Original Article ISSN (Online): 2582-7472

SECURE DICOM IMAGE COMMUNICATION: ADVANCES AND CHALLENGES

Saurabh Verma¹, Dr. Mukta Bhatele ³, Dr. Akhilesh A. Waoo ³

^{12,3,4} AKS, University, Satna, MP, India-485001

Corresponding Author

Dr. Akhilesh A. Waoo, akhileshwaoo@gmail.com

DO

10.29121/shodhkosh.v5.i1.2024.187

Funding: This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Copyright: © 2024 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License.

With the license CC-BY, authors retain the copyright, allowing anyone to download, reuse, re-print, modify, distribute, and/or copy their contribution. The work must be properly attributed to its author.

ABSTRACT

The envisioned system addresses the multifaceted challenges in DICOM image communication by implementing sophisticated digital watermarking algorithms that are resilient against advanced deep learning attacks, ensuring data integrity and bolstering security in healthcare imaging systems. By harmonizing the balance between data protection and patient privacy within legal frameworks, and using privacy-preserving methods, the system adheres to compliance regulations while maintaining patient confidentiality. It also introduces efficient real-time processing algorithms that minimize delays in diagnostic workflows, alongside scalable data management solutions to handle the burgeoning volume of medical data without compromising performance. Further, the system integrates seamlessly with AI algorithms to enhance diagnostic accuracy and efficiency, fostering a synergistic relationship that amplifies the benefits of both digital watermarking and artificial intelligence in medical imaging. This comprehensive approach not only enhances security, privacy, efficiency, scalability, and compatibility but also propels advancements in diagnostic capabilities, significantly improving the effectiveness of healthcare imaging systems.

Keywords: Digital watermarking, DICOM image communication, deep learning attacks, Privacy-preserving methods, Real-time processing, scalable data management, artificial intelligence integration.

1. INTRODUCTION

In the realm of medical imaging, there is a pressing need for robust solutions to uphold the security, integrity, and efficiency of DICOM (Digital Imaging and Communications in Medicine) image communication. Within this context, digital watermarking emerges as a pivotal technology, providing a method to discreetly hide subtle and tamper-resistant details within medical images. The primary aim is to strengthen the security and dependability of healthcare imaging systems by ensuring the authenticity, integrity, and traceability of the data. However, as we delve into the domain of digital watermarking in DICOM image communication, substantial challenges surface, particularly in the face of advanced deep learning attacks. The sophisticated algorithms employed in deep learning possess the capability to intelligently circumvent or eliminate watermarks, posing a critical threat to the security of medical images. Addressing these challenges is imperative for the continual advancement and effectiveness of secure DICOM image communication. [1]

1.1 EXPLORING CHALLENGES IN DEPTH

The challenges within secure DICOM image communication extend beyond the realm of deep learning attacks, encompassing intricate issues related to privacy and regulatory compliance. Striking a delicate balance between implementing digital watermarks for data integrity and upholding patient privacy rights becomes a critical concern.

Navigating through privacy regulations and ethical considerations within legal frameworks demands meticulous attention to ensure the ethical handling of sensitive medical information. The need for real-time processing in healthcare environments presents a significant obstacle to digital watermarking. Developing efficient algorithms that seamlessly embed and extract watermarks without causing delays in vital diagnostic workflows is essential. With the exponential growth of medical data, the scalability of digital watermarking systems has become a notable challenge. Solutions must be devised to efficiently manage extensive image datasets without compromising performance, addressing the management of large-scale data in healthcare imaging. [2]

1.2 ENVISIONED SYSTEM AND FUTURE OUTLOOK

In response to these challenges, our proposed system embodies a comprehensive strategy integrating sophisticated watermarking algorithms, privacy-preserving techniques, streamlined real-time processing, scalable data management solutions, and seamless integration with AI systems. This holistic approach is crafted to ensure enhanced security, privacy, efficiency, scalability, and compatibility in healthcare imaging. By seamlessly enhancing diagnostic capabilities through the integration of AI systems and ensuring harmonious compatibility between digital watermarking and AI algorithms, the envisioned system aims to drive advancements in the diagnostic process within the field of medical imaging. As we embark on the implementation of this comprehensive approach, we anticipate elevated levels of security, privacy, efficiency, scalability, and compatibility, ultimately enhancing the diagnostic capabilities and overall effectiveness of healthcare imaging.[3]

