, and choose the 
best crops for their area. IoT devices like soil sensors and weather stations monitor soil moisture, temperature, and 
nutrient levels in real time. This data gives a complete picture of the field and enables targeted actions. However, machine 
learning algorithms analyse this massive data set to find patterns, anticipate events, and provide actionable insights. 
Together, IoT and ML enable proactive agriculture. Understanding soil nutrients helps farmers optimise fertilisation, 
avoid waste, and boost crop output. Machine Learning algorithms can forecast which crops thrive in given soil and 
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environmental circumstances, maximising yield and sustainability. Intelligent integration improves operational 
efficiency and supports sustainable agriculture and food security. As we explore intelligent agriculture, we see that IoT 
and Machine Learning are ushering in a new age of farming where technology and tradition merge to create a more 
productive, efficient, and sustainable environment. 
 

1.1 INTELLIGENT AGRICULTURE 
Intelligent agriculture is revolutionising farming by using cutting-edge technologies like IoT and ML to improve efficiency 
and sustainability. This method uses IoT devices like soil sensors, weather stations, and drones to gather real-time 
environmental and soil data. These sensors measure soil moisture, nutrient content, temperature, and humidity, while 
drones assess crop health and growth. IoT devices collect massive volumes of data, which machine learning algorithms 
analyse. These algorithms find patterns and trends to optimise irrigation schedules, choose crops for appropriate soil 
conditions, and estimate agricultural yields. ML models may propose planting schedules and crop kinds based on past 
weather data and soil conditions, improving yield and quality. Precision farming using IoT and ML helps farmers use 
water, fertilisers, and pesticides more effectively. This reduces waste and resource usage, increasing agricultural output 
and lowering environmental impact. Predictive analytics may also forecast pest infestations and nutritional deficits, 
enabling preventive management. Intelligent agriculture addresses food security, resource management, and 
environmental sustainability using data-driven, precision farming. These technologies might make agriculture more 
robust and flexible as they evolve. 
 

1.2 INTERNET OF THINGS (IOT) 
An innovative technological breakthrough, IoT links countless systems and gadgets to the web to facilitate automated 
data sharing and other forms of seamless operation. Smart appliances, wearable gadgets, and industrial sensors are all 
part of this linked network. They're all integrated with sensors and communication tech. IoT allows these gadgets to 
gather, transmit, and interpret data, which changes the way we engage with our surroundings and run operations. 
Applications in the industrial sector employ the Internet of Things to optimise equipment efficiency and anticipate 
maintenance requirements, while smart home systems use user preferences to manage temperature and lighting. From 
individual well-being to city infrastructure, IoT is boosting productivity, accessibility, and creativity. 

 
 

Fig 1 Internet of Things 
1.3 MACHINE LEARNING 

ML is a fast expanding field of AI that creates algorithms and models to help computers learn from data and improve 
independently. ML systems analyse massive volumes of data to find patterns and generate predictions or judgements 
without prior instructions. This capacity may be used for personalised streaming platform recommendations, predictive 
analytics for corporate strategies, cybersecurity anomaly detection, and picture analysis for healthcare diagnostics. 
Supervised learning predicts outcomes using labelled data, unsupervised learning uncovers hidden structures in 
unlabelled data, and reinforcement learning learns optimal actions through trial and error. These methods help machines 
learn and develop over time. Machine learning has transformed several sectors, from supply chain optimisation and 
financial trading to chatbots and genomics research. As they improve, ML technologies will alter businesses and daily 
life by delivering smarter, more responsive solutions for complex and dynamic data-driven activities.  

