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ABSTRACT 
This study presents a comparative analysis of two prominent optimization techniques, 
Genetic Algorithm (GA) and Ant Colony Optimization (ACO), for offloading tasks in Mobile 
Augmented Reality (MAR) environments. MAR applications often require intensive 
computational resources, leading to performance bottlenecks on resource-constrained 
mobile devices. Offloading tasks to remote servers can alleviate these constraints, but the 
selection of appropriate offloading strategies is crucial for efficient execution. GA and 
ACO have been widely employed in optimization problems, yet their effectiveness in the 
context of MAR offloading remains unexplored. Through experimentation and 
performance evaluation, this study aims to provide insights into the comparative 
effectiveness of GA and ACO for MAR offloading scenarios. The findings of this research 
can inform the selection of suitable optimization techniques to enhance the performance 
and resource utilization of MAR applications. 
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1. INTRODUCTION 
Mobile Augmented Reality (MAR) applications have gained significant popularity due to their ability to seamlessly 
integrate virtual content with the real world, enhancing user experiences across various domains such as gaming, 
education, navigation, and commerce. However, the resource constraints of mobile devices pose challenges to the 
efficient execution of MAR applications, particularly in scenarios involving computationally intensive tasks. Offloading, 
the process of delegating tasks to remote servers, has emerged as a promising approach to alleviate these constraints 
and enhance the performance of MAR applications [13]. 
 
The selection of offloading strategies plays a crucial role in optimizing the performance of MAR applications. Various 
optimization techniques have been proposed to address this challenge, among which Genetic Algorithm (GA) and Ant 
Colony Optimization (ACO) have shown promise in diverse optimization problems [1] (Gautam, 2022). Despite their 
effectiveness in other domains, their applicability and performance in the context of MAR offloading remain relatively 
unexplored. 
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This study aims to fill this gap by conducting a comparative analysis of GA and ACO for offloading tasks in MAR 
environments [16] (Waoo, 2012). By evaluating the performance of these optimization techniques under different 
scenarios and workloads, this research seeks to provide insights into their effectiveness and suitability for MAR 
offloading. Understanding the comparative strengths and weaknesses of GA and ACO can inform the selection of optimal 
offloading strategies, thereby improving the performance and resource utilization of MAR applications. 
 
In this paper, we present a comprehensive overview of the motivations, objectives, and structure of the study. We begin 
by discussing the background and significance of MAR offloading, followed by a brief review of related work in the field 
of optimization techniques for offloading. Subsequently, we outline the research objectives, methodology, and 
experimental setup employed in this study. Finally, we provide an overview of the paper's organization, highlighting the 
key sections and contributions. Through this investigation, we aim to contribute valuable insights to the research 
community and practitioners involved in the development and optimization of MAR applications. 
 

2. ALGORITHM IN MAR OFFLOADING 
Mobile Augmented Reality (MAR) offloading involves the process of delegating resource-intensive tasks of an augmented 
reality application from a mobile device to more powerful remote servers or cloud infrastructure. This offloading is done 
to improve performance, extend battery life, and enable more complex AR experiences on mobile devices. 
 
2.1 Ant Colony Optimization (ACO) 
it is a metaheuristic algorithm inspired by the foraging behavior of ants to find the shortest path between their nest and 
a food source. It was initially proposed by Marco Dorigo in the early 1990s. ACO has been applied to various 
combinatorial optimization problems, including the traveling salesman problem (TSP), vehicle routing problem (VRP), 
and job scheduling. 
 
The calculation of ant pheromone deposition on each edge is a crucial aspect of the Ant Colony Optimization (ACO) 
algorithm. Here's how it's typically done using the formulas described: 
 
Let's denote: 
Tij: Pheromone level on edge (i, j) 
𝑇𝑇𝑖𝑖,𝑗𝑗𝑘𝑘  : Amount of eromone deposited by ant k on edge (i,j) 
The amount of pheromone deposited on each edge (i,j) by each ant k can be calculated using the following formula: 

𝛥𝛥𝑇𝑇𝑖𝑖,𝑗𝑗𝑘𝑘 =
1
𝐿𝐿𝑘𝑘

 

Where: 
• Lk is the total length of the solution found by ant k. 
Typically, Lk represents the objective function value of the solution found by the ant. For example, in the Traveling 
Salesman Problem (TSP), Lk would be the total distance traveled by the ant. 
After all ants have completed their tours, a global pheromone update is performed. The amount of pheromone deposited 
globally on edge (i, j) is a combination of the pheromone left by all ants that traversed that edge. It can be calculated using 
a formula like: 

𝛥𝛥𝑇𝑇𝑖𝑖𝑖𝑖 = � 𝛥𝛥𝑇𝑇𝑖𝑖𝑗𝑗⋅
𝑘𝑘

𝜂𝜂

𝑘𝑘=1
 

Where: 
• n is the total number of ants that traversed the edge (i,j). 
• 𝛥𝛥𝑇𝑇𝑖𝑖𝑖𝑖is the total amount of pheromone deposited on edge (i,j) after all ants have completed their tours. 
 
