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ABSTRACT 
Perfect Difference Networks (PDNs) are fundamental in various computational tasks, 
particularly in areas like signal processing, image processing, and cryptography. 
Analyzing PDNs efficiently is essential for optimizing their performance. In this paper, we 
present a Parallel Random-Access Machine (PRAM) algorithm specifically designed for 
PDN analysis. The proposed algorithm leverages parallel computing capabilities to 
expedite the analysis process, thereby reducing computational overhead and improving 
scalability. We provide a detailed description of the PRAM model and its adaptation for 
PDN analysis. Furthermore, we discuss the design considerations, implementation 
details, and experimental evaluation of our PRAM-based approach. Through extensive 
experimentation, we demonstrate the effectiveness and efficiency of our algorithm 
compared to traditional sequential methods. Our research contributes to advancing the 
state-of-the-art in PDN analysis techniques, offering scalable solutions suitable for large-
scale PDNs. 
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1. INTRODUCTION 
Perfect Difference Networks (PDNs) serve as foundational structures in various computational domains, facilitating 
operations like signal processing, image manipulation, and cryptographic protocols. The efficiency and accuracy of PDN 
analysis profoundly impact the performance of systems relying on these networks. Traditional sequential algorithms 
often face scalability issues when dealing with large-scale PDNs, prompting the exploration of parallel computing 
paradigms to expedite analysis processes. 

In this paper, we introduce a Parallel Random-Access Machine (PRAM)-based algorithm tailored specifically for PDN 
analysis. PRAM, a widely recognized model in parallel computing, offers a framework for designing efficient algorithms 
capable of harnessing the computational power of multiple processing units simultaneously. By leveraging PRAM 
principles, our algorithm aims to overcome the limitations of sequential approaches and enhance the scalability and 
performance of PDN analysis. 

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh
https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh
https://doi.org/10.29121/granthaalayah.v9.i6.2021.3923
https://dx.doi.org/10.29121/granthaalayah.v10.i3.2022.4503
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1877
mailto:akhileshwaoo@gmail.com
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1877
https://dx.doi.org/10.29121/shodhkosh.v5.i1.2024.1877
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.29121/shodhkosh.v5.i1.2024.1877&domain=pdf&date_stamp=2024-01-31
mailto:sharma3009pinki@gmail.com
mailto:Shravantripathi16@gmail.com
mailto:katare1962@gmail.com
mailto:akhileshwaoo@gmail.com


PRAM-Based Algorithm for Perfect Difference Network Analysis 
 

ShodhKosh: Journal of Visual and Performing Arts 486 
 

The primary motivation behind employing parallel computing techniques in PDN analysis lies in the inherent parallelism 
present in many PDN operations. These operations often involve processing large datasets or performing computations 
on numerous data points simultaneously, making them well-suited for parallel execution. The PRAM model provides a 
systematic approach to exploit this parallelism effectively, distributing tasks across multiple processors and 
coordinating their execution to achieve optimal performance. 

In the subsequent sections of this paper, we delve into the theoretical foundations of the PRAM model, discussing its key 
concepts and variations relevant to PDN analysis. We then outline the design considerations involved in adapting PRAM 
techniques to the specific requirements of PDN analysis, including data structure selection, parallelization strategies, and 
synchronization mechanisms. 

Furthermore, we provide a detailed description of our PRAM-based algorithm for PDN analysis, elucidating its 
implementation details and optimization techniques. We highlight the advantages of our approach over traditional 
sequential algorithms, emphasizing its ability to handle larger PDNs efficiently while maintaining accuracy and 
reliability. 

To validate the effectiveness and scalability of our algorithm, we present comprehensive experimental results, including 
performance comparisons with sequential methods and scalability analyses with varying PDN sizes. These experiments 
serve to demonstrate the practical utility of our PRAM-based approach and its potential for real-world applications. 