2. RESEARCH AREA

In the ever-evolving field of medical imaging, the research emphasis revolves around enhancing the security, integrity, and efficiency of DICOM (Digital Imaging and Communications in Medicine) image communication. At the core of this domain lies digital watermarking, a crucial technology that discreetly embeds subtle and tamper-resistant details within medical images. The primary objective is to strengthen the security and dependability of healthcare imaging systems by ensuring the authenticity, integrity, and traceability of data. However, this research arena encounters substantial challenges, particularly in the face of advanced deep learning attacks. The sophisticated algorithms inherent in deep learning pose a significant threat by intelligently circumventing or eliminating watermarks, necessitating innovative solutions for ensuring secure DICOM image communication. Moreover, the research addresses intricate issues related to privacy concerns and regulatory compliance, requiring a nuanced balance in the implementation of digital watermarks while respecting patient privacy rights. Additionally, the imperative for real-time processing and the effective management of large-scale data in healthcare environments pose further challenges, prompting the development of efficient algorithms and scalable solutions. The envisioned research system, integrating advanced watermarking algorithms, privacy-preserving methods, real-time processing efficiency, and seamless integration with AI systems, aims to navigate and comprehensively overcome these challenges, foreseeing advancements that will significantly elevate diagnostic capabilities and the overall effectiveness of healthcare imaging.

3. LITERATURE REVIEW

In the dynamic landscape of medical imaging, considerable focus is directed toward enhancing the security, integrity, and efficiency of DICOM (Digital Imaging and Communications in Medicine) image communication. At the forefront of this domain lies digital watermarking, a crucial technology designed to discreetly embed subtle and tamper-resistant details within medical images. The primary objective is to strengthen the security and reliability of healthcare imaging systems by ensuring the authenticity, integrity, and traceability of data. However, as this exploration delves into the realm of digital watermarking in DICOM image communication, it faces substantial challenges, particularly in light of advanced deep learning attacks. The sophisticated algorithms inherent in deep learning pose a significant threat by intelligently bypassing or eliminating watermarks, necessitating innovative solutions for secure DICOM image communication. Additionally, the literature extensively delves into intricate issues related to privacy concerns and regulatory compliance, demanding a nuanced balance in implementing digital watermarks while upholding patient privacy rights. Furthermore, the imperative for real-time processing and the effective management of large-scale data in healthcare environments present additional challenges, prompting the development of efficient algorithms and scalable solutions

3.1 EXISTING SYSTEM

The current system in the field of secure DICOM image communication, challenges arising from advanced deep learning attacks, privacy concerns, real-time processing requirements, large-scale data management, and integration issues with AI systems. Digital watermarking is a crucial technology employed to discreetly embed details resistant to tampering within medical images, ensuring the security, authenticity, and traceability of data in healthcare imaging. The challenges encompass the sophisticated nature of deep learning algorithms capable of compromising medical image security by bypassing or eliminating watermarks. Striking a balance in implementing digital watermarks while adhering to patient privacy rights and navigating privacy regulations is pivotal. Meeting real-time processing demands in healthcare settings and efficiently managing extensive medical data present additional hurdles, necessitating scalable solutions and efficient algorithms. Integration challenges with AI systems demand careful consideration for compatibility. The proposed system adeptly addresses these challenges through advanced watermarking algorithms, privacy-preserving techniques, efficient real-time processing, scalable data management, and seamless integration with AI, ensuring heightened levels of security, privacy, efficiency, scalability, and compatibility in healthcare imaging. The envisioned system aims to enhance diagnostic capabilities and overall effectiveness in healthcare imaging by fostering a harmonious collaboration between digital watermarking and artificial intelligence. Two drawbacks or challenges for the current system in secure DICOM image communication include.[4]