After the global pheromone update, pheromone evaporation is applied to all edges to prevent stagnation and promote 
exploration. The amount of pheromone evaporated from each edge can be calculated using a formula like: 
𝑇𝑇𝑖𝑖𝑖𝑖←(1-ρ)•𝑇𝑇𝑖𝑖𝑖𝑖  
Where: 
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• ρ is the pheromone evaporation rate, typically a value between 0 and 1. 
These calculations ensure that edges that are part of shorter solutions receive more pheromone deposits, thus biasing 
future ants to prefer shorter paths. 
 
2.2 Genetic Algorithm 
Genetic Algorithms (GAs) are optimization algorithms inspired by the process of natural selection and genetics. They are 
used to solve optimization and search problems by mimicking the process of natural evolution. During the simulation, 
the Genetic Algorithm (GA) will analyze the specified metrics, including network connection/speed, distance from the 
edge server, and tasks awaiting execution. To execute the GA algorithm, a fitness function must be defined and computed. 
Here, 𝐿𝐿 denotes latency, while 𝑃𝑃 represents power consumption.  
 
The total power consumption (Ptotal) is calculated based on the device's standby energy consumption (Pbase), the power 
consumption per unit of data transmitted (Ptx), and the total amount of data transmitted (D). In our experiment, we assign 
a weight of 1.5 (w1) to the latency component (Lnetwork) and a weight of 1 (w2) to the power consumption component (Ptotal

), as we deem latency crucial for Mobile Augmented Reality (MAR) applications.  
def evaluate_fitness(w1, w2, Lnetwork), Ptotal): 
    """ 
  Evaluate the fitness of a solution based on latency and total power consumption.    
    Parameters: 
        w1 (float): Weight assigned to latency component. 
        w2 (float): Weight assigned to power consumption component. 

Lnetwork(float): Latency of data transmission over the network link. 
Ptotal (float): Total power consumption.      

    Returns: 
        float: Fitness value. 
    """ 
    fitness = w1 * Lnetwork+ w2 * Ptotal 
    return fitness 
 
This function takes the weights w1 and w2, the latency Lnetwork, and the total power consumption Ptotal as input parameters. 
It computes the fitness value by multiplying the latency component Lnetwork) with the weight 1w1 and the power 
consumption component (Ptotal)with the weight w2, and then summing them up. Finally, it returns the computed fitness 
value. 
 

3. EVALUATION AND ANALYSIS 
Evaluating the performance of Genetic Algorithms (GA) and Ant Colony Optimization (ACO) for Mobile Augmented 
Reality (MAR) offloading involves considering several factors such as processing time, throughput, jitter, scheduling 
latency, and power consumption. Within Mobile Augmented Reality (MAR) systems, multiple essential tasks collaborate 
to deliver immersive, responsive, and authentic user experiences. These tasks encompass feature extraction, object 
recognition and tracking, scene reconstruction, virtual object rendering, and sensor data processing [5]. The simulations 
will take place within a controlled environment, where the various tasks involved in the Mobile Augmented Reality 
(MAR) process are isolated. These simulations will encompass diverse parameters, including different types and sizes of 
tasks, as well as varying resource availability at the local edge device, edge servers, and global servers. For the sake of 
simplicity, we assume that all tasks are eligible for offloading. To ensure the statistical significance of our findings, we 
conduct a substantial number of simulations. Upon gathering the results, we proceed with a statistical analysis, which 
entails computing average performance metrics. This methodology enables a comprehensive comparison between the 
two algorithms, facilitating the identification of the algorithm demonstrating superior average performance across the 
designated metrics. Our simulations utilize task and server numbers sourced from iFogSim2 [2][3] as a reference. 
 