Internet Of Things 

Any Device Anybody Anywhere Any 
Business

Any 
Network Anytime
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.  
Fig 2 Applications of Machine learning [19] 

 
1.4 ROLE OF IOT IN AGRICULTURE 

In order to make farming more data-driven and efficient, IoT plays a crucial role in the agricultural sector. In order to 
gather data in real-time from different parts of the agricultural environment, IoT technology uses a network of linked 
sensors, equipment, and systems. Weather stations record current and future weather patterns, while sensors placed in 
the ground measure soil moisture, nutrient concentration, and temperature. Centralised platforms analyse and use this 
data that is sent over wireless networks to make educated judgements. Using IoT, precision irrigation is made possible 
by decreasing water wastage and preserving resources by supplying water only when it is required. Internet of things 
devices also aid in crop health monitoring, early disease and pest detection, and pesticide and fertiliser optimisation. The 
Internet of Things (IoT) boosts efficiency, streamlines resource management, and encourages sustainable agricultural 
practices by delivering actionable information and enabling automation. 

 
Fig 3 Role of IoT in Agriculture [20] 

 
1.5 ROLE OF MACHINE LEARNING IN AGRICULTURE 

The use of ML has revolutionised farming by improving several facets of the industry and allowing for data-driven 
decision-making. Data from a variety of sources, including IoT sensors, satellite photography, and records of past crop 
performance, are analysed by ML algorithms. Forecasting results and improving agricultural tactics are both aided by 
this approach. For instance, ML models can predict agricultural yields depending on variables like soil health, weather, 
and crop type, which helps farmers with resource allocation and planning. By evaluating data and suggesting the ideal 
quantity of water, fertilisers, and pesticides, machine learning also helps with precision agriculture, which reduces waste 
and improves crop quality. Algorithms powered by ML can also spot irregularities and trends in crop health, which may 
help spot illnesses and insect infestations before they spread. Farming may be made more efficient, cheaper, and more 
environmentally friendly with the use of machine learning. 
 

1.6 SIGNIFICANCE OF RESEARCH  
Improving agricultural methods and making them more sustainable requires research into smart agriculture that uses 
IoT and ML. This study paves the way for targeted crop selection and accurate nutrient management in soil by merging 
real-time data from IoT sensors with predictive machine learning algorithms. Improved agricultural yields with less 
wastage are the results of more effective use of resources such targeted irrigation and fertilisation. Improving soil health 
and increasing production while decreasing environmental effect may be achieved with the use of sophisticated decision-
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making tools, which are also supported by this. More resilient and environmentally friendly farming systems that help 
alleviate world hunger are the end result of this research's impact on agricultural technology innovation. 
 

2. LITERATURE REVIEW  
Recent advancements in ML and IoT technologies have significantly impacted smart agriculture. This summary reviews 
key studies on these technologies, focusing on their objectives, techniques, and limitations. 
 
In smart agriculture, Rani et al. (2023) looked at a method that uses machine learning to choose crops the best way. By 
analysing soil and environmental data using a variety of ML algorithms, their research sought to improve crop selection 
efficiency. The study's reliance on high-quality input data is a constraint, even if it takes a thorough approach. In actual 
circumstances, this data may not always be accessible [1]. 
 
In order to intelligently control soil nutrients and choose crops, Sethi and Lakhina (2024) created a system that 
incorporates ML. Nutrient requirements and crop compatibility might be foretold using ML models in their method. One 
potential drawback of the research is that it only looked at one kind of crop, which may not be applicable to other farming 
situations [2]. 
A method for monitoring soil nutrient levels and making crop recommendations was introduced by Islam et al. (2023) 
using the Internet of Things. Their device may analyse nutrients in real-time using input from sensors and ML algorithms. 
One major drawback was the high expense of maintaining the Internet of Things infrastructure and sensors [3]. 
 
For precision farming, Senapaty et al. (2023) suggested a model for soil nutrient measurement that relies on the internet 
of things (IoT). In order to provide crop suggestions, their model used real-time nutrient data. The research did note, 
however, that the sensors' quality and calibration are critical to the system's accuracy [4]. 
 