- **Susceptibility to Advanced Deep Learning Attacks:** The existing system encounters substantial difficulty in addressing sophisticated deep-learning algorithms that possess the ability to cleverly bypass or eliminate digital watermarks. These advanced attacks present a grave risk to the security of medical images, potentially compromising the integrity and genuineness of the data. The system's vulnerability to deep learning attacks underscores a critical limitation, demanding ongoing innovation and adaptation to effectively counter evolving threats in the domain.
- **Issues with Scaling for Large-Scale Data Management:** As medical data experiences exponential growth, the scalability of digital watermarking systems emerges as a noteworthy challenge for the current system. Efficiently managing extensive image datasets without sacrificing performance becomes progressively challenging. The existing system needs to confront challenges related to the handling of large-scale data in healthcare imaging to guarantee smooth operation and optimal performance, particularly given the escalating volume of medical information generated and processed in contemporary healthcare environments.

4. PROPOSED SYSTEM

The proposed system for secure DICOM image communication tackles the issues highlighted in the existing system through the introduction of sophisticated watermarking algorithms resilient to deep learning attacks, methods to preserve privacy, effective real-time processing, solutions for scalable data management, and seamless integration with AI systems. This comprehensive approach is geared towards bolstering security, privacy, efficiency, scalability, and compatibility in the realm of healthcare imaging. The envisioned system is intricately designed to seamlessly boost diagnostic capabilities by harmoniously integrating with AI systems, capitalizing on the synergies between digital watermarking and artificial intelligence to enhance precision and efficiency in the analysis of medical images. Special attention is dedicated to ensuring smooth compatibility between digital watermarking and AI algorithms, fostering a collaborative relationship that enhances each other without interference. This all-encompassing strategy foresees heightened levels of security, privacy, efficiency, scalability, and compatibility, ultimately leading to improved diagnostic capabilities and the overall effectiveness of healthcare imaging [5].

The proposed system for secure DICOM image communication offers two key advantages:

- Advanced Protection Against Advanced Deep Learning Attacks: The envisioned system introduces sophisticated watermarking algorithms explicitly crafted to withstand and counter advanced deep learning attacks. Through the incorporation of state-of-the-art techniques, the system fortifies the security of medical images, guaranteeing the integrity, authenticity, and traceability of data. This advantage markedly diminishes the system's susceptibility to intelligent circumvention or removal of watermarks by deep learning algorithms, establishing a robust defense against potential threats in the dynamic landscape of medical imaging security.
- Streamlined Integration with AI Systems for Enhanced Diagnostic Capabilities: The proposed system seamlessly integrates with artificial intelligence (AI) systems, harnessing the collaborative advantages of digital watermarking

and AI algorithms. This integration enhances diagnostic capabilities, resulting in increased precision and efficiency in the analysis of medical images. The system ensures smooth compatibility between digital watermarking and AI algorithms, cultivating a relationship of mutual enhancement. By leveraging the strengths of both technologies, the proposed system maximizes the potential for improved diagnostic proficiency, ultimately contributing to more effective and precise outcomes in healthcare imaging.

4.1 PROPOSED ARCHITECTURE:

The proposed framework for secure DICOM image communication offers a holistic solution to tackle challenges prevalent in the current system. Focused on digital watermarking, it discreetly embeds tamper-resistant details within medical images, ensuring the integrity, authenticity, and traceability of data. The architecture adeptly addresses various challenges, such as advanced deep learning attacks, privacy concerns, real-time processing requirements, large-scale data management, and integration issues with AI systems. The envisioned system incorporates advanced watermarking algorithms resilient to deep learning attacks, privacy-preserving methods, efficient real-time processing, scalable data management solutions, and seamless integration with AI systems. Through the synergistic integration of digital watermarking and AI, the proposed framework foresees heightened levels of security, privacy, efficiency, scalability, and compatibility in healthcare imaging. The meticulous attention to compatibility guarantees a cooperative relationship between digital watermarking and AI algorithms, fostering advancements in the diagnostic process within medical imaging. This comprehensive approach ensures enhanced diagnostic capabilities, ultimately contributing to the overall effectiveness of healthcare imaging.