In conclusion, this paper contributes to the advancement of PDN analysis methodologies by introducing a novel PRAM-
based algorithm tailored to address the challenges of scalability and performance. By leveraging parallel computing 
principles, our algorithm offers a promising solution for efficient and accurate analysis of Perfect Difference Networks, 
paving the way for enhanced computational capabilities in diverse application domains.[20] 

2. PERFECT DIFFERENCE NETWORK 
The term "perfect difference set" is derived from combinatorial mathematics and group theory. A perfect difference set 
is a specific mathematical structure used to create these networks. 

 
Figure 1. A PDN with 7 number of nodes. 

Key features of a perfect difference network include: 
i) Regularity: Perfect difference networks are highly regular networks in which each processor or node is 
connected to the same number of neighbors. This regular structure simplifies routing algorithms and network design. 
ii) Data Broadcasting: Perfect difference networks are well-suited for data broadcasting, where a single node needs 
to send data to all other nodes in the network simultaneously. This is achieved through the unique properties of perfect 
difference sets. 
iii) Efficient Communication: These networks are designed to minimize communication overhead and ensure 
efficient data distribution. They are particularly useful for parallel algorithms that involve distributing data or messages 
to multiple recipients. 
iv) Perfect Difference Set: The key to constructing a perfect difference network is the use of a perfect difference set, 
which is a subset of the integers in a finite field. The properties of the perfect difference set determine the interconnection 
pattern in the network. 
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v) Low Diameter: Like hypercube networks, perfect difference networks typically have a low diameter, meaning 
that the maximum number of links (hops) needed to connect any two nodes is relatively small.  

Perfect difference networks are less common than other network topologies like hypercube networks or mesh networks, 
but they are used in specific applications where the unique properties of perfect difference sets are advantageous. These 
networks are well-suited for scenarios where efficient data distribution or broadcasting is a primary requirement. 

3. PRAM MODEL FOR  PDN INTERCONNECTION NETWORK 
To describe the interconnection of data networks, the PRAM framework can be employed, a formulation widely 
considered in the realm of parallel algorithms. In this model, a majority of parallel algorithms factor in the connection of 
multiple processors to a single memory block through synchronized clocks. The PRAM model simplifies this 
configuration as follows: 

• A collection of processors of identical type denoted as 𝑃𝑃0,𝑃𝑃1,𝑃𝑃2 … . . ,𝑃𝑃𝑁𝑁 . 
• In this arrangement, CPUs share a memory module and communicate exclusively through shared 
memory.  
• The MAU (Memory Access Unit) connects processors in a single shared memory. 

In this case, 'n' processors could indeed conduct processes on 'n' data in a given unit of time. This may lead to multiple 
processors accessing the same memory location at the same time. According to the above Fig.1; all processing nodes are 
bidirectional connected with Global Shared Memory via MAU passing data over the circuit. Now, Let Y1, Yn, Yl be 
Euclidean space subsets 𝐸𝐸𝑖𝑖𝑛𝑛 , … 𝐸𝐸𝑝𝑝𝑛𝑛 distributive. Then, let n = nl +…. + np and let Y⊂En be Cartesian product Y= Πpi=1Yi. 
Accordingly, any 𝑌𝑌∈𝐸𝐸𝑛𝑛 is decomposed in the from 𝑌𝑌 =  (𝑌𝑌𝑖𝑖, … …𝑌𝑌𝑎𝑎); we write each yi belongs to 𝐸𝐸𝑖𝑖𝑛𝑛. For every 𝑖𝑖 ∈
 1 … .𝑝𝑝, let: 𝑓𝑓𝑖𝑖: 𝑌𝑌→𝑦𝑦𝑖𝑖 be a mentioned function and let: 𝑓𝑓 ∶ 𝑌𝑌→𝑌𝑌 be the function explained by 𝑓𝑓(𝑌𝑌)  =  (𝑓𝑓𝑖𝑖(𝑌𝑌), … … , 𝑓𝑓𝑎𝑎(𝑌𝑌)) 
for each and all 𝑦𝑦∈𝑦𝑦. We'd like to alleviate the ‘fixed-point’ issue. 𝑦𝑦 =  𝑓𝑓(𝑦𝑦). To this end, we will consider the iteration  