3.1 Experiments: 
The simulations encompass diverse environments to assess how effectively the algorithms optimize solutions across 
various scenarios. Table 1 depicts four distinct scenarios for reference. Table 1 depicts four distinct scenarios. In Scenario 
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1, we simulate a real-world setting where users are positioned at a moderate distance from edge servers, which are 
situated at varying distances. The global server is positioned 1000km away from the local device. This setup allows us 
to assess the algorithm's performance in a scenario that mirrors typical usage patterns. Servers 0-3 are equipped with 
queues, while the global server currently has no tasks. Scenario 2 replicates a scenario where a local device is situated 
within a city, with servers positioned on the outskirts experiencing high network traffic.in Scenario 3, the edge device is 
situated within a large city, with servers positioned inside the city center and anticipated to endure substantial usage, 
particularly in urban areas. Despite the servers boasting high processing speeds, their throughput is constrained by 
elevated network traffic. Scenario 4 involves simulating a rural setting where offloading servers are situated at a 
considerable distance from the edge device. Similarly, the global server is also positioned far away from the edge device. 
Collectively, these scenarios and their respective server setups enable the assessment of task performance across various 
devices in diverse environments. 
 

Table 1: Server Configurations 
 Server Configuration 1 
ID TYPE D(KM) SP(W) PpDU(

W) 
T(bps) PS 

(ops/s) 
AD(s) JF Task Queue 

0 LOCAL 0 2 0.001 - 150 2 0 Predefined Queue 
1 EDGE 

SERVER 
50 0 0.001 3.8G 10K 0.005 0.01 Predefined Queue2 

2 EDGE 
SERVER 

100 0 0.001 4.0G 15K 0.001 0.015 Predefined Queue3 

3 EDGE 
SERVER 

150 0 0.001 4.2G 20K 0.0015 0.02 Predefined Queue4 

4 LOCAL 1000 0 0.001 4.5G 50K 0.002 0.025  
 Server Configuration 2 
ID TYPE D(KM) SP(W) PpDU(

W) 
T(bps) PS 

(ops/s) 
AD(s) JF Task Queue 

0 LOCAL 0 2 0.001 - 150 5 0.01 Predefined Queue2 
1 EDGE SERVER 15 0 0.001 1.8G 20K 0.0001 0.02 Predefined Queue 
2 EDGE SERVER 35 0 0.001 1.7G 25K 0.0016 0.04 PredefinedQueue3 
3 EDGE SERVER 40 0 0.001 2.8G 30K 0.0024 0.06 Predefined Queue 
4 LOCAL 120 0 0.001 2.0G 75K 0.0025 0.05  

 

 Server Configuration 3 
ID TYPE D(KM) SP(W) PpDU(

W) 
T(bps) PS 

(ops/s) 
AD(s) JF Task Queue 

0 LOCAL 0 2 0.001 - 150 0 0 Predefined Queue3 
1 EDGE SERVER 5 0 0.001 1.5G 40K 0.0012 0.03 Predefined Queue3 
2 EDGE SERVER 10 0 0.001 1.8G 70K 0.0018 0.045 Predefined Queue 
3 EDGE SERVER 10 0 0.001 2.9G 85K 0.0024 0.006 Predefined Queue8 
4 LOCAL 70 0 0.001 1.8G 130K 0.0024 0.006  
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The simulation encompasses tasks with diverse computational rates and environmental complexities, as outlined in 
Table 2 (refer to the Appendix).  
 

Table 2: Task Configurations 
Task Configuration 1 
ID Data Size 

(bytes) 
Task Load (ops) Description 

0 23,325,000 1 Image processing 
1 6,220,800 0.75 Object recognition and tracking 
3 875,000 1.2 Scene reconstruction 
5 6,250,000 1.2 Virtual object rendering (many objects) 
8 100 0.4 User input and interaction (low user input) 
9 375,000 1.1 Sensor data processing 
Task Configuration 2 
ID Data Size 

(bytes) 
Task Load (ops) Description 

0 23,325,000 1 Image processing 
1 6,220,800 1.5 Object recognition and tracking 
3 1,275,000 2 Scene reconstruction 
5 6,250,000 1.2 Virtual object rendering (many objects) 
8 100 0.4 User input and interaction (low user input) 
9 375,000 1.1 Sensor data processing 
Task Configuration 3 
ID Data Size 

(bytes) 
Task Load (ops) Description 

0 23,325,000 1 Image processing 
1 6,220,800 1.5 Object recognition and tracking 
3 1,275,000 2 Scene reconstruction (complex scene) 
6 2,250,000 0.6 Virtual object rendering (few objects) 
4 1000000 0.8 User input and interaction (low user input) 
9 375,000 1.1 Sensor data processing 
Task Configuration 4 
ID Data Size 

(bytes) 
Task Load (ops) Description 

0 23,325,000 1 Image processing 
1 6,220,800 1.5 Object recognition and tracking (many objects in the 

scene) 
3 1,275,000 2 Scene reconstruction (complex scene) 
7 4,250,000 0.9 Virtual object rendering (medium number of objects) 
10 705,000 0.6 User input and interaction (medium user input) 