The use of machine learning and the internet of things in smart farming was investigated by Sundaresan et al. (2023), 
with an emphasis on increasing agricultural yields. They proved that agricultural operations may be improved with the 
use of IoT devices and ML algorithms. One potential drawback is that the model's performance could change depending 
on the soil type and surrounding environment [5]. 
 
A comprehensive analysis of ML models that forecast soil nutrient characteristics was presented by Folorunso et al. 
(2023). They went discussed a number of ML methods and how to use them in their review. The review has certain 
limitations, one of which is that ML model performance varies between soil types and geographies [6]. 
 
Researchers Musanase et al. (2023) used machine learning to create a system that suggests crops and fertilisers 
depending on data. Through the use of cutting-edge analytics, their approach sought to transform agricultural methods. 
Some drawbacks include the possibility of ML model overfitting and the need for large-scale data acquisition [7]. 
 
The use of artificial intelligence in precision farming was covered by Ghosh et al. (2024). Their main objective was to 
enhance agricultural efficiency via the incorporation of AI technology. Problems with AI systems' scalability and 
adaptation in several agricultural contexts were recognised in the research [8]. 
 
Novel AI-driven agricultural techniques, with a focus on precision agriculture, were presented by Elango et al. (2024). In 
order to increase output, they integrated AI with conventional agricultural practices. The primary obstacle was the 
complexity and perhaps large upfront expense of integrating AI [9]. 
 
The uses and difficulties of AI in precision agriculture were discussed by Raza et al. (2023). In it, they detailed the many 
uses of AI in farming and pointed out some of the biggest obstacles, such protecting sensitive information and integrating 
different systems. One limitation was the absence of comprehensive case studies examining the use of AI [10]. 
For environmentally responsible farming, Adewusi et al. (2024) surveyed AI tools. Their research covered all the bases 
when it came to AI's potential uses, although they did point out that expensive and complicated implementations are 
common roadblocks to wider use of the technology [11]. 
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With an emphasis on enabling technologies and future directions, Jararweh et al. (2023) explored smart and sustainable 
agriculture. Although they did note that AI and the Internet of Things are still in their early stages of development and 
encounter many implementation hurdles, they did note that there is great promise in combining the two [12]. 
 
In their study, Thilakarathne et al. (2021) tackled the problems and potential solutions related to the Internet of Things 
(IoT) in smart agriculture. They shed light on Internet of Things (IoT) uses but also pointed up the drawbacks, such as 
unreliable systems and insecure data storage [13]. 
 
For sustainable farming in arid regions, Firdhous et al. (2018) tested out options driven by the internet of things. The 
implementation of these systems shown potential, but encountered obstacles associated with deploying and maintaining 
IoT systems in locations with limited resources [14]. 
 
Improving food security and agricultural sustainability via the use of sensor technologies and the Internet of Things was 
investigated by Morchid et al. (2024). Despite praising these technologies, their research did note several drawbacks, 
such as a high implementation cost and the need of constant system changes [15]. 
 

Table 1 Literature Survey 
Ref Author / Year Methodology Cons Pros 
[1] Rani et al. (2023) Machine learning-based optimal 

crop selection system 
Dependence on high-quality input 
data; may not generalize to all 
regions 

Enhanced crop selection efficiency 
using various ML algorithms 

[2] Sethi and Lakhina 
(2024) 

ML for intelligent crop selection and 
soil nutrient management 

Focus on specific crop types; 
limited generalizability 

Improved nutrient management and 
crop suitability predictions 

[3] Islam et al. (2023) IoT-enabled system for soil nutrients 
monitoring and crop 
recommendation 

High cost of IoT infrastructure and 
sensor maintenance 

Real-time nutrient analysis and crop 
recommendations 

[4] Senapaty et al. 
(2023) 

IoT-based soil nutrient analysis 
model 

Accuracy depends on sensor 
quality and calibration 

Real-time nutrient data for precise 
crop recommendations 

[5] Sundaresan et al. 
(2023) 

ML and IoT-based smart farming Effectiveness varies with 
environmental conditions 