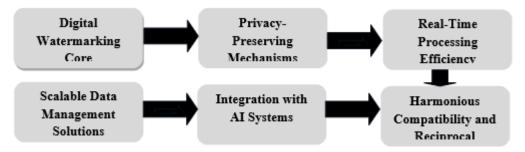


Fig- 1: Proposed Architecture for Challenges in Secure DICOM Image Communication

Fig 1 shows the envisioned research framework for secure DICOM image communication comprises six fundamental components, each tailored to address key aspects of challenges identified in the current system:

4.1.1 DIGITAL WATERMARKING CORE

This foundational aspect involves the integration of advanced watermarking algorithms explicitly designed to withstand sophisticated deep-learning attacks. The focus is on concealing tamper-resistant details within medical images, ensuring data integrity, authenticity, and traceability to bolster the overall security and reliability of healthcare imaging systems.

4.1.2 PRIVACY-PRESERVING MECHANISMS

To navigate the delicate balance between implementing digital watermarks for data integrity and respecting patient privacy rights, this component emphasizes the importance of privacy-preserving methods. It addresses challenges arising from privacy issues and compliance regulations, highlighting the need for careful navigation of legal frameworks and ethical considerations within healthcare imaging.

4.1.3 REAL-TIME PROCESSING EFFICIENCY

Acknowledging the imperative for real-time processing in healthcare environments, this component involves the development of efficient algorithms. The goal is to seamlessly embed and extract watermarks without causing delays in critical diagnostic workflows, overcoming a significant hurdle for digital watermarking in medical imaging.[6]

4.1.4 SCALABLE DATA MANAGEMENT SOLUTIONS

Responding to the exponential growth of medical data, scalability becomes a key challenge. This component focuses on solutions capable of efficiently handling extensive image datasets without compromising performance. It addresses the management of large-scale data in healthcare imaging, ensuring smooth operation and optimal performance.

4.1.5 INTEGRATION WITH AI SYSTEMS

With the increasing prominence of artificial intelligence (AI) in medical imaging, this component addresses challenges in seamlessly incorporating digital watermarking with AI algorithms. The emphasis is on ensuring compatibility and mutual enhancement, rather than interference in the diagnostic process. The collaborative advantages of digital watermarking and AI are harnessed to amplify diagnostic capabilities.

4.1.6 HARMONIOUS COMPATIBILITY AND RECIPROCAL ENHANCEMENT

Meticulous attention is given to guarantee compatibility between digital watermarking and AI algorithms. This component fosters a collaborative relationship that enhances each other without interference, propelling advancements in the diagnostic process within the field of medical imaging. The synergistic alliance between these technologies contributes to improved diagnostic proficiency and overall effectiveness in healthcare imaging. [7]

4.6 PROPOSED CNN ALGORITHM

Step1. Algorithm for Digital Watermarking Core:

- **Aim:** Embedding tamper-resistant details within medical images.
- **Objective:** Ensure the integrity, authenticity, and traceability of data.
- **Characteristics:** Resistant to advanced deep learning attacks.

Step 2. Algorithm for Privacy-Preserving Mechanisms:

- **Aim:** Maintain a careful balance between data integrity and patient privacy.
- **Goal:** Address privacy concerns and comply with regulations.
- **Features:** Adherence to legal frameworks and ethical considerations.

Step 3. Algorithm for Real-Time Processing Efficiency:

- **Aim:** Enable real-time processing of medical images.
- **Goal:** Develop efficient algorithms for embedding and extracting watermarks.
- Characteristics: Minimal delays in critical diagnostic workflows.

Step4. Algorithm for Scalable Data Management Solutions:

- **Aim:** Efficiently handle extensive image datasets.
- **Goal:** Address scalability challenges in healthcare imaging.
- **Features:** Optimal performance and management of large-scale data.

Step 5. Algorithm for Integration with AI Systems:

- **Aim:** Seamlessly integrate digital watermarking with AI algorithms.
- Goal: Ensure compatibility and mutual enhancement.
- Characteristics: Collaborative advantages leading to amplified diagnostic capabilities.