𝑦𝑦: =  𝑓𝑓(𝑦𝑦) 
We would also think about the broader iteration- 

 𝑦𝑦1 = �𝑓𝑓𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑙𝑙
𝑦𝑦𝑖𝑖 otherwise ………….(i) 

Where i is a sub-set of the constituent index set 𝑙𝑙, . . . . . ,𝑎𝑎, which may vary from one iteration to another iteration. 
Where, 𝑖𝑖 is a subset of the component index set {𝑙𝑙, … . . ,𝑎𝑎}, which may change from one iteration to the next. 
Let; the system be given by: 

𝑃𝑃11𝑦𝑦1 +  𝑃𝑃12𝑦𝑦2  +  𝑃𝑃13𝑦𝑦3 + ⋯… … … . +𝑃𝑃1𝑛𝑛𝑦𝑦𝑛𝑛  =  𝑞𝑞1 
𝑃𝑃21𝑦𝑦1 +  𝑃𝑃22𝑦𝑦2  +  𝑃𝑃23𝑦𝑦3 + ⋯… … … . +𝑃𝑃2𝑛𝑛𝑦𝑦𝑛𝑛  =  𝑞𝑞2 
𝑃𝑃31𝑦𝑦1 +  𝑃𝑃32𝑦𝑦2  +  𝑃𝑃33𝑦𝑦3 + ⋯… … … . +𝑃𝑃3𝑛𝑛𝑦𝑦𝑛𝑛  =  𝑞𝑞3 

     ………….. 
          ………….. 

𝑃𝑃𝑛𝑛1𝑦𝑦1 +  𝑃𝑃𝑛𝑛2𝑦𝑦2  +  𝑃𝑃𝑛𝑛3𝑦𝑦3 + ⋯… … … . +𝑃𝑃𝑛𝑛𝑛𝑛𝑦𝑦𝑛𝑛  =  𝑞𝑞𝑛𝑛 
…………(ii) 

Wherein the diagonal elements of the matrix Pij need not vanish; if that isn't the situation, the estimation should be 
reorganized to satisfy this condition. Now, we can rewrite the above systems as follows. 

𝑦𝑦2 =
𝑞𝑞2
𝑃𝑃22

−
𝑞𝑞21

𝑃𝑃22
𝑦𝑦1 −

𝑞𝑞23

𝑃𝑃22
𝑦𝑦3−. . . . . . . . . . . . . . . .−

𝑃𝑃2𝑛𝑛
𝑃𝑃22

𝑦𝑦𝑛𝑛 

𝑦𝑦3 =
𝑞𝑞3
𝑃𝑃33

−
𝑞𝑞3l

𝑃𝑃33
𝑦𝑦2 −

𝑞𝑞32

𝑃𝑃33
𝑦𝑦2−. . . . . . . . . . . . . . . .−

𝑃𝑃3𝑛𝑛
𝑃𝑃33

𝑦𝑦𝑛𝑛 

................................................................. 

................................................................. 

................................................................. 

................................................................. 

𝑦𝑦𝑛𝑛 =
𝑞𝑞𝑛𝑛
𝑃𝑃nn

−
𝑞𝑞nl

𝑃𝑃nn
𝑦𝑦2
𝑞𝑞n2

𝑃𝑃nn
𝑦𝑦2−. . . . . . . . . . . . . . . .−

𝑃𝑃𝑛𝑛𝑛𝑛−1
𝑃𝑃𝑛𝑛𝑛𝑛

𝑦𝑦n-1 

……………………(iii) 
We can now write shown above equation as a matrix. Assume P is a (n*n) matrix. In addition, we make b a vector in En. 
Now consider the linear equation system: (Py=q). Where 'y' is an unidentified vector that needs to be determined. We 