Optimization of farming practices for 
enhanced crop yield 

[6] Folorunso et al. 
(2023) 

Systematic review of ML models for 
soil nutrient prediction 

Variable performance across 
different soil types 

Comprehensive overview of ML 
techniques for soil nutrient 
prediction 

[7] Musanase et al. 
(2023) 

Data-driven, ML-based crop and 
fertilizer recommendation system 

Extensive data collection required; 
potential overfitting 

Advanced analytics for crop and 
fertilizer recommendations 

[8] Ghosh et al. 
(2024) 

AI-driven precision agriculture 
approach 

Scalability and adaptability issues Integration of AI technologies to 
improve agricultural efficiency 

[9] Elango et al. 
(2024) 

AI-driven farming approach High initial cost and complexity of 
AI integration 

Enhanced productivity through AI 
and traditional methods integration 

[10] Raza et al. (2023) Review of AI-enabled precision 
agriculture applications 

Lack of detailed case studies on AI 
implementation 

Overview of AI applications and 
identification of challenges 

[11] Adewusi et al. 
(2024) 

Review of AI technologies for 
sustainable farming 

High costs and technical 
complexities 

Comprehensive review of AI 
applications for sustainable farming 

[12] Jararweh et al. 
(2023) 

Discussion on smart and sustainable 
agriculture 

Evolving technologies; 
implementation challenges 

Potential of IoT and AI for smart and 
sustainable agriculture 

[13] Thilakarathne et 
al. (2021) 

Examination of IoT in smart 
agriculture 

Reliability and data security issues Insights into IoT applications and 
future directions 

[14] Firdhous et al. 
(2018) 

IoT-powered solutions for 
sustainable dry zone agriculture 

Deployment and maintenance 
challenges in resource-constrained 
areas 

Promising solutions for sustainable 
agriculture in dry zones 

[15] Morchid et al. 
(2024) 

IoT and sensor technologies for food 
security and sustainability 

High deployment costs and need 
for system updates 

Benefits of IoT and sensors for 
increasing food security and 
sustainability 
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3. PROBLEM STATEMENT 

Improving crop choices and soil health is still a major obstacle in contemporary farming. Inefficient nutrient management 
and less-than-ideal crop selections are common results of using labour-intensive, traditionally-based soil testing 
procedures. One potential benefit of the proliferation of IoT devices is the possibility of collecting data in real time, which 
might improve soil monitoring. To evaluate soil nutrients and suggest appropriate crops, however, requires successfully 
combining this data with sophisticated machine learning algorithms. The need for practical insights and the difficulty of 
interpreting data make it tough for farmers to make use of this treasure trove of data. Improving agricultural efficiency 
and production may be achieved by creating a system that integrates data from Internet of Things (IoT) sensors with 
machine learning models. This system would then provide farmers exact, real-time suggestions for soil management and 
crop selection. 
 

4. RESEARCH METHODOLOGY  
Multiple critical phases comprise the research process for intelligent agriculture's integration of IoT and machine 
learning. Soil nutrient management and crop selection optimisation via technology integration is the primary emphasis 
of the issue definition that follows. One of the goals is to build machine learning models that can analyse soil data in real-
time. Another is to create an infrastructure for soil monitoring that uses IoT sensors. In order to comprehend current 
technology and locate gaps, a comprehensive literature research is executed. Choosing IoT sensors, creating machine 
learning models, and laying out protocols for data collecting are all part of the system design process. In order to train 
and assess models, data is first retrieved from sensors, then processed to account for discrepancies. After the models are 
integrated with the IoT network, they undergo thorough testing in both simulated and real-world agricultural settings. 
Performance reviews and cost-benefit analysis determine the system's influence. The study concludes with a report and 
documentation of the findings, as well as suggestions for further research and practical applications. The goal of this 
approach is to improve farming methods by shedding light on soil management and crop choices with pinpoint accuracy 
and practical advice. 