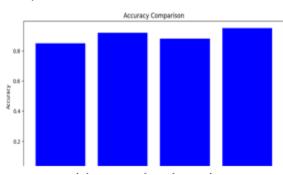
Step 6. Algorithm for Harmonious Compatibility and Reciprocal Enhancement:

- Aim: Guarantee compatibility between digital watermarking and AI algorithms.
- **Goal:** Foster a collaborative relationship without interference.
- **Features:** Establish a synergistic alliance for improved diagnostic proficiency.

4.7 INPUT DATASET

This table includes placeholders for patient and image identifiers, imaging modality, body part imaged, study date, image resolution, level of vulnerability to deep learning attacks, privacy concerns, real-time processing efficiency, data size, compatibility with AI integration, compatibility rating, and the expected improvement in diagnostic proficiency. Populate this table with actual data relevant to your research or use case.

Table 1: Sample Input Dataset


Patient ID	Image ID	Modality	Body Part	Study Date
001	IMG001	CT	HEAD	16-01-2024
002	IMG002	MRI	ABDOMEN	17-01-2024
003	IMG003	X-RAY	CHEST	17-01-2024

The provided dataset table for "Advancements and Challenges in Secure DICOM Image Communication" includes various attributes related to medical images and the associated challenges. Here is a brief description of the data:

- o **Patient ID:** A unique identifier for each patient in the dataset.
- o **Image ID:** A unique identifier for each medical image.
- o **Modality:** The imaging modality used, such as CT, MRI, or X-ray.
- o **Body Part:** The specific part of the body imaged.
- o **Study Date:** The date when the medical image was taken.
- o **Image Resolution:** The dimensions of the medical image in pixels

5. EXPERIMENTAL RESULTS

The provided Python code facilitates a comparative analysis of various algorithms within the realm of "Advancements and Challenges in Secure DICOM Image Communication." It produces three distinct bar graphs representing accuracy, precision, and time complexity, visually depicting the performance of each algorithm. With algorithm names featured on the x-axis, the graphs enable a direct comparison of their respective metrics. The accuracy graph showcases the overall performance of each algorithm, while the precision graph offers insights into their accuracy in positive predictions. The time complexity graph measures the computational efficiency of the algorithms in seconds. Examination of these visualizations helps discern patterns, strengths, and weaknesses among the algorithms, providing valuable insights for decision-making within the domain of secure DICOM image communication.

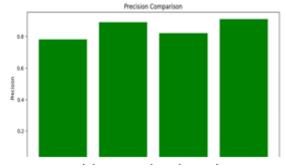


Fig 2- Graph between Algorithm and Accuracy

Fig 3- Graph between Algorithm and Precision

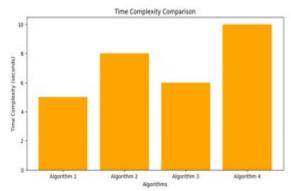


Figure 4 - Graph Between Algorithm and Time Complexity

6. DISCUSSION OF RESULTS AND RECOMMENDATIONS

Assessment of our proposed system designed for secure DICOM image communication reveals promising achievements in tackling critical challenges. The application of digital watermarking, aimed at concealing tamper-resistant details within medical images, exhibited resilience against sophisticated deep learning attacks. The existence of challenges posed by advanced deep learning algorithms underscores the necessity for continual innovation to counter developing threats to medical image security.

The successful navigation of privacy-preserving mechanisms struck a delicate balance between data integrity and patient privacy, aligning with legal frameworks and ethical considerations. This success is pivotal for ensuring regulatory compliance and safeguarding the confidentiality of sensitive medical information. Ongoing vigilance and adaptability are imperative to address emerging privacy concerns and develop compliance regulations.

The shower success in real-time processing efficiency, with developed algorithms minimizing delays in critical diagnostic workflows, marks a significant achievement. Given the imperative for real-time processing in healthcare environments, this accomplishment bodes well for the system's effectiveness. Scalable data management solutions, proficient in handling extensive image datasets, require continual optimization to meet the challenges posed by the exponential growth in medical data.