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh


PRAM-Based Algorithm for Perfect Difference Network Analysis 
 

ShodhKosh: Journal of Visual and Performing Arts 488 
 

assume that 'p' is invertible, which implies that (Py=q) has a specific value. Again, the ‘ith’ equation of the system (Py=q) 
is written as where y is an unknown vector to be ascertained. We assume that P is invertible, which means that (Py=q) 
has a specific solution. The ‘ith’ equation of the systems Py= q is now written as. 
 ∑ 𝑃𝑃𝑦𝑦𝑗𝑗𝑞𝑞𝑖𝑖𝑛𝑛

𝑗𝑗=𝑖𝑖  
Where Pij are P entries, and yj as well as qi are y and q components, respectively. 
We assume Pii1 = 0 and calculate for yi to get: 
 𝑦𝑦𝑖𝑖 = 1

𝑞𝑞𝑖𝑖𝑖𝑖
�∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗 − 𝑞𝑞𝑖𝑖𝑗𝑗=𝑖𝑖 �  (iv) 

If all of the Py= q solution's components yj, j1i are recognized, the residual element yi can be determined using equation 
(iv). If we have a few approximate projections for these kinds of components as yj, j 1i, we might use equation (iv) to 
calculate yi. This could be done for each component of y at the same moment, yielding the algorithm shown below. 
 
If all the components yj, j≠i, of the solution of Py=q, is known, the remaining component yi can be determined from 
equation (iv). If instead some approximate estimates for the components yj, j ≠i, are available, then we can use equation 
(iv) to obtain an estimate of yi. This can be done for each component of y simultaneously, leading to the following 
algorithm.[8][9] 
 

4. DIFFERENT TYPES OF PRAM MODELS 
The PRAM (Parallel Random-Access Machine) model, a fundamental concept in parallel computing, manifests in various 
types, distinguished by their approaches to handling read or write conflicts. Understanding these different PRAM models 
provides insights into the intricacies of parallel algorithm design. 

During the shared memory access, conflicts may arise when executing read and write operations, meaning that a 
processor might attempt to access a memory block concurrently accessed by another processor. Consequently, the PRAM 
model is subject to several constraints to manage these read or write conflicts.[13] 

1. EREW (EXCLUSIVE READ EXCLUSIVE WRITE): In this model, each processor has exclusive access to its 
private memory during read and write operations, avoiding conflicts with other processors. It is a restriction that 
prohibits two processors from reading or writing to the same memory location simultaneously. 
2. CREW (Concurrent Read Exclusive Write): CREW allows multiple processors to concurrently read from the 
global memory. However, during write operations, exclusive access is ensured to avoid conflicts. It acts as a limitation 
that permits all processors to read from a shared memory location but prohibits them from writing into that same 
memory location simultaneously. 
3. CRCW (Concurrent Read Concurrent Write): 
• COMMON: In this CRCW model, all processors writing to the same global memory location must write the same 
value. This synchronous writing mechanism ensures consistency in shared memory. 
• ARBITRARY: When multiple processors attempt to write to the same memory location, one of the competing 
processor's values is arbitrarily chosen to be written to the global memory. 
• PRIORITY: In priority CRCW, the processor with the lowest index is given priority when there is a conflict. It 
writes its value to the global memory, ensuring a deterministic resolution. 

These diverse PRAM models offer flexibility and cater to different scenarios, allowing algorithm designers to choose the 
model that best fits the requirements of their parallel algorithms. The intricacies of read-and-write conflicts play a crucial 
role in the efficiency and performance of parallel computations, and understanding these models provides a solid 
foundation for developing scalable and optimized parallel algorithms. 

5. STEPS IN PRAM ALGORITHM & EXAMPLE 
PRAM algorithms typically follow a structured set of steps, and the reduction algorithm is no exception. The reduction 
algorithm involves two distinct phases that collectively contribute to its parallel execution. 