 
Fig 4 Research Methodology  

 
Integrating IoT and machine learning for soil nutrient analysis and crop selection offers a sophisticated approach to 
precision farming. IoT devices, such as soil sensors, gather real-time data on key parameters like moisture levels, nutrient 
content, and pH balance, which are crucial for determining soil health and crop suitability. This data is then preprocessed, 
including normalization and handling of missing values, to ensure it is ready for analysis. Machine learning models, 
specifically Random Forest and Logistic Regression, are employed to analyze the data. Random Forest, with its ensemble 
of decision trees, is effective for multi-class classification tasks, such as identifying the most suitable crops based on soil 

Problem Definition And 
Objectives

Literature Review
System Design And 

Framework Development
Data Collection And 

Preprocessing

Documentation And Reporting

Future Work And 
Recommendations

Model Training And Evaluation
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conditions, while Logistic Regression is used for binary classification, determining whether a specific crop is suitable for 
the given soil conditions. The effectiveness of these models is evaluated using metrics like precision, recall, F1-score, and 
the ROC curve, ensuring high accuracy and reliability in decision-making. By combining the strengths of both models, the 
system provides precise recommendations for crop selection and soil management. Additionally, continuous feedback 
from real-world outcomes allows the system to be dynamically updated, improving its performance over time and 
adapting to changing environmental conditions. This integration of IoT and machine learning leads to more informed, 
data-driven decisions in agriculture, enhancing crop yield, resource efficiency, and sustainability. 
Algorithm for Integrating IoT and Machine Learning for Soil Nutrients and Crop Selection 
Step 1: Data Collection 
Input: Real-time sensor data from IoT devices. 

• Moisture Level (M): Percentage of soil moisture. 
• Nutrient Content (N): Levels of essential nutrients (Nitrogen, Phosphorus, Potassium). 
• pH Balance (pH): Soil pH value. 
• Other Environmental Factors (E): Temperature, humidity, etc. 

Output: Collected data stored in dataset `D`. 
Step 2: Data Preprocessing 
Normalization: Normalize the input data to bring all parameters to a comparable scale. 

𝑀𝑀′ =
𝑀𝑀 −𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚

𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 −𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚
 

𝑁𝑁′ =
𝑁𝑁 − 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚
 

𝑝𝑝𝑝𝑝′ =
𝑝𝑝𝑝𝑝 − 𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚

𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚
 

𝐸𝐸′ =
𝐸𝐸 − 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚

𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚
 

Missing Data Handling: Impute missing values using methods like mean, median, or mode. 
Feature Engineering: Create additional relevant features if necessary (e.g., ratios, interaction terms). 
Step 3: Feature Selection 

• Input: Normalized and preprocessed dataset `D'`. 
• Process: Identify and select key features `F` that significantly impact the target variable, which could be crop 

suitability or soil health. 
• Output: Feature set F = {M', N', {pH}', E'}. 

Step 4: Model Training with Random Forest Classifier 
Input: Feature set `F`, target variable `Y` (e.g., suitable crop type, soil quality classification). 
Random Forest Initialization: 

• Define the number of trees `n_trees` in the Random Forest. 
• Construct each tree using a random subset of features and data samples. 

Training: 
• For each tree in the forest: 

• Perform bootstrap sampling to create a training subset. 
• Construct decision trees by splitting nodes based on feature importance. 
• Use Gini Impurity or Entropy to measure split quality: 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑆𝑆) = 1 −�𝑝𝑝𝑖𝑖2
𝑐𝑐

𝑖𝑖=1

 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑆𝑆) = −�𝑝𝑝𝑖𝑖 log(pi)
𝐶𝐶

𝐼𝐼=1

 

• Aggregate trees to form the Random Forest model `RF`. 
Step 5: Binary Classification with Logistic Regression 
Input: Feature set `F`, binary target variable `Y_{bin}` (e.g., binary crop suitability: suitable/not suitable). 
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Logistic Regression Model: 
• Logistic Regression is defined by the sigmoid function: 