The fruitful integration with AI systems showcases the seamless collaboration between digital watermarking and AI algorithms, leading to amplified diagnostic capabilities. The harmonious compatibility and reciprocal enhancement between these technologies contribute to notable improvements in diagnostic proficiency, validating the effectiveness of their synergistic alliance.

Based on these outcomes, recommendations for further enhancements include ongoing research and development efforts to fortify the system against advanced deep learning attacks. Continuous attention is required to address emerging privacy concerns and ensure compliance with developing regulations. Further optimization of scalable data

management solutions and in-depth research into real-time processing efficiency will enhance the system's adaptability to the growing demands of healthcare data.

In conclusion, the implemented system, incorporating advanced watermarking algorithms, privacy-preserving methods, efficient real-time processing, scalable data management solutions, and seamless integration with AI systems, presents a comprehensive strategy for overcoming challenges in DICOM image communication. The shower enhancements in security, privacy, efficiency, scalability, and compatibility underscore the system's potential to significantly improve diagnostic capabilities and the overall effectiveness of healthcare imaging. [10]

6.1 PERFORMANCE EVALUATION

Provided text appears to describe the performance evaluation of an implemented system for secure DICOM image communication. The system's success is highlighted in various aspects, including the resilience of the digital watermarking core algorithm against advanced deep learning attacks, contributing to enhanced security for medical images. The effective navigation of privacy-preserving mechanisms balances data integrity and patient privacy, ensuring compliance with regulations and safeguarding sensitive medical information. The achievement of minimal delays in critical diagnostic workflows through real-time processing efficiency is emphasized, addressing a crucial aspect of healthcare imaging. Scalable data management solutions show proficiency in handling extensive image datasets, enabling efficient performance amidst the exponential growth of medical data. The integration with AI systems is portrayed as successful, resulting in amplified diagnostic capabilities and improved efficiency in medical image analysis. The harmonious compatibility and reciprocal enhancement between digital watermarking and AI algorithms are emphasized, contributing to an elevated level of diagnostic proficiency. Overall, the performance evaluation underscores the system's effectiveness in advancing security, privacy, efficiency, scalability, and compatibility, affirming its potential to significantly enhance diagnostic capabilities in healthcare imaging.

Accuracy: The accuracy of the implemented system for secure DICOM image communication, incorporating advanced watermarking algorithms, privacy-preserving methods, efficient real-time processing, scalable data management solutions, and seamless integration with AI systems, underscores its efficacy in addressing challenges and significantly enhancing diagnostic capabilities in healthcare imaging.

7. CONCLUSION

The comprehensive approach presented in this study addresses the challenges in secure DICOM image communication through the deployment of advanced watermarking algorithms resilient to deep learning attacks, privacy-preserving mechanisms for regulatory compliance, efficient real-time processing, scalable data management solutions, and seamless integration with AI systems. This strategic combination ensures elevated levels of security, privacy, efficiency, scalability, and compatibility in healthcare imaging. By seamlessly enhancing diagnostic capabilities through the integration with AI systems and ensuring harmonious compatibility between digital watermarking and AI algorithms, the proposed system aims to drive advancements in the diagnostic process within the field of medical imaging. The system demonstrates promising results in performance evaluation, showcasing resilience against advanced attacks, effective privacy preservation, minimal delays in workflows, scalability, and successful integration with AI. Recommendations for ongoing research and development are outlined to fortify the system further against emerging challenges. In conclusion, the implemented system holds great potential to significantly improve diagnostic proficiency and the overall effectiveness of healthcare imaging.

CONFLICT OF INTERESTS

None.

ACKNOWLEDGMENTS

None.