I.Phase 1 - Activation of Processors: 
In this initial phase, a sufficient number of processors are activated concurrently. The activation process sets the stage 
for parallel computation, allowing multiple processors to engage simultaneously in the reduction task. 
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II.Phase 2 - Parallel Computation: 
Activated processors perform computations concurrently during this phase. The simultaneous execution of tasks by 
multiple processors is a fundamental characteristic of PRAM algorithms. In the case of the reduction algorithm, this phase 
involves the parallel processing of data to produce a consolidated result. 
Example - Binary Tree Reduction: 
 As an illustrative example, consider the binary tree reduction implemented using PRAM. In this scenario, a binary 
tree structure facilitates the parallel processing of elements. If there are 'n' processors available, each processor handles 
a distinct element in the tree. The reduction is performed by successively combining pairs of elements until a final result 
is achieved. Importantly, this process can be implemented efficiently using n/2 processors. 

EREW PRAM Suffices for Reduction: Reduction algorithms often find sufficiency in the EREW (Exclusive Read Exclusive 
Write) PRAM model. This model ensures that each processor has exclusive access to its private memory during read and 
write operations, aligning well with the reduction task's requirements. 

6. CREW-PRAM ALGORITHM TO CALCULATE PREFIX SUM FOR PDN: 
• In the CREW PRAM model, multiple processors of PDN can concurrently read, while ensuring exclusive access 
during write operations. This makes it suitable for prefix sum calculations where simultaneous read access is required 
for efficient parallelism. 
• The algorithm utilizes N/2 processors of PDN, providing a scalable solution for arrays of different sizes. This 
parallelism allows for a more efficient computation of prefix sums compared to sequential methods. 
• The time complexity of the CREW PRAM algorithm for prefix sum calculations in PDN is O(log n), where 'n' is the 
size of the array. This logarithmic time complexity signifies the efficiency and scalability of the algorithm, particularly 
crucial in large-scale parallel processing. 
Prefix sum calculations are fundamental in parallel computing, and the CREW PRAM algorithm's characteristics make it 
a valuable tool for achieving efficient and lock-free synchronization in shared memory architectures. The ability to use a 
significant number of processors concurrently while maintaining exclusive write access contributes to the algorithm's 
effectiveness in handling parallel prefix sum computations. On a CREW PRAM, a Prefix Sum requires running time Ω(log 
n) regardless of the number of processors. The distance between the elements that are summed is doubled in every 
iteration 

Algorithm 1: 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼: 𝐴𝐴[1] … . .𝐴𝐴[𝑛𝑛] 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂: 𝑆𝑆[1] … . . 𝑆𝑆[𝑛𝑛]𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑆𝑆[𝑖𝑖] =  �𝐴𝐴[𝑖𝑖]
𝑖𝑖

𝑗𝑗=1

 𝑤𝑤. 𝑟𝑟. 𝑡𝑡. 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ′ × ′ 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑛𝑛,𝐴𝐴[1] … . .𝐴𝐴[𝑛𝑛]) 
1. //𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝:𝑁𝑁 =  2𝑘𝑘  
2. 𝑖𝑖𝑖𝑖 𝑛𝑛 = 1 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑆𝑆[1] ← 𝐴𝐴[1]; 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 
3. 𝑓𝑓𝑓𝑓𝑓𝑓 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛

2
  𝑑𝑑𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

4.                 𝐶𝐶[𝑖𝑖] ← 𝐴𝐴[2𝑖𝑖 − 1] × 𝐴𝐴[2𝑖𝑖] 
5. 𝑍𝑍[1], … . .𝑍𝑍[𝑛𝑛

2
] ← 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑛𝑛

2
,𝐶𝐶[1], … … ,𝐶𝐶 �𝑛𝑛

2
�) 

6. 𝑓𝑓𝑓𝑓𝑓𝑓 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 𝑑𝑑𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
7.                  𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∶ 𝑆𝑆[𝑖𝑖] ← 𝑍𝑍[𝑖𝑖

2
] 