𝑃𝑃(𝑌𝑌𝑏𝑏𝑏𝑏𝑏𝑏 = 1|𝑋𝑋) =
1

1 + 𝑒𝑒−(𝛽𝛽0+𝛽𝛽1𝑋𝑋1+𝛽𝛽2𝑋𝑋2=⋯+𝛽𝛽𝑛𝑛𝑋𝑋𝑛𝑛) 

    where X is the feature vector and 𝛽𝛽 are the model coefficients. 
  The model is trained by maximizing the likelihood function to estimate the coefficients \( \beta \). 
Step 6: Model Evaluation 
Input: Test dataset. 
Metrics: 

• Precision: 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 

• Recall: 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 

• F1-Score: 𝐹𝐹1𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 
• Receiver Operating Characteristic (ROC) Curve:  

o Plot True Positive Rate (TPR) vs. False Positive Rate (FPR) across different threshold settings. 
o Compute the Area Under the Curve (AUC) for ROC to evaluate the model's discriminatory ability. 

𝐴𝐴𝐴𝐴𝐴𝐴 = � 𝑇𝑇𝑇𝑇𝑇𝑇(𝐹𝐹𝐹𝐹𝐹𝐹)𝑑𝑑(𝐹𝐹𝐹𝐹𝐹𝐹)
1

0
 

Step 7: Decision Integration 
Input: Predictions from Random Forest and Logistic Regression. 
 
 
Process: 

• Use Random Forest for multi-class crop selection (e.g., recommending specific crops based on soil conditions). 
• Use Logistic Regression for binary decisions (e.g., whether a particular crop is suitable for current soil 

conditions). 
Final Decision: Integrate results from both models to provide a comprehensive recommendation for crop selection and 
soil management. 
Step 8: Continuous Feedback and Model Improvement 

• Input: Real-world results and new data. 
• Process: Use new data and real-world outcomes to update and retrain the models periodically. 
• Output: Improved model accuracy, precision, recall, F1-score, and ROC performance. 

This integrated approach leverages both Random Forest and Logistic Regression to maximize key performance metrics, 
providing high-precision recommendations for soil nutrient management and crop selection. 
 

5. NEED OF RESEARCH 
IoT and machine learning research for soil nutrients and crop selection is essential to solving various agricultural 
problems. Despite technological advances, farmers still struggle to optimise soil health and choose the best crops owing 
to a lack of real-time data and actionable information. Developing more powerful IoT sensors and machine learning 
algorithms to offer real-time soil and crop information is crucial to closing this gap. The agricultural industry also faces 
climate change, soil variability, and changing pest pressures. Adaptive systems that can provide credible suggestions 
under different situations need research into how these factors interact and impact crop production. Finding ways to 
improve machine learning models to integrate and analyse complicated information will increase prediction insights.  
Understanding the economic and practical effects of applying these technologies on smallholder farms and major 
agricultural operations will influence adoption and usage strategies. User-friendly interfaces and decision support 
systems must be researched to make these technology advances accessible and valuable to all farmers. 
 

6. RESULT AND DISCUSSION 
In this section, we present the evaluation results of our proposed machine learning model and compare its performance 
against a conventional approach. The primary aim is to determine whether the proposed model offers significant 
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improvements over traditional methods in terms of accuracy and reliability. “By examining various performance metrics, 
we aim to highlight the strengths and potential advantages of the proposed model in a controlled setting using a synthetic 
dataset. 
 