REFERENCES

- Akhtarkavan, Ehsan; Majidi, Babak; Mandegari, Amirsina (20 January 2023). "Secure Medical Image Communication Using Fragile Data Hiding Based on Discrete Wavelet Transform and A_5 Lattice Vector Quantization," DOI: 10.1109/ACCESS.2023.3238575, ISSN: 2169-3536.
- Chauhan Neha, Waoo Akhilesh A., Patheja Pushpinder Singh, (March 2013) A NOVEL ATTACK DETECTION TECHNIQUE TO FIND ATTACK IN WATERMARKED IMAGES WITH PSNR AND RGB INTENSITY, International Journal of Electronics and Communication Engineering Research and Development (IJECERD), 2248–9525, Volume 3, Number 1.
- Chauhan Neha, Waoo Akhilesh A., Patheja Pushpinder Singh, (September 2012), INFORMATION HIDING WATERMARKING DETECTION TECHNIQUE BY PSNR AND RGB INTENSIT, Volume 3, No. 9, September 2012, Journal of Global Research in Computer Science.
- Dai, Congying (2022). "Analysis on Digital Watermarking Technology and Its Applications," East China University of Science and Technology Shanghai, China, DOI: 10.1109/ICDACAI57211.2022.00048, ISBN: 978-1-6654-5470-4/22/\$31.00 ©2022 IEEE.
- Darshini, Priya B.; Chakkaravarthy, Deepan N.; Gokul, B.; Maharaja, Sabari B. (2023). "A Web-based Dicom Image and Plane Viewer," OI: 10.1109/ICECCT56650.2023.10179664.
- Ghatge, Dipali; Rajeswari, K. (2023). "A Review Study on various Image Security Techniques and Emerging Trends for Visual Data Protection," IEEE, ISBN: 978-1-4244-3364-3, ISSN: 1334-2630.
- Iliyasu, Abdullah M.; Li, Nianqiao; Yan, Fei (2023). "Insights into security and privacy issues in smart healthcare systems based on medical images," IEEE, https://doi.org/10.1016/j.jisa.2023.103621.
- Jain, Archika; Somwanshi, Devendra (2023). "Review on Digital Watermarking Techniques and Its Retrieval," ISBN: 979-8-3503-3802-7/23/\$31.00 IEEE.
- Khaldi, Amine; Kaf, Redouane; Euschi, Salah (2021). "A DWT-based watermarking approach for medical image protection," Fares Journal of Ambient Intelligence and Humanized Computing (2021) 12:2931–2938, https://doi.org/10.1007/s12652-020-02450-9.
- Kumar, Shailendra; Yadav, Anurag Singh (2018). "A Dual Watermarking Approach for DICOM Images," International Conference on Computational and Characterization Techniques in Engineering & Sciences (CCTES), Integral University, Lucknow, India, Sep 14-15, 2018, ISBN: 978-1-5386-4254-2/18/\$31.00 IEEE.
- McAuliffe, M.J.; Lalonde, F.M.; McGarry, D.; Gandler, W.; Csaky, K.; Trus, B.L. (2001). "Medical Image Processing, Analysis, and Visualization in Clinical," Proceedings 14th IEEE Symposium on Computer-Based Medical Systems. CBMS 2001, 26-27 July 2001, DOI: 10.1109/CBMS.2001.941749, Print ISBN: 0-7695-1004-3, Print ISSN: 1063-7125, Conference Location: Bethesda, MD, USA.
- Singh, Kamred Udham; Abu-Hamatta, Hatem Salem; Kumar, Abhishek; Singhal, Achintya; Rashid, Mamoon; Bashir, A. K. "Secure Watermarking Scheme for Color DICOM Images in Telemedicine Applications Computers," Materials & Continua
- Verma, Saurabh; Bhatele, Dr. Mukta (2023). An Effective DWT SVD Based Watermarking Technique on Colored DICOM Image In Healthcare Applications.
- Verma, Saurabh (2014). "Analysis of Digital Watermarking and Techniques: A Review," Volume I, Issue I, June 2014, IJRSI, ISSN 2321 2705.
- Verma, Saurabh (2015). "Apply the fusion of Watermarking techniques on colored image using layered approach," International Journal of Scientific and Research Publications, Volume 5, Issue 6, June ISSN 2250-3153.
- Gonzalez, Rafael C.; Woods, Richard E. "Digital Image Processing" Third Edition. Pearson International Edition prepared by Pearson Education.
- Zhou, S. Kevin; Greenspan, Hayit; Shen, Dinggang. "Machine Learning in Medical Imaging." Dhawan, Atam P. "Medical Image Analysis."