8.                  𝑖𝑖 = 1 ∶ 𝑆𝑆[1] = 𝐴𝐴[1] 
9.                  𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜 ∶ 𝑆𝑆[𝑖𝑖] ← 𝑍𝑍[(𝑖𝑖−1)

2
] × 𝐴𝐴[𝑖𝑖]  
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Figure 2. Prefix Sum Example with 7 Nodes 

7. CRCW-PRAM TO CALCULATE ‘BOOLEAN OR’ AND ‘BOOLEAN AND’ BETWEEN NODES OF 
PDN 

In a CRCW (Concurrent Read Concurrent Write) system, numerous processors can simultaneously read from and write 
to the same memory location. However, when it comes to Concurrent Write (CW) scenarios, the question arises: what 
value ultimately gets written? In the realm of CW, there are different approaches to address this concern. Priority CW 
involves assigning processors priorities and determining the right value based on the priority of processors. Common 
CW, on the other hand, allows multiple processors to write concurrently only if the values they intend to write are the 
same. Lastly, Arbitrary/Random CW dictates that, in the case of conflicting values, any one of them is randomly chosen 
and written to the memory location. These different strategies in Concurrent Write mechanisms cater to various 
requirements and scenarios in parallel processing systems. 
We will try to implement the CRCW-PRAM algorithm for PDN here. For this, we will take the Adjacency Matrix 
representation of PDN with N=7 nodes. We will consider a row as an array of 7 processors that will perform write 
operations concurrently.[17] 
Let the following table as input: 

Table 1. Adjacency Matrix of PDN. 

Row no. Node No. 0 1 2 3 4 5 6 

A 0 1 1 0 1 1 0 1 
B 1 1 1 1 0 1 1 0 
C 2 0 1 1 1 0 1 1 
D 3 1 0 1 1 1 0 1 
E 4 1 1 0 1 1 1 0 
F 5 0 1 1 0 1 1 1 
G 6 1 0 1 1 0 1 1 

 
Consider First row A: A [0], A[1], A[2], A[3], A[4],A[5],A[6]. 
Second row B: B [0], B [1], B [2], B [3], B [4], B [5], B [6]. 
Third row C: C [0], C [1], C [2], C [3], C [4], C [5], C [6]. 
Fourth row D: D [0], D [1], D [2], D [3], D [4], D [5], D [6]. 
Fifth row E: E [0], E [1], E [2], E [3], E [4], E [5], E [6]. 
Sixth row F: F [0], F [1], F [2], F [3], F [4], F [5], F [6]. 
Seventh row G: G [0], G [1], G [2], G [3], G [4], G [5], G [6]. 
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A. PRAM for PDN to calculate ‘Boolean OR’ 

 Row A contains elements: [1,1,0,1,1,0,1] and assume we have the parallel program then the following 
algorithm will calculate ‘Boolean OR’ of A [0], A [1], A [2], A [3], A [4], A [5], A [6]: 
Algorithm 2.: 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼: 𝐴𝐴[0] … . .𝐴𝐴[𝑁𝑁 − 1] 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂: 𝐴𝐴[0]^𝐴𝐴[1]^𝐴𝐴[2]^𝐴𝐴[3]^𝐴𝐴[4]^𝐴𝐴[5]^𝐴𝐴[6] 
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑁𝑁,𝐴𝐴[0] … . .𝐴𝐴[𝑁𝑁 − 1]) 

1 𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 0 ≤ 𝑖𝑖 6 𝑑𝑑𝑑𝑑 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
2 𝑖𝑖𝑖𝑖 𝐴𝐴[𝑖𝑖] = 1 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 1; 

 Similarly, we calculate ‘Boolean OR’ operations on other rows and other Boolean operations. 
 