The comparative analysis demonstrates that the Random Forest Classifier significantly outperforms the Logistic 
Regression model. The improved accuracy and the reduced number of classification errors (false positives and false 
negatives) highlight the proposed model's effectiveness and robustness. The ensemble nature of the Random Forest 
Classifier contributes to its better performance by reducing overfitting and variance. These advantages are particularly 
beneficial in real-world applications where precise and reliable classification is crucial. The findings suggest that the 
proposed model is well-suited for tasks requiring high accuracy and reliable predictions. In summary, the proposed 
Random Forest Classifier offers clear advantages over the conventional Logistic Regression model. With superior 
accuracy, improved metrics across confusion matrices, and higher classification report scores, the proposed model 
demonstrates its potential for more effective and reliable classification. Future research could focus on further 
optimizing the proposed model and exploring its applicability to different datasets and real-world scenarios, enhancing 
its utility and impact in practical applications. 
 
6.1 DATASET  
The dataset used in this study is a synthetic classification dataset generated with 1000 samples, each containing 10 
features. This dataset includes both informative and redundant features, as well as binary class labels, ensuring a diverse 
and challenging environment for model evaluation. The synthetic nature of the dataset allows for a controlled 
assessment of model performance and facilitates direct comparison between the conventional and proposed approaches. 
 
6.2 MODEL TRAINING AND EVALUATION 
We compared two models: the conventional Logistic Regression and the proposed Random Forest Classifier. Logistic 
Regression, a well-established algorithm for binary classification, served as our conventional model. It was trained on 
the standardized training dataset and evaluated using accuracy, confusion matrix, and classification report metrics. The 
Random Forest Classifier, our proposed model, builds multiple decision trees to enhance accuracy and robustness. It was 
also trained and evaluated on the same dataset using the same metrics. This comparison provides insights into how each 
model performs under identical conditions. 
Conventional Model (Logistic Regression): The conventional model used for comparison was Logistic Regression, a 
widely-used algorithm for binary classification tasks. The model was trained on the standardized training dataset. 

• Accuracy: Measures the proportion of correctly classified instances out of the total instances. 
Accuracy: 0.83 

• Confusion Matrix: Provides a detailed breakdown of true positives, true negatives, false positives, and false 
negatives. 

• Report: Includes precision, recall, and F1-score, offering insights into the model's performance across different 
classes. 

Table 2 Classification Report for Conventional Model 
 Precision Recall F1-Score Support 

0 0.86 0.85 0.85 112 
1 0.81 0.82 0.81 88 

Accuracy   0.83 200 
Macro Avg 0.83 0.83 0.83 200 

Weighted Avg 0.84 0.83 0.84 200 
Proposed Model (Random Forest Classifier): The proposed model is a Random Forest Classifier, which builds multiple 
decision trees and combines their results for improved accuracy and robustness. This model was also trained on the 
standardized training dataset. 

• Accuracy: As with the conventional model, this metric indicates the overall correctness of the model. 
Accuracy: 0.94 

• Confusion Matrix: Similar to the conventional model, it details the performance in terms of classification errors 
and correct predictions. 
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• Classification Report: Provides a comprehensive analysis of precision, recall, and F1-score for each class. 
 

Table 3 Classification Report for Proposed Model 
 Precision Recall F1-Score Support 

0 0.95 0.95 0.95 112 
1 0.93 0.94 0.94 88 

Accuracy   0.94 200 
Macro Avg 0.94 0.94 0.94 200 

Weighted Avg 0.95 0.94 0.95 200 
     

 
6.3. PERFORMANCE COMPARISON 
The evaluation results reveal notable differences between the conventional and proposed models. The Logistic 
Regression model achieved an accuracy of 0.83 on the test dataset, while the Random Forest Classifier achieved 0.94, 
representing a 0.11 improvement. This increase in accuracy highlights the superior performance of the proposed model. 
The confusion matrices further illustrate this improvement, with the Random Forest Classifier showing fewer false 
positives and false negatives compared to the Logistic Regression model. The classification reports confirm these 
findings, with the proposed model demonstrating higher precision, recall, and F1-scores for both classes, indicating its 
enhanced capability in distinguishing between classes effectively. 
Accuracy: 

• Conventional Model: Achieved an accuracy of 0.83 on the test dataset. 
• Proposed Model: Achieved an accuracy of 0.94 on the test dataset. 