 Server Configuration 4 
ID TYPE D(KM) SP(W) PpDU(

W) 
T(bps) PS 

(ops/s) 
AD(s) JF Task Queue 

0 LOCAL 0 2 0.001 - 150 2 0  
1 EDGE 

SERVER 
70 0 0.001 5.0G 45K 0.014 0 Predefined Queue 

2 EDGE 
SERVER 

140 0 0.001 5.6G 47K 0.014 0  

3 EDGE 
SERVER 

200 0 0.001 4.5G 50K 0.021 0  

4 LOCAL 1800 0 0.001 2.6G 90K 0.028 0 Predefined Queue2 
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9 375,000 1.1 Sensor data processing 
 
The initial task configuration prioritizes executing an application within a scene featuring a small number of objects. It 
involves rendering a high volume of objects onto the scene without necessitating extensive user input or interaction. In 
the second task configuration, implemented within a scene containing numerous objects, the objective is to render many 
objects onto the scene without heavily relying on user input or interaction. The third task, set within a scene featuring a 
high number of objects, focuses on rendering few objects while involving substantial user interaction and input. The 
fourth task entails a moderate level of user input and interaction, rendering a moderate number of objects within a scene 
containing many objects. The final task operates within a scene featuring a minimal number of objects, focusing on 
rendering few objects and necessitating minimal user input and interaction. 
 
3.2 Assessment: 
Server Set 1: Setup 1 and 2 Setups 1 and 2 are constructed using Server Configuration 1 from Table 1 but handle 
different sets of tasks. Setup 1 utilizes Task Configuration 1, whereas Setup 2 utilizes Task Configuration 5 from Table 2. 
The results of the typical usage scenario depicted in Figure 1 illustrate that, in general, the GA algorithm outperforms the 
ACO algorithm in selecting servers that offer the lowest latency. In setup 1, the average latency for the GA algorithm is 
12.93 ms, whereas the average latency for the ACO algorithm is 14.16 ms. Likewise, in setup 2, the average latency for 
the GA algorithm is 11.97ms, compared to 14.20ms for the ACO algorithm (as indicated in the third column of Figure 1). 
Throughout the 10 iterations, the GA consistently exhibits stable latency performance, showing minimal fluctuations. In 
contrast, the ACO algorithm experiences two noticeable latency spikes in both setups 1 and 2. The distribution of tasks 
among servers varies significantly between the two algorithms. ACO primarily offloads tasks to a single server, as evident 
from the first column in Figure 1. In contrast, GA distributes tasks more evenly across servers 1 through 3, as depicted 
in the second column of Figure 1. This broader distribution potentially contributes to its lower latency performance. 
In each iteration, the total power consumption remains constant for both setups, as indicated in the fourth column of 
Figure 1. In setup 1, the ACO algorithm consumes 34.45mW of energy, while the GA algorithm utilizes 37.05mW. 
Conversely, in setup 2, the GA algorithm demonstrates lower power consumption at 33.05mW, while the ACO algorithm 
still consumes 34.45mW. 
 
Server set 2: setups 3 and 4. Setups 3 and 4 are built up using Server Configuration 2 with Task Configuration 2 and 
Task Configuration 1, respectively. The results (refer to Figure 2) indicate that the ACO algorithm outperforms the GA in 
terms of latency on the selected servers. In particular, setup 4 shows 15.81ms for GA and 13.48ms for ACO, whereas 
setup 3 produces 12.71ms for GA and 16.08ms for ACO. Note that in configuration 3, every time an iteration occurs, the 
ACO reliably offloads all work to server 3, which produces a constant delay. Similar results are seen in configuration 4, 
where every task—aside from iteration 7 which results in a delay of 20.47ms is offloaded to server 3. However, GA 
displays a heterogeneous distribution of work offloading, with jobs allocated to servers 1-4 throughout all configuration 
iterations 3 and 4. With intervals ranging from 14.98ms to 17.30ms in Setup 3 and from 14.94ms to 16.37ms in Setup 4, 
this distribution produces a variety of latency values. On the other hand, the ACO algorithm finds the optimal offloading 
latency more accurately than the GA method. Compared to GA's 16.08ms and 15.81ms, offloading servers display average 
latency values of 12.71ms and 13.48ms. In setups 3 and 4, the GA shows a greater power consumption of 37.05mW and 
37.45mW, respectively (see the subfigures in Figure 2's fourth column). 
 