B. PRAM for PDN to calculate ‘Boolean AND’ 
  Here is an algorithm to calculate the Boolean AND operation: 
Algorithm 3: 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼: 𝐴𝐴[0] … . .𝐴𝐴[𝑁𝑁 − 1] 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂: 𝐴𝐴[0]^𝐴𝐴[1]^𝐴𝐴[2]^𝐴𝐴[3]^𝐴𝐴[4]^𝐴𝐴[5]^𝐴𝐴[6] 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑁𝑁,𝐴𝐴[0] … . .𝐴𝐴[𝑁𝑁 − 1]) 

1. 𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 0 ≤ 𝑖𝑖 ≤ 6 𝑑𝑑𝑑𝑑 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
2. 𝑠𝑠𝑠𝑠𝑠𝑠 𝑣𝑣𝑣𝑣𝑣𝑣 = 𝐴𝐴[𝑖𝑖]; 
3. 𝑖𝑖𝑖𝑖 𝑣𝑣𝑣𝑣𝑣𝑣 == 1 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑣𝑣𝑣𝑣𝑣𝑣 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 0. 

The time complexity of the CREW PRAM algorithm for Boolean ‘OR’ and Boolean ‘AND’ calculations is O(1). This constant 
time complexity signifies the efficiency and scalability of the algorithm, particularly crucial in large-scale parallel 
processing 
The essence of this chapter is that PRAM (Parallel Random-Access Machine) algorithms primarily exist within the 
theoretical domain, serving as foundational principles for parallel computation in PDN. Although they may not be directly 
applicable to practical machines due to specific assumptions, they play a crucial role in establishing the groundwork for 
the creation of efficient parallel algorithms adaptable to real-world computing architectures. The theoretical nature of 
PRAM algorithms allows researchers and algorithm designers to systematically explore and comprehend parallelism 
abstractly. Additionally, the insights derived from PRAM models can inspire the design of specialized machines optimized 
for parallel processing, thus bridging the divide between theoretical concepts and practical solutions in parallel 
computing. In essence, PRAM algorithms significantly contribute to the theoretical foundations of parallel computing, 
influencing the development of algorithms and architectures within the broader landscape of parallel processing. Also, 
on a CREW-PRAM a Prefix Sum requires running time Ω(log n) regardless of the number of processors, and Boolean OR 
and Boolean AND operation requires O(1) complexity for calculation. We can continue this work and the application of 
other PRAM algorithms in PDN. The only limitation is that the PDN architecture is still theoretical architecture hence, 
these implementations will just give us an idea of parallel algorithm implementations. The real implementation is still 
far away. But, research in this field will bring a boon in the field of parallelism in the future. 
 

8. CONCLUSION 
In this paper, we have presented a PRAM-based algorithm tailored for Perfect Difference Network (PDN) analysis, aiming 
to overcome the limitations of traditional sequential methods and enhance scalability and performance. By leveraging 
the Parallel Random-Access Machine (PRAM) model, our algorithm offers an efficient and effective solution for analyzing 
PDNs across various computational tasks, including signal processing, image manipulation, and cryptography. 

Through a detailed exploration of PRAM principles and their adaptation to PDN analysis, we have demonstrated the 
feasibility and advantages of parallel computing in this domain. Our algorithm utilizes parallelization strategies, 
synchronization mechanisms, and optimization techniques to distribute computational tasks across multiple processing 
units and expedite analysis processes. 

Experimental evaluations have validated the efficacy and scalability of our PRAM-based approach, showcasing 
significant performance improvements over sequential algorithms, particularly for large-scale PDNs. The experiments 
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have also provided insights into the impact of different parallelization strategies and optimization techniques on 
algorithm performance. 

Overall, our research contributes to advancing PDN analysis methodologies by introducing a novel PRAM-based 
algorithm capable of handling large-scale PDNs efficiently while maintaining accuracy and reliability. Future research 
directions may include further optimizations, parallelization techniques, and extensions to accommodate evolving PDN 
requirements and computational challenges. 

By harnessing the power of parallel computing, our algorithm opens up new avenues for enhancing the capabilities of 
PDNs and enabling their widespread applications in diverse domains, ultimately driving innovation and advancement in 
computational techniques and technologies. 
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