The proposed model outperforms the conventional model by 0.11 in terms of accuracy, indicating its superior ability to 
classify instances correctly. 
Confusion Matrix Analysis: 

• Conventional Model: The confusion matrix shows below. 

 
Fig 5 Confusion matrix for Conventional Model 

• Proposed Model: The confusion matrix indicates below 

 
Fig 6 Confusion matrix for proposed Model 
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The proposed model exhibits fewer false positives and false negatives compared to the conventional model, suggesting 
better performance in distinguishing between classes. 
Classification Report: 

• Conventional Model: Precision, recall, and F1-score for Class 0: P0, R0, F1_0; for Class 1: P1, R1, F1_1. 

 
Fig 7 ROC for Conventional Model 

• Proposed Model: Precision, recall, and F1-score for Class 0: P0', R0', F1_0'; for Class 1: P1', R1', F1_1'. 

 
Fig 8 ROC for Proposed Model 

The proposed model shows higher precision, recall, and F1-scores for both classes, demonstrating its effectiveness in 
classifying instances accurately and reliably. To further assess model performance, we examined the Receiver Operating 
Characteristic (ROC) curves for both models. The ROC curve for the Logistic Regression model resulted in an area under 
the curve (AUC) of AUC0, whereas the proposed Random Forest Classifier achieved an AUC of AUC1”. The higher AUC for 
the proposed model suggests it is better at distinguishing between positive and negative classes across various 
thresholds, reinforcing its superior performance in classification tasks. 
 

7. CONCLUSION 
The evaluation results indicate that the proposed Random Forest Classifier offers significant advantages over the 
conventional Logistic Regression model. With higher accuracy, improved confusion matrix metrics, and better 
classification report scores, the proposed model is better suited for tasks requiring reliable and precise predictions. 
Future work could explore further optimization of the proposed model and its applicability to other datasets and real-
world scenarios. Solving agricultural problems involves Internet of Things and machine intelligence research into soil 
nutrient management and crop selection. Despite technological advances, farmers struggle to optimise soil health and 
choose the best crops without real-time data. We need better IoT sensors and machine learning algorithms to offer real-
time soil and crop data to close this gap. Agriculture faces soil variability, pest burdens, and climate change. To provide 
relevant suggestions in different circumstances, adaptive systems must study crop yield interactions. Machine learning 
algorithms that can absorb and assess complicated data can improve prediction insights. Understanding the economic 
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and practical effects of these technologies on smallholder farms and large agricultural companies will affect their 
adoption and implementation. Decision support system and user-friendly interface research is needed so all farmers 
may benefit from these technologies. By evaluating real-time data from IoT sensors and applying advanced machine 
learning algorithms to calculate soil nutrients, farmers can now make better crop selection decisions. This strategy 
improves agricultural efficiency and sustainability by lowering resource loss and improving crop yields. New technology 
may improve this approach by providing more accurate and practical ideas that might alter farming processes and 
stimulate agricultural innovation. 
 

8. FUTURE SCOPE 
Positive developments may be on the horizon for intelligent agriculture in the years to come. In order to have a better 
understanding of the soil and environmental conditions and make more informed decisions, improved sensor technology 
will collect data that is both thorough and precise. Machine learning algorithms will keep getting better at predicting soil 
health and crop results by adding more complicated factors. A more complete picture of agricultural surroundings and 
the ability to fine-tune precision farming operations will be made possible via the integration of IoT with other new 
technologies like drones and satellite photography. Furthermore, smaller and medium-sized farms will be able to afford 
these technologies, which will lead to their wider acceptance and a revolution in agricultural methods worldwide. There 
will be an uptick in the use of real-time decision support systems, which provide farmers with rapid, practical advice on 
how to deal with shifting soil and weather conditions. This new technology has the potential to revolutionise farming by 
bringing forth smarter, more efficient, and more environmentally friendly practices in the future. 
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