Server set 3: setups 5 and 6. Using Server Configuration 3 and Task Configurations 3 and 2, respectively, Setups 5 and 
6 are constructed. Figure 3 presents the findings. With a few exceptions, the ACO offloading shows a similar result, 
primarily offloading work to server 3. In configuration 5, the average latency for GA is 13.58ms and the average latency 
for ACO is 14.16ms with two separate spikes.  
 
In setup 6, the average latency is 15.32ms due to ACO's more consistent result of 13.50ms, while GA shows a more 
diversified offloading technique that results in a wider latency range with a peak at 17.78 ms and the lowest peak at 
14.19ms. The power consumption of the GA and ACO algorithms in setup 5 and setup 6 are 34.45mW and 37.45mW, 
respectively. The subfigures in the fourth column of Figure 3 show the greater power consumption of the GA method. 
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Figure 1 Offloading techniques, delay, and power use in configurations 1 (top) and 2 (bottom). ACO offloading 
techniques are described in the first column, GA offloading strategies are represented in the second column, 

and the latency and power consumption of those two algorithms are displayed in the third and fourth columns, 
respectively. 
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Figure 2: Offloading tactics, latency, and power use in configurations 3 (top) and 4 (bottom). ACO offloading 
techniques are described in the first column, GA offloading strategies are represented in the second column, 

and the latency and power consumption of those two algorithms are displayed in the third and fourth columns, 
respectively. 

 

   
 

   
Figure 3: Offloading strategies, latency, and power consumption in setups 5 (above) and 6 (below). The 

columns have the same representations as Figure 1. 
 
Total Execution Time and Power Consumption Every configuration using the ACO algorithm has a constant total 
power usage of 34.45mW. The power consumption of the GA, on the other hand, varies substantially, from 33.05mW to 
37.45mW. At the moment, just the task offloading delay is taken into account; the algorithm's execution time is not. The 
ACO algorithm performs better than the GA method in terms of overall delay. The maximum execution time of the ACO 
algorithm is 25.24ms, but the GA can reach up to 503.19ms in some configurations. 
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3.3 Carryout 
The latency performance research showed that, in configurations 3, 4, 5, and 6 (corresponding Server Configurations: 2 
and 3), ACO consistently shows lower latency than GA, but in setups 1 and 2 (corresponding Server Configurations: 1 
and 4) GA beats ACO. The particulars of the configurations and the types of jobs given determine how effective both 
algorithms are. There is a clear pattern in the offloading strategies: the ACO primarily offloaded jobs to one server 
(usually server 3), which produced steady delay rates. The GA, on the other hand, uses a more varied method of job 
offloading, dividing up the work across several servers and the local device. Variations in the offloading patterns are the 
main cause of latency changes in the ACO, especially when jobs are offloaded to servers other than the ones that are used 
most frequently. With a wider range of offloading techniques, the GA shows fewer notable latency variances. When 
discussing the overall execution time in a real-world scenario, it's important to keep in mind that the GA algorithm may 
exhibit up to a 20-fold greater execution time than the ACO method. 
 

4. CONCLUSION AND FUTURE WORK 
We assess the efficacy of the GA and ACO algorithms in optimizing task offloading for edge computing in the context of 
the MAR application. A range of tasks and various server configurations are used to carry out the evaluation. The 
outcomes showed that both algorithms' success depends significantly on the unique features of the jobs and 
surroundings. When the servers are situated closer to the edge device, the ACO algorithm continuously exhibits lower 
latency than the GA. However, in settings where the servers are located farther apart, the GA algorithm performs better 
than the ACO method. Due to the ACO algorithm's primary duty offloading to a single server, latency rates were 
consistently maintained. On the other hand, the GA exhibits a more varied approach to task offloading, dividing jobs 
across many servers and the local device, leading to minor variations in latency. The main cause of latency variations in 
the ACO algorithm is modifications to the offloading patterns, especially when workloads are offloaded to servers other 
than the ones that are utilized most frequently. The GA showed fewer notable latency changes due to its more varied 
offloading strategy. In comparison to the ACO algorithm, the GA exhibits greater power consumption in the majority of 
settings. 
 
Some of the limitations of this study include the use of a dataset that is not based on realistic numbers, the use of the 
same hardware to measure the algorithms' execution times, and the use of relatively modest server queues when 
compared to what is typically encountered in real-world scenarios. Notwithstanding these drawbacks, the study offers 
insightful information about how well GA and ACO perform in task offloading optimization for edge computing 
environments, emphasizing how the choice between GA and ACO depends on the particular use case and the intended 
trade-off between latency and power consumption. Additionally, the research might be expanded by examining other 
optimization techniques and how well they function in circumstances involving more intricate edge computing. 
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